
Multi-Tenancy: A Concept Whose Time Has Come and (Almost)

Gone

Christoph Bussler
Oracle Corporation, Redwood City, CA 94065, U.S.A.

Keywords: Cloud Software Engineering, Multi-tenancy, Container-based Computing, Server-less Computing.

Abstract: With the emergence of server-less computing the need for multi-tenancy in application services diminishes

and eventually disappears as server-less computing supports the isolation between tenants by cloud account

automatically. A server-less application installed into a customer’s cloud account is isolated from other

customer’s cloud accounts by means of the underlying cloud provider infrastructure automatically. Aside

from perfect partitioning in all aspects, this server-less computing simplifies the implementation of an

application service since multi-tenancy does not have to be implemented or managed at all by the

application service logic itself. The position brought forward in this paper is that the concept of multi-

tenancy for application design and implementation is obsolete in context of application services

implemented based on server-less computing.

1 INTRODUCTION

The primary driver behind multi-tenancy is efficient

resource utilization in cloud infrastructures. A multi-

tenant resource serves many tenants concurrently in

order to avoid being underutilized or even idling.

“The term ‘software multitenancy’ refers to a

software architecture in which a single instance of

software runs on a server and serves multiple

tenants. A tenant is a group of users who share a

common access with specific privileges to the

software instance. With a multitenant architecture, a

software application is designed to provide every

tenant a dedicated share of the instance – including

its data, configuration, user management, tenant

individual functionality and non-functional

properties. Multitenancy contrasts with multi-

instance architectures, where separate software

instances operate on behalf of different tenants.”

(Wikipedia 2018).

A tenant in this context refers to a customer (a

commercial or government organization, or an

individual) that has an account in the cloud

infrastructure and uses the cloud’s services like SaaS

(Software as a Service), PaaS (Platform as a Service)

and/or IaaS (Infrastructure as a Service).

The cloud offered by a cloud provider like, for

example, Amazon, Google, Microsoft or Oracle is

implemented as a set of data centers placed in

different geographical locations around the globe. A

data center at its core consists of a set of physical

hardware machines (including storage devices)

organized into racks that host the various resources

or cloud services.

Resources are cloud services like data analytics,

machine learning, enterprise data integration,

process integration, but also databases, document

stores, block storage, or middleware like message

queues. Basically, each cloud service provided by a

cloud is a resource.

In general, resources are classified as SaaS, PaaS

and IaaS cloud services. A tenant can access one or

more of the resources in these classes. For the

following discussion, however, the classification is

not relevant.

How are (multi-tenant) application services

designed and implemented utilizing cloud resources

like IaaS or PaaS resources?

1.1 Multi-Tenant Service
Implementation Strategy:
State-of-the-Art and
the New Kid on the Block

In general there are many architectural approaches to

implementing multi-tenant application services (like

316
Bussler, C.
Multi-Tenancy: A Concept Whose Time Has Come and (Almost) Gone.
DOI: 10.5220/0006963303160323
In Proceedings of the 14th International Conference on Web Information Systems and Technologies (WEBIST 2018), pages 316-323
ISBN: 978-989-758-324-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

for example a supply chain management system).

This position paper calls out two approaches:

 Container-based computing (state of the art)

 Server-less computing (new kid on the block)

The currently predominantly used container-

based computing infrastructure is Kubernetes

(Kubernetes, 2018). Kubernetes is a container

management system mainly – but not exclusively –

used in conjunction with Docker (Docker, 2018).

Kubernetes can create clusters consisting of sets of

Docker containers (realized as Kubernetes pods).

Possibly cooperating Kubernetes pods implement

the application service functionality.

Cloud providers support in general two

approaches for tenants to use Kubernetes. One is for

a tenant to install the Kubernetes runtime software

on virtual machines into a cloud. The other is for a

tenant to use Kubernetes as a service. The former

requires a tenant to install Kubernetes itself on IaaS

resources, whereas the latter supports launching a

Kubernetes cluster as a PaaS service without having

to install the Kubernetes runtime software itself first.

Docker containers are launched from Docker

images via the Kubernetes concept of Kubernetes

services and Kubernetes pods and are constantly

running (except when being recovered in case of

failures or deleted when scaling down).

To efficiently utilize these constantly running

containers within the Kubernetes pods they in

general execute functionality for several tenants

concurrently and thereby implement a multi-tenant

software architecture.

This container-based approach requires tenant

management in order to know which tenants exist,

requires the ability to create log statements or log

files separated by tenant identifiers, requires an

engineering approach that ensures that the execution

threads in a container are isolated to avoid cross-

tenant contamination, requires the ability to move

tenants between clusters for capacity and load

adjustments, requires container scaling strategies

that take tenant-specific load into consideration –

just to name specific multi-tenant functionalities.

The new kid on the block is server-less

computing. Server-less computing is an approach

that abstracts away the computing and middleware

infrastructure (aka, IaaS and PaaS). Server-less

computing provides the ability to register/upload

code and dependencies without any reference to

infrastructure. Example systems are AWS Lambda

(AWS Lambda, 2018), Azure Functions (Azure

Functions, 2018), Google (Google Cloud Functions,

2018), or Oracle Functions (Oracle Fn, 2018).

In such an approach the application service logic

is implemented and registered as functions that

possibly trigger other functions or events, and they

themselves are triggered by invocations or events.

For example, a function can enqueue a message into

a queue and that message when dequeued can trigger

another function (implementing an event-based

pattern).

Implementing an application service is therefore

(on a high level) a set of functions and triggers

interacting with various cloud components that do

not require installation or management of

Kubernetes services or Docker containers. Installing

an application service means only to upload the

functions and triggers of functions.

The server-less approach does not create and run

containers (that are potentially underutilized or

idling) that a software engineer has to try to optimize

and a customer has to pay for if used or not. To the

contrary, the tenant only pays for function

executions and not for the infrastructure use as the

underlying cloud execution environment is

independent of the tenant’s execution needs.

Every tenant in a cloud can install the required

application services by uploading the functions and

triggers that make up the service. Every tenant

executes these in the context of their cloud account

and that is by default isolated from other cloud

accounts of other tenants (complete partitioning).

The implementation of a function or trigger does

not have to be aware of multi-tenancy: it can safely

assume that is being executed for exactly one tenant

only based on the separation of cloud accounts. The

server-less cloud environment ensures partitioning.

1.2 Context: 3rd Party Software
Provider

The discussion in this paper is from the viewpoint of

a 3rd party software provider (for example, a start-up,

an software vendor, a consulting company or a

customer building application services itself) that

builds software, like a supply chain management

software, for its customers. This software is going to

be deployed into the cloud of a cloud provider (and

thereby becoming an application service). Once

deployed, customers can licence the service from the

3rd party software provider and use it.

Note, a customer of a 3rd party software provider

might or might not be a cloud tenant. If the 3rd party

software provider implements a service in the cloud,

it is the tenant. If the 3rd party provider asks its

customer to install software into a cloud, then the

customers become tenants as they interact with the

Multi-Tenancy: A Concept Whose Time Has Come and (Almost) Gone

317

cloud directly. The 3rd party provider has not role

during runtime execution.

For emphasis, the discussion in this position

paper is not (!) from the viewpoint of a cloud

provider itself (like Amazon, Google, Microsoft or

Oracle) and their internal implementation. This

position paper does not discuss how the cloud

infrastructures of the various cloud providers are

implemented internally. This viewpoint is irrelevant

to the discussion since a 3rd party software provider

or a tenant must and will use the public cloud

interface as provided by the cloud provider in order

to install its service into a cloud for its customers.

1.3 Position: Multi-tenancy Is (Almost)
a Concept of the past

“AWS Lambda has stamped a big DEPRECATED

on containers” (Brazeal, 2018).

Aside from this flashy prediction about the

future of container-based technology, the fact that

server-less computing does neither require the

implementation of multi-tenant logic, nor the

configuration and management of low level

constructs like Docker images and Kubernetes

configurations lets me to take the position that multi-

tenancy is a concept of the past.

The uptake of server-less computing is ongoing

and expectations are that due to its higher level of

abstraction the uptake will continue on a broad basis.

A good place to see the uptake activity in industry

can be found here: (Medium, 2018).

Server-less computing does not require multi-

tenancy logic as server-less computing is by default

automatically providing isolation between tenants as

well as automatic efficient resource utilization.

Therefore, my position is: multi-tenancy is a

concept whose time has come and (almost) gone.

1.4 Outline

The paper discusses relevant cloud service

topologies in order to set the context in Section 2.

Afterwards multi-tenancy is discussed in more detail

in Section 3 and provides a glimpse into its

complexity. Section 4 characterizes and summarizes

server-less computing in context of multi-tenancy.

Section 5 states the position explicitly after the

detailed discussion. Section 6 discusses related work

and Section 7 concludes.

2 CLOUD SERVICE

TOPOLOGIES

Given a cloud, there are several possible topologies

that a 3rd party software provider can implement to

make application services (application logic)

available to its customers, for example a supply

chain management service.

2.1 Installed Kubernetes

The following Figure 1 shows the case of installed

Kubernetes. Figure 1 (a): A 3rd party software

provider can install a Kubernetes cluster (oval) itself

in the cloud (rectangle) onto VMs it creates and then

place its customers on it (triangles). The 3rd party

software provider is the cloud tenant in this case.

Figure 1 (b): Alternatively, the 3rd party provider can

ask each of its customers to become a tenant in a

cloud and each install their own Kubernetes cluster

on VMs containing the supply chain management

service. In this case there would be one tenant at

most in a given Kubernetes cluster. Figure 1 (b)

shows two customers.

Figure 1: Cloud Service Topologies (Kubernetes).

2.2 Kubernetes-as-a-Service

In the case of Kubernetes-as-a-Service (CaaS, 2018)

the Kubernetes functionality is provided by the

cloud directly itself as a service (and therefore does

not require the installation by tenants). It is very

similar to the case of installed Kubernetes. The only

difference is that the 3rd party software provider (or

the tenants) do not have to create VMs in order to

install Kubernetes, but instead ask the cloud to

create a Kubernetes cluster without any installation

taking place. This cluster is then created by the

cloud and made available. The topologies would

look like the same as those in Figure 1.

2.3 Server-Less Computing

The 3rd party software provider can also choose to

(a) (b)

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

318

use a server-less computing approach instead of a

container-based approach. In this case the 3rd party

software provider has to implement functions and

function triggers. Like in case of Kubernetes there

are two alternative approaches, outlined in Figure 2.

Figure 2: Cloud Service Topologies (Functions).

In case of Figure 2 (a) the 3rd party software

provider is a tenant and it creates functions in its

cloud account. It then makes those functions

accessible to its customers. An example of this case

is discussed in (Becker, 2018). In case of Figure 2

(b) the 3rd party software provider asks each of its

customers to become a tenant and install the

functions for itself. Figure 2 (b) shows two customer

accounts.

2.4 Cloud Service Topology Analysis

All 6 previously discussed topologies variations

(Installed Kubernetes, Kubernetes-as-a-Service,

Server-less Functions, each either 3rd party software

provider or customer provisioned) are possible

options for a 3rd party software provider to make a

service available to its customers. In some cases the

3rd party software provider is a cloud tenant (and the

customers are not; the cases labelled (a)), in some

cases the customers are tenants themselves (the

cases labelled (b)).

The topologies have a major difference that is

relevant to this position paper: the cases labelled (a)

are those where the software itself has to be able to

serve many requests from different customers

concurrently (shared access). As a consequence, it

has to be a multi-tenant implementation.

Furthermore, the 3rd party software provider has to

implement management functionality like customer

account creation, on-boarding, off-boarding as

customers are added or removed, or billing. This is

necessary as the cloud infrastructure is not aware of

the fact that the 3rd party software provider supports

several clients concurrently itself.

The cases labelled (b) are very different. The

software itself does not have to be multi-tenant as

only one tenant uses it (non-shared access). This

makes its implementation simpler. Furthermore, the

customers are cloud tenants themselves and

therefore the cloud account creation, on-boarding,

off-boarding as well as billing and other

management functions are those of the cloud itself.

The 3rd party provider does not have to implement

those. Especially from a customer viewpoint, the

cost and the billing are transparent, meaning, the

customer sees their resource consumption as it

actually takes place in the cloud.

The following two sections look at the cases in

(a) and (b) in more detail separated by the container-

based approach and the server-less computing

approach.

3 MULTI-TENANCY

3.1 Conceptual Overview

Multi-tenancy has been introduced as a concept to

accomplish efficient resource utilization. Instead of

installing an application system for each client

separately and having the application system’s

resources underutilized or idling when the client is

not busy or not using the application system at all,

the application system is made available to several

clients concurrently. If more than one client can

concurrently access the application system at the

same time, then the application system has to be

implemented accordingly. This functionality is

called multi-tenancy.

In principle the executing code has to be aware

of the client it is executing the logic for so that it

only accesses data for that client (for example). Data

access and management has to be partitioned in the

sense the clients do not see each other’s data at all

whatsoever.

Code has to be designed and engineered so that

the execution is partitioned as well (re-entrant code).

If the execution is not partitioned, then cross-tenant

contamination (state of different tenants visible to

each other) might happen.

Partitioning might have to be achieved in all

aspects depending on a client’s requirements. This

might include network partitioning, file system

partitioning, log file content partitioning, and so on,

aside from data partitioning.

3.2 Container-based Computing

Container-based computing is the current state of the

art and Kubernetes is the predominant container

(a) (b)

Multi-Tenancy: A Concept Whose Time Has Come and (Almost) Gone

319

management software. Containers are often Docker

containers and their management (start, stop, load

balance, scale, etc.) is done using Kubernetes.

The discussion in Section 3.1 applies in this

context as Kubernetes does not provide any multi-

tenancy support out of the box by itself. All multi-

tenancy functionality has to be provided by Docker

images (and therefore containers at runtime).

The following characterizes the scope of multi-

tenant functionality that has to be implemented in

context of container-based computing. The approach

taken is to follow the life cycle of on-boarding a

customer until its off-boarding and highlight some of

the interesting points.

 On-boarding a tenant means to register it with

a Kubernetes cluster (for example as an entry

in a cluster-local database) and setting up

tenant-specific resources, like for example a

log file directory or a database schema in an

existing database.

 Not all resources can be shared, especially

those that do not provide inherent partitioning

(aka, not supporting multi-tenancy). For

example, a file system does not provide the

notion of multi-tenancy and so a directory

needs to be created for each tenant (one way

of providing partitioning externally). The

basic principle is that single-tenant resources

have to be created as dedicated resources for

each tenant separately.

 Code that is running as containers and serving

tenants concurrently needs to implement

partitioning (isolation between tenants), or at

least being re-entrant with assurance that the

invocation stack is 100% free of overlap. Not

data from different tenants must ever be

shared amongst different tenants.

 Logging has its own challenges as each log

statement is written in context of a tenant.

This means that either logs are separated by

tenants in e.g. their own directories; or each

log statement contains the tenant id for which

the log was written so that the log query

system can guarantee partitioning.

 In a multi-tenant system where not all

resources are dedicated, the noisy neighbour

problem exists. For example, a tenant using a

lot of processing or storage space might cause

resource shortage for other tenants. This must

be monitored, and resources being added to

mitigate noisy neighbour situations (a tenant

using resources disproportionally high). In

addition, it might be necessary to limit

resource utilization on a per tenant basis to

limit the noisy neighbour problem.

 Tenants might change some of their logic and

want a backup of only their data so that a

failure in their new logic can be undone by a

state restoration. This requires the knowledge

of where the tenant’s specific state is, how to

back it up, and how to restore it.

 Off-boarding of a tenant means to e.g. backup

their last state onto long-term storage

(optional) and removing all data of that tenant

from the container system. Each component

needs to understand where it stores the tenant

data and how to remove it.

The initial size of a Kubernetes cluster has to be

chosen depending on the expectation of the tenant

on-boarding rate and the individual resource

requirements of the tenants. This requires resource

capacity planning and resource capacity

management at run-time.

As an intermediate summary, the amount of

functionality that needs to be implemented is

staggering in order to provide multi-tenancy in

addition to implementing the business functionality

like a supply chain management system.

This effort has been recognized by many and

there are efforts underway to formalize and to

implement multi-tenancy in context of Kubernetes

(Franzelle, 2018).

3.3 Cost

Multi-tenancy is about infrastructure cost in the

sense of reducing cost by means of efficient resource

utilization. In an initial system, resources are most

likely under-utilized as capacity is available to on-

board tenants. As tenants are added, resource

utilization improves. As soon a resource is fully (or

largely) utilized, new resources are added and excess

capacity might exist for a while until additional

tenants are on-boarded, or existing tenants are

increasing their load on the system. Effectively,

there is a resource cost step function and resource

utilization varies with every step.

The trade-off is between increased efficiency of

resource utilization and design, engineering and

implementation complexity on the one hand, and

run-time management on the other (like monitoring,

ensuring proper scaling, etc.).

Each customer or 3rd party software provider has

to determine if this trade-off actually works in the

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

320

sense that multi-tenancy has a significantly large

gain compared to the engineering and management

costs of implementing the multi-tenant functionality.

3.4 Explicit Multi-Tenancy

The situation described in the previous sections can

be characterized as “explicit” multi-tenancy as the

application service software has to be implemented

specifically to provide multi-tenant semantics.

There are operations and procedures required

that would not be needed in a single tenancy system.

For example, creating a schema per tenant, or a

directory per tenant for holding log files.

4 SERVER-LESS COMPUTING

4.1 Conceptual Overview

Server-less computing has been available for a

while, and recently receives increased interest, e.g.,

(Medium, 2018). Server-less computing has several

major aspects:

 No system resources. It removes the need to

create and to manage system resources. It is

not necessary to create containers, VMs, file

systems, etc., in order to run server-less

application service code. Basically, the server-

less computing interface supports the upload

of code that then can be executed.

 No management of resources. During

execution it is unnecessary (and impossible) to

directly monitor and manage cloud

infrastructure resources. Instead, cloud service

levels are specified declaratively, like the

maximum memory usage.

 No explicit multi-tenancy. The code

implementing the business logic (like a supply

chain management software) has to focus only

on the business logic, and does not have to

implement multi-tenancy functionality. Of

course, it would be possible to go that route as

outlined in Figure 2 (a). However, this is not

needed since in context of server-less

computing the tenants are partitioned in their

own cloud account.

 Implicit partitioning. Tenants in a cloud are

partitioned by the very fact that they are

tenants. If a tenant uploads functions and

executes those, partitioning is ensured. The

implicit partitioning prevents by means of the

cloud infrastructure tenant interference.

 Resource use on-demand. In case of server-

less computing the tenant is guaranteed to

only pay for the resources it is using. If a

tenant does not use any resource, it will not

get billed for it. In that sense there are no

idling resources, and the code that is being

uploaded does not have to worry about

efficient resource utilization. The allocation of

execution to resources is done by the cloud

infrastructure, not by the application service

code.

 Direct billing. Since tenants are directly

interacting as tenants with the cloud

environment, the cloud bills them directly and

transparently.

Above the concept of functions is referenced.

Functions are one type of resource that server-less

computing provides. However, there are additional

resources like database tables (or whole databases),

queuing systems, notification systems, load

balancers, etc. The common thread across all of

those is that abstract declarative configuration is

uploaded without the requirement of embedding this

into the functional code. There is no need or

requirement to upload executable images (like

container images).

For example, it is possible to configure that an

arriving message in a queue triggers a function. This

combination and causal execution is configured and

not coded in a programming language.

From an architecture viewpoint, an application

service is a set of functions and correlated triggers in

order to combine functionality. Of course, it can be

the case that an application service only consists of

functions accessing database tables, or even only

functions without any other resource utilization.

4.2 Cost

In case of server-less computing there is a direct

relationship between the resources used and the

associated cost. Cost only arises for resources

actively use, not for resources that are idling. As a

consequence efficient resource utilization does not

have to be implemented by the 3rd party software

provider.

Of course, the cloud implementation itself might

have to do resource utilization optimization,

however, this is not part of the application service

code and invisible to it.

Multi-Tenancy: A Concept Whose Time Has Come and (Almost) Gone

321

4.3 Implicit Multi-tenancy

In context of server-less computing multi-tenancy is

provided by the cloud infrastructure environment

that compartmentalizes the tenants by means of the

cloud infrastructure and cloud accounts.

From an application software development and

management perspective, it comes for free as long as

tenants deploy the server-less code into their tenant

cloud account.

Since multi-tenancy does not have to be

implemented by the application service code, it can

be called “implicit” multi-tenancy.

5 POSITION: THE CONCEPT OF

MULTI-TENANCY IS

OBSOLETE

Based on the discussion comparing the container-

based resource implementation with the server-less

implementation, there is no question why server-less

computing is receiving the attention that it does

currently: the effort to build and to manage business

logic is significantly reduced.

The position of this becomes clear on that basis.

If code is implemented on a server-less computing

infrastructure multi-tenancy becomes a non-

requirement: the multi-tenancy concept is obsolete.

6 RELATED WORK

There is a tremendous amount of work accomplished

in context of multi-tenancy, not only from an

application service perspective, but also in context

of security, networks, and databases, just to name a

few of the affected areas (Multi-Tenancy, 2018).

However, in context of this paper, the absence of

multi-tenancy is relevant while at the same time

accomplishing tenant partitioning. That has not be

discussed at all in the past and only recently first

online publications appear that start addressing the

topic. Academic literature has not addressed this

topic at this point in time.

(Spillner, 2017) hints at an implementation

strategy of how an infrastructure providing functions

might address automatic tenant separation. However,

it does not address how to accomplish the separation

of functions in context of all other resources that an

application service requires, like queues, databases,

storage, and so on. It also does not discuss the

distinction between the cases (a) and (b) above, aka,

if the 3rd party software provider is the tenant or if

customers are themselves tenants.

(Kanouse, 2017) makes the interesting

observation that in AWS each function is executed

in isolation and that this provides the multi-tenancy.

However, the article does not discuss the complete

set of resources that a function might require. While

AWS Lambda executes each function in isolation

when invoked for a single tenant, this does not

automatically separate queues, notifications, storage,

databases, etc. In order to have full stack separation

tenants need to deploy the whole application system

in their cloud account. It also does not discuss the

distinction between the cases (a) and (b) above, aka,

if the 3rd party software provider is the tenant or if

customers are themselves tenants.

(Roberts, 2018) also indicates that AWS Lambda

addresses the separation. However, again, there is no

in-depth discussion and realization that AWS

Lambda is only one piece of the puzzle and that in

addition to functions all the other resources like

queues, databases, storage, etc. need to be separated

as well in order for the application code to avoid

implementing multi-tenancy. It also does not discuss

the distinction between the cases (a) and (b) above,

aka, if the 3rd party software provider is the tenant or

if customers are themselves tenants.

(Golding, 2017), as others, emphasizes that

functions can run dedicated to a single tenant when

invoked, but fails to discuss the whole invocation

chain possibly traversing queueing systems or

database systems. It also does not discuss the

distinction between the cases (a) and (b) above, aka,

if the 3rd party software provider is the tenant or if

customers are themselves tenants.

As can be seen from the discussion of related

work, little has been discussed in context of server-

less computing and not having to implement the

multi-tenant functionality by application services

when those are properly setup in a tenant account, as

outlined in this position paper.

Related work only focuses only on the aspect of

functions in context of server-less application

service implementation, and not the full set of cloud

resources that might be used when functions execute

or the tenant management functionality itself

required to manage tenants.

7 CONCLUSIONS

In conclusion, the server-less computing design and

implementation approach supports a significantly

simpler application service design compared to the

WEBIST 2018 - 14th International Conference on Web Information Systems and Technologies

322

container-based implementation approach as server-

less computing does not require the creation and the

management of resources.

In addition, due to the implicit multi-tenancy in

context of server-less computing provided by

individual cloud accounts, application service code

does not have to implement multi-tenancy concepts.

Given the fact that the simpler approach based

on server-less computing requires less engineering

effort as well as charges tenants only for resources

used, it is safe to assume that server-less computing

will be the dominant application service engineering

and deployment approach of the future.

As a consequence, multi-tenancy as a concept is

not necessary anymore in context of application

service development and as a concept its time has

come and gone.

ACKNOWLEDGEMENT

I want to thank the reviewers whose review

comments and suggestions improved the position

paper.

REFERENCES

AWS Lambda, 2018. https://aws.amazon.com/lambda/

(last accessed 6/20/2018)

Azure Functions, 2018. https://azure.microsoft.com/en-

us/services/functions/ (last accessed 6/20/2018)

Becker, 2018. https://medium.com/@tarekbecker/server

less-enterprise-grade-multi-tenancy-using-aws-76ff5f4

d0a23 (last accessed 6/20/2018)

Brazeal, 2018. https://read.acloud.guru/serverless-is-eat

ing-the-stack-and-people-are-freaking-out-and-they-

should-be-431a9e0db482 (last accessed 6/13/2018)

CaaS, 2018. https://kubernetes.io/docs/setup/pick-right-

solution/#hosted-solutions (last accessed 7/3/2018)

Docker, 2018. https://www.docker.com/ (last accessed

6/13/2018)

Franzelle, 2018. https://blog.jessfraz.com/post/hard-multi-

tenancy-in-kubernetes/ (last accessed 6/19/2018)

Golding, 2017. Tod Golding. Building Serverless SaaS

Applications on AWS https://aws.amazon.com/blogs/

apn/building-serverless-saas-applications-on-aws/ (last

accessed 6/20/2018)

Google Cloud Functions, 2018. https://cloud.google.com/

functions/ (last accessed 6/20/2018)

Kanouse, 2017. Adam Kanouse and Craig Booth. How

AWS Lambda Changed the Game of Multi-tenancy.

https://narrativescience.com/Resources/Resource-Libr

ary/Article-Detail-Page/how-aws-lambda-changed-the

-game-of-multi-tenancy (last accessed 6/20/2018)

Kubernetes, 2018. https://kubernetes.io/ (last accessed

 6/13/2018)

Medium, 2018. https://medium.com/tag/serverless (last

accessed 6/15/2018)

Multi-Tenancy, 2018. https://scholar.google.com/scholar?

q=multi+tenancy (last accessed 2018)

Oracle Fn, 2018. https://developer.oracle.com/opensource/

serverless-with-fn-project (last accessed 6/20/2018)

Roberts, 2018. Mike Roberts. Serverless Architectures.

https://www.martinfowler.com/articles/serverless.html

(last accessed 6/20/2018)

Spillner, 2017. Joseph Spillner. Snafu: Function-as-a-

Service (FaaS) Runtime Design and Implementation.

CoRR abs/1703.07562 (2017)

Wikipedia, 2018. https://en.wikipedia.org/wiki/Multiten

ancy (last accessed 6/13/2018)

DISCLAIMER

The views expressed here are my own and do not

necessarily reflect the views of Oracle.

Multi-Tenancy: A Concept Whose Time Has Come and (Almost) Gone

323

