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Abstract: Electrocardiographic (ECG) data analysis can reveal crucial information about the cardiovascular physiologi-

cal phenomenon, which is modulated by the Autonomic Nervous System. Hereupon, beyond cardiovascular

diagnosis, ECG markers can also reflect workload levels, or even physical and mental performance, through

Heart Rate Variability (HRV) analysis. Building upon previous work found within the state-of-the-art, this pilot

research explores the potential of using a low-cost device for cardiopathy pre-screening, through ECG signal

analysis. With the aim of performing the rhythmical analysis, we performed empirical tests from a population

of 21 control subjects in a resting position, and an additional 2 subjects, one of them in dynamic condition, in

the scope of an exploratory research, using ECG wave segments analysis and HRV features extraction for nu-

merical analysis. Results have demonstrated that the signal quality allows reliable ECG acquisition for further

rhythmical and HRV analysis, in stationary and dynamic monitoring, for the bipolar leads applied. There was

also evidence to suggest a benefit from including ECG morphological analysis with this hardware and software

setup for prevention and diagnosis of cardiovascular disorders, although requiring further investigation.

1 INTRODUCTION

Bio-signal analysis with open source and low-cost de-

vices has been increasingly popular in the past deca-

des, as its applications are being recognized and ex-

tensively explored by the research and industrial en-

gineering fields. The convergence of synergies bet-

ween such diverse communities has allowed multiple

enabling technologies to reach great advances in rese-

arch and product development, due to the opportunity

for experimentation given by the low-cost, configura-

bility and accuracy of the current Do-it-Yourself de-

vices. Importantly, the development of proof of con-

cept methodologies or prototypes for bio-signal appli-

cations can represent a great cost and time reduction

when compared to medical devices. They can even

be further enhanced when allied to other areas with

the same philosophy (i.e., low-cost enablers of new

knowledge and experiences), such as 3D printing.

In the landscape of low-cost devices for biome-

dical applications, BITalino (http://bitalino.com/en/)

has been described as a viable choice (Guerreiro et al.,

2014). Beyond the hardware features, BITalino also

presents a comprehensive range of software resour-

ces, within which particular attention has been given

to the ECG (Silva et al., 2014, 2011; Němcová et al.,

2016).

Previous research led us to further evaluate this

device, aiming at reinforcing the pieces of evidence to

sustain the reliability for cardiopathy pre-screening.

As such, for the purpose of this study, the numerical

data from the low-cost device has been empirically

corroborated with the data from a gold standard de-

vice, in order to evaluate its performance. We aim to
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find evidences that support the BITalino’s reliability

for rhythmical and HRV parameters analysis in static

and dynamic real-world applications. Furthermore,

in the scope of our preliminary study, the data acqui-

red also suggest promising results for cardiopathy de-

tection through morphological waveform analysis.

For these purposes, a control group of 21 subjects

have been monitored with BITalino, using a bipolar

differential lead placement, at rest in supine position,

to guarantee the same conditions that have been previ-

ously monitored by a medical team with a gold stan-

dard device. It was also included in this study the

monitoring from two other subjects: in one of the sub-

jects, namely, Subject C2, ECG waveform abnorma-

lities were detected, as well as in one of the subjects

from the control group, designated as Subject C1 and

referred in Section 4.1; and the other subject, hereaf-

ter referred to as Subject C3, has performed both ECG

monitoring at rest and during trail run, to perform a

preliminary assessment of the behavior of BITalino in

a dynamic and real-world condition.

The results from the rest monitorings point to an

accurate data acquisition. Moreover, the low-cost

device also shows up-and-coming results for further

rhythmical and HRV parameters analysis in dynami-

cal on-the-person ECG acquisition, as shown by the

results obtained in case study 3.

2 MOTIVATION

This research builds upon a study carried out by

Silva et al. (2015), where the authors described a

taxonomy for the practicality of ECG devices, and

performed a numerical comparison of an “off-the-

person” sensor placement with a gold standard ECG

device used in clinical practice. Here, we will add

to this evidence by using BITalino in an “on-the-

person” approach comparing its output with a gold

standard medical device, and also by making a pre-

liminary assessment of its performance in dynamic

applications (as described in Section 3.1). In the

range of non-invasive methods, “on-the-person” ap-

plications show consistent and continuous data acqui-

sition once the system is attached to the body sur-

face, allowing many different application methods.

Portable devices, such as wearables (e.g., Zio TX,

http:// www.irhythmtech.com/products-services/zio-

xt; ActiHeart, (https://www.camntech.com/products/

actiheart/ actiheart-overview) or even used within the

landscape of conductive textiles (Tong et al., 2018)

can have a great impact for certain age groups that

require a particular approach to improve their adhe-

rence, such as children (Zhu et al., 2015) and people

with disabilities.

Regarding ECG and HRV, several studies have

been published using open source and low-cost tools,

including BITalino-based research, revealing that the

high costs of medical and state-of-the-art devices can

be avoided for several applications (i.e. for proof-of-

concept studies and prototyping development), due to

the accuracy of such devices.

In Alves et al. (2014), BITalino’s ECG perfor-

mance was tested against a gold standard device —

BIOPAC (https://www.biopac.com/) — aiming to in-

troduce an electrode design for paper-based inkjet

printed electrodes. With a sampling rate of 1000Hz

and 10-bit resolution set up for both devices, the expe-

rimental results showed that the devices had compara-

ble performance in Signal-to-Noise Ratio (SNR) and

Root Mean Square Error (RMSE). Also, the heartbeat

waveform morphology measured with BITalino and

BIOPAC were very close to each other.

Silva et al. (2015) also presented a correlation of

ECG data, acquired from 38 volunteers at rest, bet-

ween a medical device (Philips PageWriter Trim III

series) and the first version of BITalino, aiming to

validate the signal acquisition accuracy for “off-the-

person” applications. The medical device used a se-

tup that included the classical 12-lead ECG place-

ment system, whilst BITalino used a single lead, in

a setup with two dry electrodes placed at the index

fingers. The comparative tests showed that the “off-

the-person” ECG data had a precision for R-peak de-

tection above 98%, when compared to the correspon-

ding lead in the gold standard device. Additionally,

the segmentation performance and morphological wa-

veform analysis showed a strong correlation between

the real-world empirical data assessed for both devi-

ces, reinforcing the potential of low-cost devices.

Concerning HRV analysis, low-cost and open

source tools have allowed a cost effective and multi-

faceted broad level of data exploitation, which is usu-

ally expensive, limited and too generic (Muñoz et al.,

2017). In addition, signal post processing and HRV

analysis to extract time and frequency parameters

through numerical methods, allow the understanding

and use of these data out of lab rooms, because their

representation and physiological phenomena auto de-

tection is supported by this approach (Tarvainen et al.,

2014).
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3 MATERIAL AND METHODS

3.1 Exploratory Study

In order to understand which leads would best suit the

purposes of our research (i.e., future implementation

in sports, stress tests, or even daily life applications),

factors such as EMG noise (Levick, 2013), lead vec-

tor according to the heart’s electrical conductive sy-

stem (Malmivuo et al., 1995; Dubin, 2000) and lead

sensitivity for ventricular events detection (Fletcher

et al., 2013) were considered. Thus, bipolar Modified

Chest Leads MCL1, MCL6, CM5; Modified Leads I

and II; and Conventional Lead (CL) (Francis, 2016;

Dubin, 2000) were tested. (1) CM5 and (2) CL leads

were selected to be used in this study due to: lower

EMG artifact susceptibility during limbs movement,

(1) R-peak detection, explicit ventricular phenomena;

(2) lead vector with approximate alignment to the he-

art’s electrical vector for an overview perspective.

3.2 Volunteers

The study comprised a total of 21 athletes from one

professional male football team, who trained twice

daily. In this group the average age was 21.95±3.32

years old; the average height was 181.3±5.68 cm and

the average weight was 72.3±5.81 Kg. The athele-

tes declared that they were not under pharmacological

substance that could affect the cardiac phenomenon.

Additionally, a 34 year old female with a known

family history of cardiovascular disease, referred to

as subject C2, and a healthy 26 year old male, desig-

nated as subject C3 participated in the study. Results

are reported in case studies 2 and 3, respectively. Sub-

ject C2 is 158 cm height and 47 Kg and subject C3 is

174 cm height and 70 Kg.

3.3 Experimental Protocol

As part of the Experimental Protocol, all the volun-

teers were individually informed about the procedures

and aim of this study. In order to avoid any kind of ex-

ternal bio-electrical and electromagnetic interference,

impedance issues related to the skin of the volunteers

and to properly prepare the volunteers, all the proce-

dures and ethical principles stated by Kligfield et al.

(2007); Crawford et al. (1999) and the “Helsinki De-

claration of Ethics” were followed. Next, the elec-

trodes were applied in a bipolar configuration using

leads CM5 and CL.

ECG recording was performed at rest in the supine

position and took place before the morning training

and after lunch, before the afternoon training so that

the ECG acquisition could be performed in basal con-

ditions. Each volunteer was submitted to one ECG

recording, with a minimum duration of 2 mins, accor-

ding to the stated procedures in ESC/AHA (1996) for

short-monitoring HRV analysis.

3.4 Acquisition Setup

3.4.1 Hardware

We used a BITalino (r)evolution Plugged Kit, with

two ECG sensors, and 3D printed cases were produ-

ced to store the whole kit. The hardware set up inclu-

ded a BITalino (r)evolution main-board, power supp-

lied by a 750mAh capacity and 3.7V output LiPo bat-

tery, and communication over Bluetooth to our base

station — a laptop with Windows operating system.

Pre-gelled Ag/AgCl electrodes were used (see Fi-

gure 1). Table 1 presents the BITalino (r)evolution

ECG sensors specifications.

Figure 1: (left) BITalino (r)evolution Plugged Kit (main-
board and ECG sensor connected in the 3D printed cases);
(right) Example of the bipolar leads electrode placement in
a volunteer.

Table 1: BITalino (r)evolution ECG and BTL-08 MT PLUS
specifications.

Feature BITalino BTL-08 MT PLUS

Sampling Rate 1000Hz 2000Hz

ADC resolution 10 bit 13 bit

Gain 1100 n.a.

Range ±1.5mV (VCC = 3.3V) AC:±15.9 mV; DC:±400 mV

Bandwidth 0.5 — 40Hz 0.05 — 170Hz

Input Voltage Range ±1.65 V ±5 V

Input Impedance 7.5GΩ > 20MΩ
CMRR 86dB > 98dB

Besides our monitoring, the volunteers were sub-

mitted to ECG monitoring during the football league

pre-season. This was performed using a BTL-08 MT

PLUS for the standard 12-lead ECG acquisition, in

rest.
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3.4.2 Software

BITalino’s data acquisition software was OpenSig-

nals. The recorded data was performed at a 1000Hz

sampling rate. The BTL-08 MT PLUS was set up for

2000Hz and had digital filters incorporated in the har-

dware — adaptable mains filter [50-60 Hz]; muscle

tremor filters for 35 Hz and 25 Hz; baseline filters:

0.05 Hz (3.2 s), 0.11 Hz (1.5 s), 0.25 Hz (0.6 s),

0.50 Hz (0.3 s), 1.50 Hz (0.1 s) and splines.

The feature extraction and automatic ECG analy-

sis for the medical device was accomplished through

the BTL CARDIOPOINT ECG C600 software, for

25 mm/s and 50 mm/s recording speeds and 10 mm/s

amplitude.

3.5 Data Post-processing

Although the BTL-08 MT PLUS system alre-

ady provides detailed features in the generated

reports, BITalino mostly performs raw data acqui-

sition, reason for which data post-processing was

needed. For raw data conversion to the correct

physical units (milliVolt), the transfer function

suggested in BITalino’s manuals was implemented

(http://bitalino.com/datasheets/REVOLUTION ECG

Sensor Datasheet.pdf). Further feature extraction

was performed using the BioSPPy toolbox, a set

of open source and Python-based routines for ECG

signal filtering, R-peak detection, HR plot, waveform

template (http://biosppy.readthedocs.io/en/stable/).

The BioSPPy toolbox applies a band-pass filter (3-45

Hz) and also implements Christov’s algorithm for

QRS detection (Christov, 2004). The toolbox was

adapted to obtain the standard ECG trace grid for

25mm/s recording speed and 10mm/mV amplitude,

which improves rhythmical and morphological

analysis by observation, as shown in Figure 2. For

each subject, we have extracted ECG traces for 5 s

and 10 s, as well as for complete monitoring, for raw

and filtered data, and also the segmented heartbeat

waveforms (Figures 4 & 8) and heart rate plots

(Figure 7).

HRV feature extraction was accomplished through

OpenSignals’s add-on, from the raw data.

4 RESULTS

All the components of the P-QRS-T wave, segments

and intervals were detectable and the R-peaks were

explicit in all recorded ECG, as the example shown in

Figure 4.

Figure 2: Portion of the ECG trace with P-QRS-T waveform
identified in Subject C1 using lead CM5 (Section 4.1, be-
low). The inverted T wave and ECG trace grid develo-
ped are also represented. Graphical representation extracted
from BioSPPy.

Figure 3: Portion of ECG trace for lead V5 and V6 re-
corded for Subject C1 adapted from BTL CARDIOPOINT
ECG C600 reports, with a recording speed of 25 mm/s and
10 mm/mV amplitude. This portion of the ECG trace evi-
dences the inverted T wave detected by the gold standard
device.

Figure 4: Example of a set of segmented heartbeat wa-
veforms extracted from the complete ECG monitoring for
Subject S20 (171.2 s), using lead CL. This graphical repre-
sentation, extracted from the BioSPPy toolbox, represents
the overlap of all (168) filtered P-QRS-T segments template
where the absence of artifacts can be observed.
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The ECG acquisition for the athletes was perfor-

med in different days, due to the time required by the

hardware setup procedures that would affect athele-

tes training plan, as well as the medical team availa-

bility for extra days required. Although, the moni-

toring with the low-cost device was accomplished in

following days, so the physiological condition of the

volunteers could be, theoretically, similar. For these

reasons, the data collected could not be synchronized

between both devices. Also, the medical team only

provide us the ECG reports, instead of the digital data,

which has restricted the data analysis component of

our work.

Nonetheless, further analysis of ECG traces from

both devices, namely, the Corrected QT Interval

(QTc) for the heart rate was performed for all athle-

tes (Table 2). The lead selection for scalar absolut

QT interval measurement was accomplished accor-

ding to the clinical procedures for the classic 12-lead

ECG, where the selected lead represents the wider

QT interval within the 12 leads. We have followed

the same procedure for the modified leads, acquired

with BITalino. Afterwards, Bazett’s correction for-

mula (QTc = QT/
√

RR [sec]) (Postema and Wilde,

2014) was implemented to return the QTc values.

Table 2: This table presents QTc values and respective ab-
solute QT and RR intervals, through ECG trace scalar mea-
surement. As well as the average RR intervals for the com-
plete monitoring of both devices, which was obtained from
OpenSiganls and BTL CARDIOPOINT ECG C600 auto-
mated extraction.

BITalino (r)evolution BTL-08 MT PLUS

Subject QT

(s)

RR

(s)

QTc

(ms)

AVG

RR

(ms)

QT

(s)

RR

(s)

QTc

(ms)

AVG

RR

(ms)

S1 0.44 1.04 431 1052 0.4 1.4 338 1333

S2 0.44 1 440 947 0.36 0.86 388 857

S3 0.42 0.92 438 887 0.38 0.86 410 845

S4 0.44 1.04 431 973 0.44 1.12 416 1053

S5 0.48 1.46 397 1433 0.44 1.4 372 1395

S6 0.46 1.16 427 1089 0.44 1.26 392 1224

S7 0.44 1.06 427 1011 0.4 0.88 426 857

S8 0.46 1.04 451 1007 0.4 0.9 422 938

S9 0.4 0.96 408 880 0.36 0.92 375 896

S10 0.44 1.16 409 1086 0.36 0.7 430 706

S11 0.44 0.98 444 940 0.44 0.94 454 1000

S12 0.48 1.2 438 1364 0.44 1.08 423 1091

S13 0.44 1.14 412 1163 0.42 1.4 355 1395

S14 0.42 0.98 424 967 0.4 1.04 392 1000

S15 0.42 1.18 387 1008 0.38 1.32 331 1224

S16 0.44 1.56 352 1434 0.42 1.52 341 1395

S17 0.5 1.22 453 1209 0.46 1.34 397 1277

S18 0.44 1.16 409 1162 0.42 1.52 341 1463

S19 0.4 1.2 365 1029 0.38 0.96 388 938

S20 0.48 1 480 1191 0.44 1 440 1034

S21 0.52 1.44 433 1313 0.44 1.3 386 1224

AVG 0.44 1.14 427 1052 0.42 1.08 392 1053

SD 0.0306 0.172 29.55 169.5 0.0314 0.248 35.77 221.8

The following subsections describe the case stu-

dies based on ECG monitoring using BITalino, gui-

ded through the same protocol and tools as the main

group of 21 volunteers, including possible cardio-

pathy events for the controlled group. Even though

the aim of this study was to assess BITalino’s reliabi-

lity for rhythmic analysis, curious evidences in wave

morphology were detected and are discussed in furt-

her detail below.

4.1 Case 1 — Inverted Polarity in T

Wave

In the ECG acquisition in one of the athletes, Subject

C1, an abnormal waveform was detected (Figure 2).

This fact was empirically corroborated using the data

from the medical device, which showed that the in-

verted polarity of the T wave was also detected by

BTL-08 MT PLUS in precordial leads V5 and V6 (Fi-

gure 3), but also in lead V4. This evidence may sug-

gest a variety of cardiac disorders, although further

clinical analysis (i.e., echography) will have to be per-

formed, to accomplish a proper diagnostic and to ex-

clude ECG pattern alterations related to different phy-

sical activities or certain age, gender or race groups

(Drezner et al., 2013; Macfarlane et al., 2014).

4.2 Case 2 — Extrasystole Detection

During the exploratory phase of this study, Lead I —

an Eithoven-like setup with two electrodes placed on

the wrists, for ECG monitoring in an upright seated

position — has been tested in Subject C2.

Figure 5: Portion of ECG strip showing extrasystole de-
tected by BITalino, on Lead I, for Subject C2.

Figure 6: Extrasystole detected during the Holter exam, re-
corded at 25 mm/s of speed and 10 mm/mV in amplitude.

During the ECG monitoring, acquired with BITa-

lino, abnormal events were detected and later confir-

med by a trained physician, who advised the subject
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to be further examined at the local cardiology ser-

vice. As a result, Subject C2 has performed a Holter

exam — using a NovaCor device and HolterSoft Ul-

tima V2.4.4 software — in which the medical team

diagnosed extrasystoles. Afterwards, we investigated

the results obtained in both tests, which can be obser-

ved in Figures 5 & 6.

4.3 Case 3 — HRV Analysis

Subject C3 performed ECG acquisition at rest and

during trail running, in the scope of the exploratory

phase of this study. The hardware set up was attached

to the subject’s clothes using a 3D printed clip, and

the cables and electrodes were fixed with an elastic

net tube bandage. An Android smartphone was used

as the base station. Figure 7 represents the HR graph,

during a portion of the trail run, which coincided with

the end of the run. In Figure 8, the segmented in-

dividual heartbeat waveforms are represented for the

overall run.

Figure 7: Portion of approximately 18 mins (1108.4 s) for
HR analysis. Graph extracted through the BioSPPy toolbox
for Subject C3, during a trail running.

Figure 8: Segmented heartbeat waveforms for Lead
CM5 during the trail running, for approximately 18 min
(1108.4 s). Signal filtered and graph generated using Bi-
oSPPy.

5 DISCUSSION

The exploratory study with Subject C3 has revealed

that even under upper limbs and trunk muscles con-

traction, as well as in the presence of perspiration

and all the evoked potentials spread by the muscular

groups surrounding the electrodes, the R-peaks can be

Table 3: HRV time parameters extracted from CM5 lead for
Subject C3.

Time parameter Rest Run

Min. NN (ms) 775 344

Max. NN (ms) 937 945

Avg. NN (ms) 858 492

SD NN (ms) 30 74

rMSSD (ms) 28 21

NN20 99 389

pNN20 (%) 58 17

NN50 11 61

pNN50 (%) 6 2

Avg. IHR (BPM) 69 121

SD IHR (BPM) 2 19

Table 4: HRV non-linear parameters extracted from CM5

lead for Subject C3.

Non-linear parameter Rest Run

SD1 (ms) 20 15

SD2 (ms) 39 104

SD1/SD2 0.51 0.14

Table 5: HRV frequency parameters extracted from CM5

Lead for Subject C3.

Parameter
Rest Run

VLF LF HF VLF LF HF

Frequency

(Hz)

0–0.04 0.04–0.15 0.15–0.4 0–0.04 0.04–0.15 0.15–0.4

Peak

(Hz)

0.007 0.062 0.338 0.012 0.06 0.152

Power

(ms2)

122 307 300 1890 472 227

Power

(%)

17 42 41 73 18 9

Power

(n.u.)

– 51 49 – 68 32

Figure 9: Power spectral density (PSD) (left) and Poincaré
(right) plots for Subject C3 during rest.

Figure 10: Power spectral density (PSD) (left) and Poincaré
(right) plots for Subject C3 during trail run.

effectively detected by Lead CM5 for long dynamic

monitoring, as shown in Figures 7 & 8.

Regarding the QTc measurement, procedures

found in the state-of-art and clinical practice stipu-

late that this measurements should be performed by

using the classic 12-lead ECG analysis. However, the
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results from the modified leads show approximated

values. Further investigation is needed to evaluate if

a range of appropriate cut-off values allows accurate

diagnosis from QTc values obtained from modified

leads.

Even though there is a historical non-consensual

objectivity for HRV parameters analysis (Trimmel

et al., 2015), there are emerging pieces of evidence

that support its use for prevention and/or monitoring

of mental, physical and physiological health conditi-

ons (Hughes et al., 2010; Taelman et al., 2009), as

well as in sports for physical and mental performance

improvement (Peçanha et al., 2013; Dong, 2016).

HRV parameters for the control group (Table 6),

the overall average values for rest acquisition sugge-

sted a good level of parasympathetic predominance.

However, there were some cases that would have gre-

atly benefited from continuous monitoring to improve

the sympathovagal balance, and further physical per-

formance improvement. It is important to note that

the measures were acquired in the beginning of the

football season, which meant that some of the athle-

tes were just restarting their professional training and

the physical performance was not at its peak. HRV

analysis must be regular, so the data can support con-

sistent results and avoid events that can change the

physiological phenomena.

Table 6: The overall average values of HRV parameters for
the control group, extracted from CL (the value of 8.1 for
the LF/HF ratio is an isolated value).

SD

NN

(ms)

AVG

IRH

(BPM)

SD

IHR

(BPM)

LH / HF

ratio

SD1/SD2

Min. 30 41 1 0.2 0.19

Max. 162 68 7 8.1 1.13

Average 79 55 3.7 1.14 0.64

By analyzing HRV parameters in rest and during

trail running (Tables 3, 4 & 5) for Subject C3, we

observed the sympathetic predominance during exe-

rcise. The physical needs of the body during the ae-

robic exercise (i.e., oxygen absorption and carbon di-

oxide excretion, energy consumption, etc.) were re-

flected in LF predominance, besides HR increment,

which increased the LF/HF ratio — PSD graphs in

Figures 9 & 10 present the LF predominance during

exercise.

Also, the non-linear parameters showed the same

sympathovagal balance alteration. During exercise

the rMSSD had also decreased, due to the decrea-

sing parasympathetic activity. As stated by Dong

(2016), we confirmed the regularity of the heart be-

ats and sympathetic predominance during exercise, as

demonstrated in the Poincaré plots in Figures 9 & 10.

6 CONCLUSIONS AND FUTURE

WORK

We have presented an evaluation of a low-cost and

DiY device when compared to a medical-grade sy-

stem to assess the potential of the former for cardi-

opathy pre-screening, by performing tests in a total

population of 23 subjects. Results have demonstrated

that the signal quality allows reliable ECG acquisition

for further rhythm and HRV analysis, in stationary

and dynamic monitoring, using the bipolar leads sen-

sor configuration. Also, we found evidence to support

the use of ECG morphological analysis in prevention

and diagnosis of cardiac disorders.

From a rhythmical point of view, the low-cost

device has shown promising results. The case stu-

dies discussed and the results obtained also motivated

our team to investigate BITalino’s potential consis-

tency for abnormal waveform pattern detection in se-

vere pathologies and demanding environmental con-

ditions, towards its maximum usability for rhythmical

and morphological ECG analysis.

In the future, we aim to further test the reliabi-

lity of BITalino to monitor subjects with diagnosed

rhythmical cardiac disorders, both during rest and

stress tests. Patients will be monitored with a syn-

chronized gold standard device, in order to assess the

accuracy that can be achieved with BITalino. We will

evaluate the rhythmical analysis, including HRV for

continuous monitoring, and wave morphology analy-

sis in this context. With the synchronized acquisition

setup, we will also be able to determine whether a cut-

off value can be set for QTc measurement accuracy

with modified leads. In addition, other bipolar leads

will be explored to attain different electrical lead vec-

tors, so the analysis of the heart atria can be improved,

as well as new approaches for LF/HF ratio analysis

that can better track mental and emotional states, in a

similar fashion to the method developed by von Ro-

senberg et al. (2017).
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