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Abstract: In this study, a simple but efficient method for chaos synchronization of fractional difference system is 
proposed, which is based upon the parametric adaptive control algorithm. Using this new method, chaos 
synchronization for discrete fractional odd logistic system is implemented. 

1 INTRODUCTION 

Since Pecora and Carroll introduced an idea of 
achieving synchronization between the drive and 
response systems, chaos synchronization has been 
widely explored and studied due to its potential 
applications in secure communication, ecological 
systems and system identification. Recent studies 
show that chaos of fractional differential systems 
can be synchronized, see and references cited 
therein. Compared with the fruitful results in the 
chaos synchronization of continuous fractional 
differential equations, the fractional difference 
equation is a particularly new topic. The dynamical 
behaviors of the fractional one and two dimensional 
maps and the results show that the chaos does exist 
there. The DFC (Pyragas K., 1992 and Pyragas K., 
1992) is proved to be an efficient tool to discrete the 
chaotic systems with a memory effect. Naturally, a 
question maybe put forth: how to achieve the 
fractional synchronization of such maps? In this 
paper, we investigate the chaos synchronization of 
the discrete fractional odd logistic map in the design 
the synchronized systems based upon the parametric 
adaptive control algorithm. The remainder of this 
paper is organized as follows. In section 2, 
introduces the definitions and the properties of the 
discrete fractional calculus. Section 3 presents 
fractional odd logistic map on time scales and shows 
the discrete chaotic solutions while the difference 
orders and the coefficients are changing. Section 4 is 
the conclusion. 

2 FRACTIONAL ODD LOGISTIC 
MAP 

Considering the discrete fractional calculus, we start 
with some necessary definitions from discrete 
fractional calculus theory and preliminary results so 
that this paper is self-contained. 

Definition 1. (F.M. Atici, P.W. Eloe, 2009) Let 
 ሻ is defined byݐሺݑ th fractional sum ofݒ

∆௔ି௩ݑሺݐሻ ≔
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Where a is the starting point, ߪሺݏሻ = 1 + ݏ and ݑ 
is defined for ݏ = ܽ mod (1) and ∆௔

-௩ݑሺݐሻ is defined 
for ݐ  = (ܽ ݒ +   ) mod (1). In particular ∆௔

-௩  maps a 
function defined on ௔ܰ  to functions defined on 
௔ܰା௩, where ௔ܰ ൌ ܽ, ܽ ൅ 1, ܽ ൅ 2⋯. In addition, 
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Definition 2. ( T. Abdeljawad, 2011) For ߙ ൐ 0, 
:ݑ ௔ܰ → ܴ  and α be given, the Caputo-like delta 
difference is defined by 
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߳ݐ ௔ܰା௡ି௩, ݊ ൌ ሾݒሿ ൅ 1 

where ݒ is the difference order, and 

580
Hu, S. and Wang, Y.
Synchronization of Discrete Fractional Odd Logistic System Based on Parametric Adaptive Control Algorithm.
In 3rd International Conference on Electromechanical Control Technology and Transportation (ICECTT 2018), pages 580-583
ISBN: 978-989-758-312-4
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



 

Theorem 1. ( F.L. Chen, X.N. Luo, Y. Zhou, 
2011) For the delta fractional difference equation 

∆஼ ௔
ఈݑሺݐሻ ൌ ݂ሺݐ ൅ ߙ െ 1, ݐሺݑ ൅ ߙ െ 1ሻሻ 

∆௞ ሺܽሻݑ ൌ ,௞ݑ ݊ ൌ ሾߙሿ ൅ 1, ݇ ൌ 0,1, … , ݊ െ 1. 

the equivalent discrete integral equation can be 
obtained as 
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where the initial iteration reads 
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The complex difference equation with long-term 
memory is obtained here. It can reduce to the 
classical one when the difference order 1 = ߙ but the 
integer one does not hold the discrete memory. 
Through a discrete fractional odd logistic map it 
reveals that the dynamical behavior holds discrete 
memory even the difference order is very small. For 
the famous odd logistic map 

ሺ݊ݑ ൅ 1ሻ ൌ ߣሺ݊ሻሺݑ െ ,ሺ݊ሻଶሻݑ ݊ ൌ 0,1,2⋯ 
The odd logistic map is based to maps of the 

plane with dihedral symmetry. 
We can redefined it as 

ሺ݊ሻݑ∆ ൌ ߣሺ݊ሻሺݑ െ 1 െ  ሺ݊ሻଶሻݑ
From the discrete fractional calculus, the 

fractional one can be given as 
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Where ߤ ൌ ߣ െ 1. From [1], we can obtain the 
following discrete integral form from 0 ൏ ߙ ൑ 1. 
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where 
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 is a discrete kernel function and 
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. As a result, the 

numerical formula can be presented explicitly 
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For the fractional odd logistic map, an explicit 

numerical formula ban be given as 
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3 CHAOS SYNCHRONIZATION 
OF THE FRACTIONAL ODD 
LOGISTIC MAP 

3.1 Sufficient conditions of system 
synchronization 

Making use of equation (4), we obtain the iteration 
equations of chaotic system as follows: 
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We iterate the following three equations to 

synchronize the two systems by controlling the 
initial states and parameters of the response system. 
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Where, ݔሺ݊ሻ  is the master system, ݕሺ݊ሻ  is the 
response system, ߤሺ݊ሻ  is the adaptive control 
parameter, and K is the control stiffness and it is 
adjustable. 

Lemma 1.( T. Abdeljawad, 2011) 
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Theorem 2. Iteration system (7) is convergent 
when െ6Γሺߙ ൅ 1ሻ ൏ ܭ ൏ 0. 

Proof. Let ∆ߤሺ݊ሻ ൌ ሺ݊ሻߤ െ ௖ߤ , ݁ሺ݊ሻ ൌ ሺ݊ሻݕ െ
ሺ݊ሻݔ , where ݁ሺ݊ሻ  is the synchronization error 
system, then we can get the following equation from 
system (7): 
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Subtracting ߤ௖ from the both sides of equation 
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It is obvious that for any ݅ ൌ 1,2,⋯ . ሺ݅ሻݔ ∈
ሺ0,1ሻ because of ݔሺ0ሻ ∈ ሺ0,1ሻ. Then apply lemma 1 
to equation (9), the following inequality holds 
ሺ݊ሻߤ∆
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When 
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Γሺ݊ ൅ ሻߙ

Γሺ݊ሻΓሺߙ ൅ 1ሻ
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also if െ6Γሺߙ ൅ 1ሻ ൏ ܭ ൏ 0, we can get 
lim
௡→ஶ

ሺ݊ሻߤ∆ ൌ 0, 
or lim

௡→ஶ
݁ሺ݊ሻ ൌ 0 , the iteration system (7) is 

convergent. 

3.2 Numerical simulations 

In this section, three cases for different fractional 
order ߙ and different K in system (7) will be given 
to verify the synchronization of the odd logistic 
system. We assume the initial condition associated 
with master system and response system as ݔሺ0ሻ ൌ
0.4 and ݕሺ0ሻ ൌ 0.4. 

Case1:	ߙ ൌ 1. 
We choose ߤሺ0ሻ ൌ 0.4  and K=-1 as the 

parameters. By numerical simulation, we can see the 
dynamical behaviors of master system and response 
system as show in figure 1(a). The error system 
showed in figure 1(b) is stable at zero, so the 
synchronization can reach.  

 
(a) 

 
(b) 

Figure 1 α=1, u(0)=0.4, K=-1 

Case2:	ߙ ൌ 0.3. 
The parameters are chosen as ߤሺ0ሻ ൌ 0.4  and 

K=-4, and the dynamical behaviors of master 
system, response system and error system are 
showed in figure 2(a), figure 2(b) respectively. 

 
(a) 

 
 (b) 

Figure 2 α=0.3, u(0)=0.4, K=-4 

Case3:	ߙ ൌ 0.1. 
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In this case, we also choose ߤሺ0ሻ ൌ 0.4 and K=-
4 the same as the parameters in case 2. Figure 3 
shows the history of ݔሺ݊ሻ, ݕሺ݊ሻ and ݁ሺ݊ሻ. 

 
(a)  
 
 
 
 
 
 
 
 
 
 
 
                           

  
 

 (b) 

Figure 3 α=0.1, u(0)=0.4, K=-4 

4 CONCLUSION 

In this paper, fractional odd logistic system is 
investigated, and parametric adaptive control 
algorithm is applied to synchronize two chaotic 
systems. We proved that the sufficient conditions of 
system synchronization is -6Γ(α+1)<K<0. 
Moreover, numerical simulations are given and the 
results show that the algorithm can work efficiently 
for synchronization. Future works regarding this 
topic include varying parameters of the control 
system or applying the adaptive control algorithm to 
other systems. Also, the studies of this paper may 
have some referenced value for secure 
communication. 
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