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Abstract: Forest fire is critical environmental issue that can cause severe damage. Fast detection and accurate 
estimation of forest fire burned area can help firefighters to effectively control damage. Thus, the purpose of 
this paper is to apply state of the art data modeling method to estimate the area of forest fire burning using 
support vector machine (SVM) algorithm as a tool for area approximation. The dataset is real forest fires 
data from the Montesinho natural park in the northeast region of Portugal. The original dataset comprises of 
517 records with 13 attributes. We randomly sample the data 10 times to obtain 10 data-subsets for building 
estimation models using two kinds of SVM kernel: radial basis function and polynomial function. The 
obtained models are compared against other proposed techniques to assess performances based on the two 
measurement metrics: mean absolute error (MAE) and root mean square error (RMSE). The experimental 
results show that our SVM predictor using polynomial kernel function can precisely estimate forest fire 
damage area with the MAE and RMSE as low as 6.48 and 7.65, respectively. These errors are less than 
other techniques reported in the literature. 

1 INTRODUCTION 

Forest fire is a severe disaster for humans and other 
wild lives. The fires, either intentionally manmade 
or a natural phenomenon, are unwanted situation and 
they should be getting into control as fast as possible 
in order to reduce loss. Predicting accurately the 
spread of the fires is one effective way to control 
and limit the burned area. In practice, controlling the 
fire area is based on the experience of firefighters. 
At present, with the advance of computational 
modeling methods, estimating the burned area can 
be made more accurate with the new technology. 

Computational modeling efficiency is mainly 
due to the advancement in machine learning 
technology. The recent invention of support vector 
machine (Cortes and Vapnik, 1995; Vapnik, 2013) 
has made machine being able to learn both linear 
and non-linear classification models based on the 
application of specific kind of kernel functions. 
Support vector machine, or SVM, has been proven 
an efficient learner and extensively applied in 
environmental science and other numerous research 

areas. Some examples of SVM applications to 
support natural phenomenon study includes the 
estimation of horizontal global solar radiation (Baser 
and Demirhan, 2017), landslide assessment due to 
rainfall effect (Lin et al., 2017), and the prediction 
of wind power (Yuan et al., 2017). 

However, it is not a straightforward task to apply 
SVM successfully in every domain because SVM is 
a parametric learning approach that needs a proper 
setting of parameters best suitable for each specific 
data domain. Data analysts, therefore, need some 
experiences and prior knowledge regarding the 
nature of SVM before applying it efficiently. 

In this work, we propose an empirical study of 
applying SVM to estimate the burned area of forest 
fires in the largest natural park of Portugal, named 
Montesinho. We show in our experimental setting 
that using different kinds of kernel function results 
in different yields. We explain major characteristics 
of SVM as a background knowledge for general 
readers in the next section. We then explain our 
modeling method and SVM setting in section 3. The 
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experimental results are shown in section 4 and the 
conclusion is provided in section 5. 

2 SVM CHARACTERISTICS 

SVM is a very fast and effective algorithm for 
learning a classification model. The term model 
means a concise form that can be used to classify 
future data into their correct class. SVM learns to 
build a model and represents it as a plane or a linear 
line. This line is called a classifier. Figure 1 
illustrates the idea of learning SVM classification 
model from the available data of mixed classes: the 
one that is represented by dark dot, and the other 
class shown by light dot. The learning objective of 
SVM is to find a linear line being able to separate 
correctly data of one class from another. 

In this simple example, a classification model is 
represented as a linear blue line in the middle of the 
figure. There are many possible linear lines being 
qualified to be a classifier, but there is only one 
optimal classifier. Optimality is judged from the 
farthest distance between the classification line and 
the data at the border lines. In Figure 1, the dashed 
lines on both sides of the classification line are 
boundaries for selecting the optimal model in such a 
way that the distance between the classification line 
to both borders are the wideset one. Data on the 
dashed lines are called support vectors. 

 

Figure 1: SVM learning on linearly separable data. 

 

Figure 2: The application of kernel function to learn 
classifier for non-linear separable data. 

For data that cannot be separated easily with the 
linear line, some transformation function is needed 
to change the orientation of data to be conveniently 
separable through the straight line. Figure 2 
illustrates the idea of data transformation. The 
function that transforms data from normal plane to a 
hyperplane is called a kernel function. With the 
power of data transformation through the application 
of proper kernel function, SVM can efficiently learn 
classifier that can classify non-linear data. 

There are many possible kernel functions to 
transform data to be in a higher feature space that 
can help SVM linearly separating data. Among 
many existing functions, the most applicable one is 
the radial basis function. Its computation (Cristianini 
and Shawe-Taylor, 2000) is shown in (1) and (2). In 
our work, we also consider a simpler kernel 
function, called polynomial, as shown in (3). ݂ ቀܺ, ܺቁ = ݔ݁ ൬−ߛ ቀܺ − ܺቁଶ൰										 (1)

ߛ = −  (2)	ଶߪ12

݂ ቀܺ, ܺቁ = ቀܺߛ, ܺ +  (3)		ቁߠ

where γ is gamma parameter, Xi is a vector of input 
variables, Xj is the target variable, σ is a free 
variable, q is the degree of polynomial function, and 
θ is the bias. 

3 RESEARCH METHODOLOGY 

3.1 Study Area and Data Preparation 

The forest fire data used in our study are historical 
events occurred at the Montesinho natural park 
(Figure 3).  

 

Figure 3: Location of Montesinho natural park in the 
northeast of Portugal. 
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This park covers 748 km2, or 74,229 ha, in the 
mountainous region of the northeast Portugal with 
altitude ranges from 438 m in the lower valley to 
1481 m over the mountain top (Castro et al., 2010). 

The forest fire data are publicly available at the 
UCI machine learning repository (https://archive.ics. 
uci.edu/ml/datasets/forest+fires). Fire data had been 
collected from January 2000 to December 2003 
comprising of 517 records with 13 attributes in each 
record. In our study, we select only 9 attributes to be 
used in the modeling process. The attribute details 
are summarized in Table 1. 

Table 1: Forest fire data attributes and meaning. 

Attribute name Description Unit 

FFMC Fine Fuel Moisture Code -- 
DMC Duff Moisture Code -- 
DC Drought Code -- 
ISI Initial Spread Index -- 
Temp Temperature ο C 
RH Relative Humidity % 
Wind Wind speed km/h 
Rain Rain volume mm/m2 
Area Total burned area ha 

The attributes FFMC, DMC, DC, ISI are parts of 
major components to compute the danger rating 
scales of forest fires (Taylor and Alexander, 2006). 
The FFMC determines influence of litters for the 
ignition and spread of fire. The DMC and DC 
identify fire intensity, while ISI correlates to the fire 
velocity spread. The other four attributes (temp, RH, 
wind, rain) are meteorological data that can also 
affect fire spread. The target of our modeling is the 
last attribute, area. 

3.2 Modeling Techinque 

Prior to the modeling process of fire area estimation, 
we have to explore the distributions of our data. 
From data exploration, we have found that from the 
517 records, there are 247 records (almost 48%) that 
burned area is zero. This is due to the data collection 
threshold that burned area less than 100 m2 shall not 
be recorded. We, therefore, have to rescale the 
burned area with the formula shown in (4). 

burned_area = ln(area + 1) (4)

The comparison of original burned area and the 
new one after transformation is graphically shown in 
Figure 4. The transformation makes data less skew 
and hence can increase correctness on burned area 
prediction. 

 

 

Figure 4: Distributions of the burned area in the original 
data (above) compared to the area after logarithmic scaling 
(below), where vertical axis is frequency of fires and 
horizontal axis is the burned area. 

We then randomly select ten datasets of equal 
size for the purpose of ten iterations of train SVM to 
build model and test the built model (10-fold cross 
validation). For the SVM learning with radial basis 
kernel function, we set the gamma (γ) parameter to 
be 80. For the SVM training with polynomial kernel 
function, the learning parameters q = 7, γ = 1, and  
θ = 1. 

The model testing has been performed ten times 
and the model’s performances are evaluated with the 
mean absolute error (MAE) and root mean square 
error (RMSE) metrics. The computations (Al Janabi, 
Al Shourbaji, and Salman, 2017) of MAE and 
RMSE are shown in (5) and (6), respectively. 

ܧܣܯ = ∑ ቚܻ − ܻቚୀଵ ݊ 	 (5)

ܧܵܯܴ = ඩ∑ ቀܻ − ܻቁଶୀଵ ݊ 		 (6)

where ܻ is the actual value of burned area, ܻ is 

the estimated burned area, and n is the number of 
data records. 
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4 RESULTS AND DISCUSSION 

The results of forest fire burned area prediction from 
the ten iterations of SVM learning algorithm using 
polynomial and radial basis kernel functions are 
illustrated in Table 2. For the specific application of 
natural phenomenon prediction such as forest fires, 
polynomial kernel produces more accurate 
estimation than the radial basis function. The 
prediction results are graphically shown in Figure 5.  

Table 2: Error evaluation results from the ten iterations of 
SVM-polynomial and SVM-radial basis kernel functions. 

 MAE RMSE 

No. SVM-
polynomial 

SVM-
radial basis 

SVM-
polynomial 

SVM-
radial basis

1 6.4814 11.0621 7.6575 56.0906 

2 6.4813 11.0619 7.6577 56.0906 

3 6.4814 11.0618 7.6578 56.0906 

4 6.4814 11.0620 7.6576 56.0906 

5 6.4813 11.0624 7.6575 56.0907 

6 6.4813 11.0621 7.6574 56.0906 

7 6.4812 11.0619 7.6574 56.0906 

8 6.4814 11.0623 7.6577 56.0907 

9 6.4816 11.0620 7.6577 56.0906 

10 6.4815 11.0620 7.6577 56.0907 

Avg. 6.4814 11.0620 7.6576 56.0906 

 

 

Figure 5: Comparative plots showing estimation errors of 
radial basis kernel (above) and polynomial kernel (below). 

From the prediction plots in Figure 5, it is 
noticeable that the radial basis kernel cannot predict 
correctly burned area wider than 100 ha. To analyze 
absolute errors, we show the boxplot in Figure 6 and 
the errors made by radial basis kernel are from the 
too high approximation. 

The SVM learning using exactly the same set of 
forest fire data also appears in the literature (Al 
Janabi, Al Shourbaji, and Salman, 2017; Cortez and 
Morais, 2007). But the kernel application, the data 
attribute selection, and SVM parameter setting are 
different from our work. The prediction results of 
our work as compared to others are also summarized 
and shown in Table 3.  

From the comparative results, it is our SVM with 
polynomial kernel model that performs the most 
accurate prediction of forest fire burned area. 

 

Figure 6: Boxplot showing absoluter errors of polynomial 
kernel (left) against the radial basis kernel (right). 

Table 3: Comparative performance of SVM predictors. 

Modeling method RMSE MAE 

Our SVM with polynomial kernel 7.65 6.48 

Our SVM with radial basis kernel 56.09 11.06 

SVM by Cortez and Morais (2007) 64.70 12.71 

SVM by Al Janabi et al. (2017) 54.00 282.40 

5 CONCLUSIONS 

In this work, we study the performance of support 
vector machine (SVM) algorithm when it has been 
applied to the environmental domain to predict 
burned area of the forest fires. SVM and other 
computational models such as logistic regression, 
artificial neural network, and particle swarm 
intelligence have recently been applied to the 
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modeling of forest fire spread and intensity. The 
advantage of accurate prediction with computational 
models is to efficiently control the damage caused 
by forest fires.  

It has been reported by many research teams that 
SVM yield the most promising results. But most 
applications of SVM employ a sophisticate radial 
basis function as the kernel of SVM. We 
demonstrate in our experiment that for some specific 
application, a simpler kernel such as polynomial 
function performs better than the complex one. The 
polynomial SVM predicts correctly burned area with 
the root mean square error as low as 7.65, whereas 
the radial basis kernel yields higher error at 56.09. 
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