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Abstract: The reliability-based topology optimization method of continuous structures is investigated considering 
structural applied loads and the geometry description. Firstly, based on the solid isotropic material with 
penalization approach, the deterministic mathematical model of topology optimization is developed, in 
which minimization of the compliance is taken as objective function and the volume is taken as constraint 
function; Secondly, using the relation between failure probability and reliability index, the mathematical 
model of reliability topology optimization based on the reliability index constraint is established. Reliability 
index probabilistic constraint problem considering uncertainties is solved using first order reliability 
method, in which the reliability index constraints are transformed into random variables, and then the 
modified random variables are used as deterministic variables to carry on the deterministic topology 
optimization; Finally, several numerical examples are simulated to show that reliability-based topology 
optimization yields structures that are more reliable than those produced by deterministic topology 
optimization and also certificate the validity of the proposed method.. 

1 INTRODUCTION 

In recent years, the research on the topology 
optimization has been an attractive research area and 
made great progress. Topological optimization is a 
design method based on structural optimization, 
which is under the action of some external forces 
and constraints, seeking the optimal structure 
arrangement. At present, the depth and breadth of 
topological optimization research of continuous 
structure has been extended from single object to 
multi-objective function, from single physical field 
to multi-physical field design, from material and 
geometric linear problem to nonlinear problem, from 
static topology to dynamic topology [1-3]. 

But so far, papers on the topology optimization 
of continuum structure presented mostly deal with 
the solution without taking into account the effects 
of uncertainties. Actually, because continuum 
structures may be subject to inherent uncertainties 
such as external loading, material properties, and 
manufacturing quality, the prototypes or 
manufactured products may not satisfy the necessary 
performance requirements.  

Therefore, in order to reduce the mechanism 
performance degradation caused by the uncertainty 

in manufacturing process, these uncertainties must 
be considered in topology optimization. The 
reliability optimization design accounting for 
uncertainties has become a research hot topic in the 
field of structural design. At present, structural 
reliability optimization is widely used in the field of 
dimension and shape optimization [5]. However, in 
the field of topology optimization of continuum 
structures, there are few references to the application 
of reliability optimization methods. [5-8] the 
research on reliability-based topology optimization 
for continuum structure is currently processed in the 
initial stage and many problems need further 
investigate.  

In this paper, a new reliability-based topology 
optimization methodology for continuum structure is 
presented. Firstly, Based on the solid isotropic 
material with penalization approach, the 
deterministic mathematical model of topology 
optimization is developed, in which minimization of 
the compliance is taken as objective function and the 
volume is taken as constraint function; Secondly, 
using the relation between failure probability and 
reliability index, the mathematical model of 
reliability topology optimization based on the 
reliability index constraint is established. Reliability 



 

index probabilistic constraint problem considering 
uncertainties is solved using first order reliability 
method, in which the reliability index constraints are 
transformed into random variables, and then the 
modified random variables are used as deterministic 
variables to carry on the deterministic topology 
optimization; Finally, several numerical examples 
are simulated to certificate the validity of the 
proposed method. 

2 THE DETERMINISTIC 
TOPOLOGY OPTIMIZATION 
OF CONTINUUM STRUCTURE 

The need for the continuum structure to be stiff 
enough to withstand the external load is captured as 
the stiffness requirement. Maximizing the stiffness 
requirement is determined by minimizing Strain 

Energy )(SE which is equivalent to minimizing the 

mean compliance )(P of the structures and the 
formulation is defined as: 

UFP Tminmin =⇔SE                          (1)  

WhereU is the displacement vector and F is the 
sum of all the external force vectors. 

Using the SIMP approach, the relative density ex
of material in each element is a design variable. The 
N -vector containing the design variables is denoted
x . The overall topology optimization solving the 

problem of distributing a limited amount of material 
in the design domain such that the objective function 
is minimized and the volume and input displacement 
is constrained can be expressed as: 
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where V is N -vector containing the element 

volume, 
*V is the upper bound on material volume 

and minx  is an N -vector with the minimum values 

of the densities, V
0

 is the volume. K is the tangent 
stiffness matrix. 

The constitutive tensor for element e with 

intermediate densities 
e
ijklC can be expressed as: 
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The second Piola-Kirchhoff stresses are 

calculated: 
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ij x εCs 0
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                                （4） 

Where ijs  is stress tensor, klε is Green-
Lagrange strain tensor, p is the penalization factor 

(typically 3=p ), 
0
ijklC is the constitutive tensor for 

solid isotropic material.  

3 RELIABILITY-BASED 
TOPOLOGY OPTIMIZATION 

3.1 Reliability Analysis 

In reliability-based topology optimization, three 
kinds of variables will be distinguished [18]: the 
design variables x , the random variables y , and the 
normalized variables s . In contrast to the 
deterministic optimization, probabilistic mechanism 
design optimization can be characterized by the 
probabilistic constraints. The random variables as 
well as the design variables are involved in defining 
the problem of probabilistic optimization [19]: 
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Where [ ] iir PGP ≤≤ 0),( yx  and iP are the 
probability of constraint violation and the allowable 

probability violation ,respectively, and ),( yxG  is 
defined as a limit state function . Safety is the state 
in which the structure is able to fulfill all the 
functioning requirements. The safety of components 
depends on external loading S  and resisting force R , 



 

and active states according to a limit state function 
),( yxG  can be expressed as [18]: 
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The uncertainties of S and R  which is mostly 

not statistical information are modeled by a vector of 
stochastic physical variables. No matter what 
regularities of distribution of S and R , distribution 
characteristics generally can be described using 
mean values and standard deviation. Defining mean 

values and standard deviation of S and R are Rμ 、

Sμ and
2
Rσ 、

2
Sσ , supposed that S and R are 

uncorrelated independent random variables then 
mean value and standard deviation of a limit state 
function : 

SRZ μμμ −=                （7） 
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The failure probability fP  is then calculated by  
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Reliability index β is defined as: 
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The relation between the probability of failure 
and reliability index is expressed as:  

 
)()(1)( 1

ff PΦββΦβΦP −−=⇔−=−= (11) 

 

Where )(βΦ is the standard normal cumulative 
distribution function.  

That indicates from the formula (11) that the 
failure rate and reliability index are corresponding. 
The permissible value of the probability of failure 
may thus be expressed as: 

 
)( βΦPf −=                            (12)  

where )(βΦ is increasing with the enlargement 

of β , and β is corresponding to fP
. Since reliability 

index β is corresponding to the probability of failure

fP
, we may solve the reliability level by 

introducing reliability index β .according to the 
formula (11) (12) and (5), the reliability constraint 
can be transformed into: 

0-0)(-)( tt ≤⇒≥−− βββΦβΦ   (13) 

Therefore, we can solve the reliability index and 
then solve the reliability. First order reliability 
method is used. 

3.2 First Order Reliability Method  

The first order reliability method is developed in 
which the probabilistic constraints are stated in 
terms of the reliability index as a measure of the 

probabilistic safety. The reliability index β  was 
introduced by Hasofer and Lind (1974), who 
proposed working in the space of standard 
independent Gaussian variables instead of the space 
of physical variables. The transformation from the 
random variable y to standard normal s is given by  
 

)( ys T= , or )(1 sy −= T                   (14) 
 

where (.)T is generally a non-linear mapping 
that depends on the type of random distribution of y . 
In the case of a normal distribution, normal random 
variables jy can be transformed into a standard 

normal random variable js by 
 

jjjj σμys )( −=             (15) 

 
where jy  is the j -th random variable, with 

mean value jμ and standard-deviation jσ and j is 
the number of selected random variables. The 
reliability index β  is defined as the minimum 
distance from the origin in the standard normal 
space to the limit state surface and the calculation of 
the reliability index can be realized by the following 
form [21]: 
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where 0),( =sxH  is the limit state function in 
the standard space. According to the structural 
reliability index, the normal random variables are 
solved as follows: 
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The formula (17) directly reflects the meaning of 

the structural reliability index and transforms the 
reliability constraint into a correction of random 
variables. 

3.3 Formulation 

When probabilistic constraints accounting for the 
randomness of the applied loads and the description 
of the geometry are estimated in terms of the 
reliability index, the reliability based topology 
optimization may be expressed as: 
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where β and tβ  are the reliability index of the 
system and the target reliability index, respectively, 
and s is the normalized variable.  

In the evaluation of the reliability index, the 

derivative of β  with respect to normalized variables 
s can be written as [18]: 
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The resulting s of problem in (19) will be used 

to evaluate the random variable y : j j j j= + μy σ s
.using (15) with the standard deviations given by 

jj μσ 1.0= . 
Reliability analysis design proceed: 
First, determine design variables and random 

variables. The design variables x based on variable 
density method are relative density ex in finite 
element, considering the uncertainty of geometric 
size and action load, random variables y are action 
loadF , discrete units nelx and nely in the horizontal 
and vertical direction and volumetric ratio f . 
    Secondly, using the above random variable y  as 
the initial value and constructing the mean vector μ , 
the influence of the mean on the objective function 
is positive and negative. The least squares method is 
used to analyze the sensitivity of the objective 
function, considering the uncertainty of the load and 
geometric dimensions: 
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where 0 01.j j

Δ =μ μ . 
Thirdly, using the formula (17) to calculate the 

standardized variable s under the constraint of the 
reliability index, the standardized variable s  is used 
to modify the random variable y  by using the 
formula (15). The revised random variable y is the 
known quantity; 

Finally, the deterministic topology optimization 
module is called. 

Thus the reliability analysis and topology 
optimization are composed of two independent 
modules, 

Namely, the correction of random variables and 
the deterministic topology optimization. The result 
depends on the given reliability index. In this 
method, the influence of reliability constraint on the 
optimization of the mechanism is transformed into 
the range of random variable due to reliability 
constraint, avoiding the cumbersome reliability 
analysis in the process of topology optimization. The 
optimization problem is solved using the MMA 
method proposed by Svanberg [10]. Mesh-
independency scheme is used to circumvent the 
problem of checkerboard patterns and mesh-
dependencies proposed by Diaz and Sigmund [9-10]. 



 

4 NUMERICAL EXAMPLES 

4.1 Example 1 

The first example considers a beam structure. 
Figure 1 shows the half symmetric design domain. 
The dimension of the design domain, the material 
properties, and the input parameters for the 
optimization program are shown in Table 1.  

The resulting optimal topology principally 
depends on the reliability index value. In the case of 

the target reliability index 4=β  modified 

parameters are shown in Table 2.From intermediate 
results during reliability analysis in Table 2, it is 
noted that volume ratio is modified from 0.5to 0.4 
which reduces manufacture cost and the applied load 
is changed into 1.2KN more than the initial value 
1KNwhich indicates that reliability based topology 
mechanism may bear greater external force than the 
deterministic topology mechanism. Afterwards, 
topology optimization is implemented to 
demonstrate the global system performances as 
below.  

 
Fig.1 beam structure. (Left) design domain and boundary conditions. (Right) Equivalent model. 

Table 1.   Input parameters for topology optimization. 

Variable name Setting  value 
Design domain size S/μm 60 × 20 

Input force(KN)  1 
Poisson ratio ν  0.3 

Young modulu E/Gpa 1 
V/V0 0.5 

Table 2.   Random variable parameters. 

Type Random variables Mean value μ normalized value s Modified value y
Geometry 
dimension 

Horizon size(μm) 60 2 72 
Vertical size (μm) 20 -2 16 

Volume ratio 0.5 -2.003 0.4 
applied load load (KN) 1 2.003 1.2 
The layouts are obtained from the topology 

optimization neglecting all uncertainties and 
considering uncertainties respectively shown in 
Table5.From topology results, it can be seen that the 
main difference between considering uncertainties 
and neglecting uncertainties in this example is to 
more properly redistribute the arms, which 
Considering uncertainties has additional arms, which 
obviously improve the reliabilities of the 
mechanisms. 

 
 
 
 
 
 
 

4.2 Example 2 

 

 

 

Fig.2 design domain and boundary conditions of 
cantilevered beam. 

The second example is designing a cantilevered 
beam. The design domain is sketched in Figure2. 
The dimension of the design domain, the material 
properties, and the other initial values are all list in 
Table 3. 



 

 
Table 3. Input parameters for topology optimization. 

Variable name Setting  value
Design domain size S/μm 32× 20

Input force(KN) 1
Poisson ratio ν 0.3

Young modulu E/Gpa 1
V/V0 0.4

Table 4.   Random variable parameters. 

Type Random variables Mean value μ normalized value s Modified value y
Geometry 
dimension 

Horizon size(μm) 32 1.56 37 
Vertical size (μm) 20 -1.5 17 

Volume ratio 0.4 -1.48 0.34 
applied load load (KN) 1 1.48 1.15 

Table5.   Topological diagrams. 

The resulting optimal topology principally 
depends on the reliability index value. In the case of 
the target reliability index 3β =  modified 
parameters are shown in Table3.From intermediate 
results during reliability analysis in Table 4, it is 
noted that volume ratio is modified from 0.4 to 0.34 
which reduces manufacture cost and the applied load 
is changed into 1KN more than the initial value 
1.15KNwhich indicates that reliability based 
topology mechanism may bear greater external force 
than the deterministic topology mechanism. 
Afterwards, Topology optimization is implemented 
to demonstrate the global system performances as 
below. From topology results in Table 5 , it can be 
seen that the main difference between considering 
uncertainties and neglecting uncertainties in this 
example is to more properly redistribute the arms, 
which Considering uncertainties has additional arms, 

which obviously improve the reliabilities of the 
mechanisms. 

5 CONCLUSIONS 

（1）The reliability-based topology optimization 
method is investigated considering structural applied 
loads and the geometry description. Using the 
relation between failure probability and reliability 
index, the reliability mathematical model based on 
the reliability index constraint is established； 

（2）Reliability index probabilistic constraint 
problem is solved using first order reliability method, 
in which the reliability index constraints are 
transformed into random variables, and then the 
modified random variables are used as deterministic 



 

variables to carry on the deterministic topology 
optimization； 

（3）Several numerical examples are simulated 
to show that reliability-based topology optimization 
yields structures that are more reliable than those 
produced by deterministic topology optimization. 
That is, the use of reliability-based topology can 
improve the performance. Meanwhile, numerical 
examples also certificate the validity of the proposed 
method.  
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