
An Unified Representation of Source Code Authoring Workflows

Dmitrii Timofeev1 and Alexander Samochadin1,2

1Mobile Device Management Laboratory, Peter the Great St. Petersburg Polytechnic University,
Polytechnicheskaya 29, St. Petersburg, Russia

2Higher School of Software Engineering, Peter the Great St. Petersburg Polytechnic University,
Polytechnicheskaya 21, St. Petersburg, Russia

Keywords: Process Modeling, Source Code Analysis, Software Development Process, Source Code Authoring.

Abstract: Existing approaches to modeling software development processes mostly deal with high-level processes at the
level of project management. There are specific tasks that involve the analysis of processes at the level of
writing and modifying the program code, but they lack a common reusable modeling framework. We suggest
that a model of source code editing workflow would be beneficial for many tasks, from defect prediction to
teaching programming to novices. We propose a unified approach that combines several levels of annotations,
from keyboard events to task tracker issues and project planning.

1 INTRODUCTION

Software development comprises multiple workflows
that result in a set of artifacts, with the main being
the source code. Its principal use is the compilation,
optimization, and execution of the program. At the
same time, the source code serves an input for other
tasks, including authorship detection and defect pre-
diction. Reading source code, and writing it to be read
by others, also plays a significant role in teaching pro-
gramming.

The defect prediction task is usually defined as a
supervised learning problem where the goal is to as-
sociate source code fragments with the probability or
an error-proneness class of a defect. There are two
kinds of features for the learning problem: code me-
trics like method size or complexity of a control flow
graph, and process metrics, that measure the proper-
ties of the development process. Examples of process
metrics are the frequency of changes and the num-
ber of developers working on the same piece of code.
As Rahman and Devanbu (2013) have shown, process
metrics are significantly more informative than code
metrics for the defect prediction task. The standard
practice to collect process metrics is to parse the com-
mit history in the project version control system, and
to associate commits with defect reports in the bug
tracker. Unfortunately, the commit history provides
only the data about the state of the code at the specific
checkpoints and hides the way the programmer writes
the code. At the same time, the code editing workflow

itself often contains clues about possible bugs. For
example, a well-known source of defects is the copy-
paste programming that increases the probability of
bug duplication and context-related errors (Kim et al.,
2004). As Hou et al. (2009) note, static analysis algo-
rithms cannot provide the same copy-paste clone de-
tection quality as the dynamic process analysis met-
hods. Integration of these low-level process metrics
would improve the quality of defect prediction sys-
tems.

Another application of process analysis is tea-
ching the novice programmers. Learning the right
workflows of writing and maintaining the source
code is a necessary part of programmers education.
While checking the coding standards conformance
and paying attention to compiler warnings helps to
get rid of several bad habits the students tend to de-
velop, the more subtle code editing patterns, like the
excessive copy-pasting mentioned before, are much
harder to detect without surveying how the student
works on the task. The typical workflow employed
by a programmer also classifies developers by expe-
rience level and preferred style. Several styles may
be more or less desirable in a production environment
than others. For example, developers may tend to in-
vent new solutions, to adopt standard solutions from
their knowledge base, or to search and reuse solutions
from sites like StackOverflow1.

Logging and analysis of actions performed by a

1https://stackoverflow.com/

228
Timofeev, D. and Samochadin, A.
An Unified Representation of Source Code Authoring Workflows.
DOI: 10.5220/0007229902280232
In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018) - Volume 3: KMIS, pages 228-232
ISBN: 978-989-758-330-8
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



developer in an integrated development environment
(IDE) is a widely used technique. At the same time,
each tool implements this method independently and
tune it to a specific task. In this position paper, we dis-
cuss an approach to a code editing process model and
a set of action capturing tools that could be reused for
solving particular problems like defect prediction, de-
veloper performance analysis, or teaching good pro-
gramming practices. Our approach is to represent dif-
ferent aspects of the software development process as
a hierarchical set of annotated events in a single time
scale.

2 RELATED WORK

The document authoring workflows have been stu-
died in multiple research areas, from psychology and
human-computer interaction (HCI)to software engi-
neering. A particular process that is widely represen-
ted in psychology and HCI papers is writing or modi-
fying documents using text editing software. In these
cases, researchers are most interested in the ways
users interact with a computer system, their mental
models, and the factors that influence the interaction,
like user interface complexity (Card et al., 1980), user
experience (Rosson, 1983), or interruptions (Burmis-
trov and Leonova, 2003). The experimental data is
usually collected using video recording or by logging
keys and user commands. The process is described
with one or more quantitative characteristics, e.g., the
number of operations per a time unit.

The most common workflow model used in these
studies is the chronologically ordered sequence of
actions. Burmistrov and Leonova (2003) replaced
atomic operations with the events start and stop marks
so that their model could describe nested and postpo-
ned activities. Polson and Kieras (1985) proposed a
generative model where a set of production rules des-
cribes the user behavior. When the editing context
matches a rule, this rule fires and the model generates
a sequence of higher-level editing commands.

In software engineering, human behavior models
are widely used for task automation and functional
testing. Tools like Expect2 and Selenium3 allow de-
velopers to describe the interaction process as a pro-
gram in a domain-specific or a general purpose pro-
gramming language. When these programs are run,
they interact with the system by analyzing its output
and providing necessary input.

At the same time, the workflows that software de-
velopers themselves are using have been studied to a

2https://core.tcl.tk/expect/index
3https://www.seleniumhq.org/

much lesser extent. Although there is a lot of rese-
arch on project management, individual processes of
writing the code aren’t in focus. Well-known books
on best programming practices (Hunt and Thomas,
1999; McConnell, 2004; Martin, 2008) deal mos-
tly with software architecture and coding techniques.
The process of programming is to some extent discus-
sed by Carter and Sangler (1997). The book concerns
with the mental models and strategies (“mapping” and
“packing”) that programmers use while working on
the code.

The main problem of experimental studies of pro-
gram authoring processes is their cognitive nature that
makes difficult to trace workflow states and transiti-
ons as they are hidden from the observer. One way to
overcome this difficulty is to ask programmers to ex-
plicitly describe the actions they perform, including
purely mental tasks (Jeffries et al., 1981; Bennedsen
and Caspersen, 2005). The possible states and transi-
tions may be modeled as Markov processes (Kamma,
2014).

At the higher level, the workflow states may be
linked to the tasks the developer solves. These tasks
and their connections to the project issues (bugs or
features) are usually tracked using a version control
system. Each task results in a commit annotated with
a description of the changes and with optional refe-
rences to the issue tracker. Additionally, the source
control repository provides data on the timeline and
history of modifications and on developers involved.
Commit logs seems to be the main source of informa-
tion on programming workflows at the time present
(Hassan and Holt, 2003; Hassan, 2009; D’Ambros
et al., 2010; Rahman and Devanbu, 2013; Rubin et al.,
2014).

The main artifact of the software developer’s work
is the source code. Modern IDEs provide rich code
processing features including incremental parsing,
type checking, and control flow graph analysis. Alt-
hough these features are often available for plugins,
there is just a limited number of process logging tools
that make use of the source code, mostly for defect
prediction. Although the set of employed features
is usually limited, like the code fragments that have
been copied and pasted (Kim et al., 2004; Hou et al.,
2009), other structured features (adding and removal
of code, modification of types or function arguments)
may be worth logging as well (Lehnert, 2011).

As this review shows, the task of modeling work-
flows used by software developers, and other specia-
lists whose operations are hard to observe due to their
mental nature, is far from being solved. Although
analysis tools exist for capturing specific process fe-
atures (e.g., tracking code copying or extracting in-

An Unified Representation of Source Code Authoring Workflows

229



formation from commit logs), events captured at dif-
ferent levels (key presses, program structure changes,
code base modification, project status updates) are not
linked together or used in combination.

3 MODELING THE CODE
AUTHORING PROCESS

We propose to address the problem of modeling pro-
gramming workflows by introducing a unified repre-
sentation of programming activities.

There are three main aspects of the code authoring
process.

• Activity: how the programmer writes the code.

• Contents: how is the code modified.

• Context: what is the purpose of these changes for
the software project.

The process is recorded by tracking user actions.
Different tasks require event logs to be recorded with
a specific resolution. For example, in a defect pre-
diction task, it might be interesting to search for met-
hods or functions that were modified but not tested
after the change. The event log should contain data
about actions of types “modify the code,” and “run
unit tests”. At the same time, to evaluate IDE ergo-
nomics, we may need to count the number of mouse
clicks required to complete a specific task.

To enable simultaneous representation of the
events at several levels, we adopt the approach widely
used in text and multimedia processing. We record
the stream of directly observed actions and label event
spans (continuous finite sequences of events) with an-
notations corresponding to higher-level events. For
example, the action “run the application in debug
mode” might match a span containing the specific se-
quence of mouse clicks and key presses. An annota-
tion may be attached not only to low-level events but
any other event span.

At the lowest level, we record atomic actions like
key presses, mouse clicks, menu item activation, or
window switching. We suggest using at least the fol-
lowing set of annotations (note that specific events
here are examples, and the set of events at each level
is not complete).

• Atomic operations: selecting an item in the cur-
rent window, copying an item into the clipboard,
pasting an item, running a program, starting a test
suite and so on.

• Operations on text: selection, copying, pasting,
inserting, removing and replacing the fragments
of text. The logging of text operations is like the

“track changes” feature of modern document edi-
tors like Microsoft Word.

• Operations on programs: modification of the pro-
gram (module) syntax tree. Depending on the
programming language, the set of operations may
contain adding, removing, renaming of packages,
classes, methods, functions and types, modifica-
tion of their bodies and argument lists, adding
or removing control structures (loops, conditions,
sequences of operators).

• Operations on programs in an intermediate lan-
guage: the same operations as in the previous
list, but mapped not to the specific programming
language but to an intermediate language to ena-
ble the creation of language-independent analysis
tools. There may be several intermediate langua-
ges for different families of programming langua-
ges (procedural, functional, object-oriented, etc.)

• Process state: design, coding, debugging, testing.

• Project activity: implementing new features, fix-
ing bugs, merging revisions, doing code reviews,
committing to the source control repository.

• Project management activity: opening, modifying
and closing tasks in a tracker, meeting, planning.

An example of this hierarchy is represented in the
figure 1.

Note that annotations like “planning” or “meet-
ing” may be added to the log even they don’t have
any corresponding low-level event (e.g., a developer
is participating in a meeting and not using the compu-
ter until the meeting is over). To allow this behavior,
we allow spans to be empty. An empty span is defined
by its start and stop time labels.

There is another possible view of the same model.
We may regard annotations as protensive events defi-
ned by specific content and a time span on the com-
mon time scale. Annotations may have explicit links
to the inner events and vice versa, but they are not
required. Events not linked to lower-level events cor-
respond to annotations defined on empty spans.

To make the process representation less language-
dependent, we suggest using a family of metalan-
guages. For most object-oriented programming lan-
guages we suggest representing the program structure
in terms of FAMIX 3.0 metamodel (Ducasse et al.,
2011). In this case, the program or component mo-
del is a tree whose nodes represent structural ele-
ments like packages, classes, interfaces, and methods.
As the FAMIX metamodel does not include procedu-
ral facilities like operator and control structures, we
may need to extend the common representation with
the necessary features. In a similar way, higher-level

KMIS 2018 - 10th International Conference on Knowledge Management and Information Sharing

230



time

atomic actions

insert text replace texttext actions

add class change methodcode actions

process states coding

add method

debug coding

project activity new functionality

coding

fixing bugs

PM activity working on issue #

commit

commit

Figure 1: Combined log example.

events, e.g., project phases, may be mapped to OMG
SPEM 2.0 metamodel (OMG, 2008).

For now, an early prototype has been developed
that can log events generated by a user working in
Microsoft Visual Studio IDE as well as lower-level
events like key presses, mouse movements and clicks,
and window switching. All these events are stored in
a database using a common time scale. The current
representation does not use explicit links to the inner
events.

The problem of restoring these links is interes-
ting by itself. Usually we have several sources of in-
formation about the event, for example, we may log
the “open file” action either from a specific event pu-
blished by Visual Studio or by parsing the sequence
of pressed and released keys or mouse buttons. The
main difference between these two approaches, besi-
des the complexity of parsing the sequence of low-
level keyboard and mouse events, is that parsing key
presses restores links between higher-level and lower-
level events while the independent event logging mis-
ses that information.

If the direct information about event linking, and
about an event at a whole (e.g., on the process state
level), is missing, there are three ways to infer it.

• Parse lower-level events to obtain links.

• Ask the user to annotate events.

• Restore links using machine learning techniques.
In this case, the task may be stated as an event
classification problem.

The latter case worth researching by itself, as the
classification algorithm may be used to solve end-user
tasks such as tracking user time, detecting the process
state, or evaluating the user attention level and effi-
ciency.

4 CONCLUSION AND FUTURE
WORK

In this paper we propose an approach to modeling
software development processes by tracking and an-
notating activities at several levels, from operations
performed by an individual developer to the states
of the entire projects. These events are linked toget-
her and also mapped to artifacts such as the software
source code and commit messages. The model is de-
signed to be used as input for higher-level analysis
algorithms. We expect that the hierarchical log of
developers’ actions and their timings will be benefi-
cial for understanding software development proces-
ses, giving feedback to programmers and managers,
and getting better results in program analysis tasks
like defect prediction.

The concept described in this position paper is on
the early stage of development. The primary research
and implementation directions are the following.

1. Define an external representation of the process
log.

2. Advance the current prototype by logging more
high-level annotations, especially the annotations
on program code level.

3. Define the set of statistical metrics to compare
models, such as patch source frequency distribu-
tion or change localization.

4. Design and implement the model clustering al-
gorithm to detect similar coding workflows and
compare results to the externally estimated pro-
grammers’ efficiency.

An Unified Representation of Source Code Authoring Workflows

231



ACKNOWLEDGEMENTS

This research is a part of the joint project by Intelin
LLC (Moscow, Russia) and Peter the Great St. Peters-
burg Polytechnic University (St. Petersburg, Russia).
This work is financially supported by the Ministry
of Education and Science of the Russian Federation
(state contract 03.G25.31.0247 from 28.04.2017).

REFERENCES

Bennedsen, J. and Caspersen, M. E. (2005). Revealing the
programming process. In ACM SIGCSE Bulletin, vo-
lume 37, pages 186–190. ACM.

Burmistrov, I. and Leonova, A. (2003). Do interrupted users
work faster or slower? the microanalysis of compute-
rized text editing task. Human-Computer Interaction:
Theory and Practice (Part I)–Proceedings of HCI In-
ternational, 1:621–625.

Card, S. K., Moran, T. P., and Newell, A. (1980). The
keystroke-level model for user performance time with
interactive systems. Communications of the ACM,
23(7):396–410.

Carter, A. and Sangler, C. (1997). The Programmers
Stone. Available at https://www.datapacrat.com/
Opinion/Reciprocality/r0/index.html.

D’Ambros, M., Lanza, M., and Robbes, R. (2010). An ex-
tensive comparison of bug prediction approaches. In
Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on, pages 31–41. IEEE.

Ducasse, S., Anquetil, N., Bhatti, M. U., Hora, A. C., La-
val, J., and Girba, T. (2011). Mse and famix 3.0: an
interexchange format and source code model family.

Hassan, A. E. (2009). Predicting faults using the complex-
ity of code changes. In Proceedings of the 31st Inter-
national Conference on Software Engineering, pages
78–88. IEEE Computer Society.

Hassan, A. E. and Holt, R. C. (2003). The chaos of software
development. In null, page 84. IEEE.

Hou, D., Jablonski, P., and Jacob, F. (2009). Cnp: To-
wards an environment for the proactive management
of copy-and-paste programming. In Program Com-
prehension, 2009. ICPC’09. IEEE 17th International
Conference on, pages 238–242. IEEE.

Hunt, A. and Thomas, D. (1999). The Pragmatic Program-
mer: From Journeyman to Master. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Jeffries, R., Turner, A. A., Polson, P. G., and Atwood, M. E.
(1981). The processes involved in designing software.
Cognitive skills and their acquisition, 255:283.

Kamma, D. (2014). Study of task processes for improving
programmer productivity. In Companion Proceedings
of the 36th International Conference on Software En-
gineering, pages 702–705. ACM.

Kim, M., Bergman, L., Lau, T., and Notkin, D. (2004). An
ethnographic study of copy and paste programming
practices in oopl. In null, pages 83–92. IEEE.

Lehnert, S. (2011). A taxonomy for software change im-
pact analysis. In Proceedings of the 12th International
Workshop on Principles of Software Evolution and the
7th annual ERCIM Workshop on Software Evolution,
pages 41–50. ACM.

Martin, R. C. (2008). Clean Code: A Handbook of Agile
Software Craftsmanship. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1 edition.

McConnell, S. (2004). Code Complete, Second Edition. Mi-
crosoft Press, Redmond, WA, USA.

OMG (2008). Software & systems process engineering me-
tamodel specification (v2.0).

Polson, P. G. and Kieras, D. E. (1985). A quantitative model
of the learning and performance of text editing know-
ledge. ACM SIGCHI Bulletin, 16(4):207–212.

Rahman, F. and Devanbu, P. (2013). How, and why, process
metrics are better. In Software Engineering (ICSE),
2013 35th International Conference on, pages 432–
441. IEEE.

Rosson, M. B. (1983). Patterns of experience in text editing.
In Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 171–175. ACM.

Rubin, V., Lomazova, I., and van der Aalst, W. M. (2014).
Agile development with software process mining. In
Proceedings of the 2014 international conference on
software and system process, pages 70–74. ACM.

KMIS 2018 - 10th International Conference on Knowledge Management and Information Sharing

232


