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Abstract: Fractional order calculus was used in the study of viscoelastic medium (a medium with viscosity and elasticity 

properties), image signal processing, and population growth modeling. In this paper, the fractional order of 

logistic growth model was used to describe the dynamic growth of rooster, by which the rooster growth data 

was cited from the literature. We also used the particle swarm optimization method to estimate parameters in 

the fractional order logistic model. We found that the fractional order model is more accurate than the classical 

logistic growth model in describing the rooster growth. 

1 INTRODUCTION 

Logistic growth model is widely used to describe a 
life organism growth. The logistic growth of a single 

species is governed by the following differential 

equation. 
𝑑𝑦

𝑑𝑡
= 𝑟𝑦 (1 −

𝑦

𝐾
) , 𝑦(0) = 𝑦0 ≥ 0.    (1) 

Here 𝑦(𝑡) represents the number of population of the 

species at time 𝑡, 𝑟 and 𝐾 correspond to per capita 

growth rate and carrying capacity respectively. If the 

initial value 𝑦0 is positive, then analytical solution of 
the logistic growth model in Eq. (1) given by Aggrey 

(2002) and Windarto et al. (2014) is as follows. 

𝑦(𝑡) =
𝐾

1+𝑒𝑥𝑝(−𝑟(𝑡−𝑡𝑖𝑛𝑓))
     (2) 

where 𝑡𝑖𝑛𝑓 =
1

𝑟
ln (

𝐾

𝑦0
) . 

The logistic growth ordinary differential equation 

in Equation (1) has been generalized into the 

fractional order logistic differential equation given by 

El-Sayed et al. (2007). 
𝑑𝛼𝑦

𝑑𝑡𝛼 = 𝑟𝑦 (1 −
𝑦

𝐾
) , 𝑦(0) = 𝑦0 ≥ 0.   

 (3) 

Here, 𝛼 is fractional order where 0 < 𝛼 ≤ 1. For 

any positive initial value 𝑦0, the exact solution of 

fractional order logistic differential equations cannot 

be determined. In this situation, heuristic method such 

as simulated annealing, genetic algorithm and particle 

swarm optimization method can be applied to 

estimate parameter values from the fractional order 

logistic differential equation. 

 

Particle swarm optimization is an optimization 

method based on a population-based stochastic 

(probabilistic) search process (Eberhart R. &  

Kennedy, 1995; Kuo et al., 2011). Particle swarm 
optimization method has been widely applied in many 

areas, including performance improvement of 

Artificial Neural Network (Salerno, 1997; Zhang et 

al., 2000), scheduling problems (Koay and 

Srinivasan, 2003; Weijun et al., 2004), traveling 

salesman problems (Wang et al, 2003), vehicle 

routing problems (Wu et al., 2004) and clustering 

analysis (Kuo et al., 2011). 

In this paper, particle swarm optimization method 

was applied for predicting the parameters in fractional 

logistic growth model. The remainder of this paper is 
organized as follows. Section 2 briefly presents 

particle swarm optimization method. Section 3 

presents the implementation of fractional logistic 

growth model for describing poultry growth. In 

addition, parameters in the fractional logistic growth 

was estimated by using particle swarm optimization 

method. Finally, conclusions are presented in Section 

4. 
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2 PARTICLE SWARM 

OPTIMIZATION METHOD  

Particle swarm optimization algorithm was invented 
by Eberhart and Kennedy in 1995. The algorithm has 
similarities with evolutionary computation methods 
such as genetic algorithm. The particle swarm 
optimization algorithm is initialized with a population 
of random solutions and searches optimal solution 
updating generations. However, particle swarm 
optimization algorithm does not have crossovers and 
mutation operators. Potential particles (solutions) in 
the particle swarm optimization algorithm move 
through the solution space by following the current 
optimum particles (Kuo et al., 2011).  

The particle swarm optimization algorithm starts 

by randomly choosing initial (particles) solutions 

within the search space. Fitness function of the 
current position of every particle is evaluated. If the 

fitness value is better than the previous best value, 

then the local best position of a particle is updated. 

The global best is updated based on the best fitness 

value found by any of the neighbour.  

The particle swarm optimization algorithm 

consists of the following steps, which are repeated 

until some termination conditions are met (Kuo et al., 

2011; Rini et al., 2011): 
1. Evaluate the fitness of every particle (solution). 

For a maximization problem, the greater the 
objective function, the greater of the fitness will 
be. On the other hand, for a minimization 
problem, the smaller the objective function, the 
greater the fitness will be.  

2. Update particle best (local best) position and 
global best position. 

3. Update velocity of every particle using the 
following equation 
𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑙𝑏𝑒𝑠𝑡(𝑡) −
𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)),                   (4)
  
where 𝑣𝑖(𝑡) and 𝑥𝑖(𝑡) are the velocity of particle 
𝑖 and position of particle 𝑖 at discrete time t, 
𝑙𝑏𝑒𝑠𝑡(𝑡) and 𝑔𝑏𝑒𝑠𝑡(𝑡) are the local best and 
global best position at time t, 𝑟1  and 𝑟2  are 
uniformly distributed random number between 
zero and one. 

4. Update position of every particle using the 
following equation 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1).               (5) 
 

In Equation (4), 𝑤 is the inertia weight, whereas 

𝑐1 and 𝑐2 are cognitive coefficient and social 

coefficient respectively. The value of the inertial 
coefficient is typically between 0.8 and 1.2, while the 

values of cognitive coefficient  and social coefficient 

are typically close to 2.  
In order to prevent the particles from moving very 

far beyond the search space, velocity clamping 

technique can be applied to limit the maximum 

velocity of every particle.  For a search space 

bounded by the range [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥], the velocity is 

limited within the range [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥] where 

𝑣𝑚𝑎𝑥 = 𝑚(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) for some constant 𝑚, 0.1 ≤
𝑚 ≤ 1. Some common stopping conditions in particle 

swarm optimization include a predetermined number 
of iterations, a number of iterations since the last 

update of global best solution, or a pre-set target 

fitness value (Kuo et al., 2011; Rini et al., 2011). 

3 IMPLEMENTATION OF 

FRACTIONAL LOGISTIC 

GROWTH MODEL 

In this section, the fractional order logistic growth in 

Equation (3) for describing rooster growth was 
applied. Parameters in the model were estimated from 

some rooster weight data cited from the literature. 

The rooster weight data (𝑦) at the day (𝑡)   are 

presented in the Table 1 (Aggrey, 2002; Windarto et 

al., 2014).  

Table 1: Means of the rooster weight data (y). 

t 
(days) 

y (grams) t 
(days) 

y (grams) 

0 37 42 519.72 

3 41.74 45 577.27 

6 59.19 48 633.59 

9 79.94 51 667.18 

12 102.96 54 717.17 

15 132.13 57 786.35 

18 170.18 71 1069.28 

21 206.56 85 1326.49 

24 250.71 99 1589.71 

27 285.27 113 1859.26 

30 324.92 127 2015.44 

33 372.83 141 2142.31 

36 417.41 155 2220.54 

39 469.13 170 2262.63 

 

From Table 1, we found that initial weight of the 

rooster is 𝑦(0) = 37 grams. Parameters 𝛼 (the 

fractional order), 𝑟 (the rooster growth rate) and 𝐾 
(carrying capacity parameter or mature weight of the 
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rooster) were estimated. Particle swarm optimization 

method was applied and described in the Section 2 

with the inertia weight parameter 𝑤 = 1, the 

cognitive coefficient  parameter 𝑐1 = 2 and the social 

coefficient parameter 𝑐2 = 2 respectively. The 

particle swarm optimization algorithm was 

implemented until 100 iterations. 

Parameters in the fractional order logistic growth 

model (𝛼, 𝑟, 𝐾) were estimated such that the 

minimum mean square error (MSE) given by 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1              (6) 

Here, 𝑦𝑖 and 𝑦𝑖̂ are rooster weight data and predicted 

rooster weight at the i-th day, while n is the number 
of observation data. The estimation results of 

fractional order logistic growth are presented in Table 
2.  

Table 2: The estimated parameters using particle swarm 
optimization method. 

 r K MSE 

0.3999 0.3018 4000.00 714.93 

0.4753 0.2461 3491.86 772.41 

0.5242 0.2182 3152.67 1001.66 

0.4080 0.2946 3898.96 872.93 

0.4620 0.2524 3529.82 1248.19 

0.4678 0.2500 3565.34 807.87 

0.4722 0.2466 3500.00 803.93 

0.4395 0.2738 3630.19 710.35 

0.4695 0.2500 3500.00 680.08 

0.3621 0.3319 4500.00 996.41 

0.4705 0.2498 3500.00 711.06 

 

It was found from Table 2 that the best parameters 

were 𝛼 = 0.4695, r = 0.2500, K = 3500.00 where 

the mean square error MSE = 680.08. Meanwhile, 
the best parameters for logistic growth model were 

𝑟 = 0.0403, 𝑡𝑖𝑛𝑓 = 74.68, K = 2279.90 where the 

mean square error MSE = 1887.46. Hence, we found 

that the fractional order logistic model was more 

accurate than the (classical) logistic growth model.  

It was known that the analytical solution of the 

fractional order logistic growth model converged to 

the carrying capacity parameter or the mature weight 

parameter (K). Here, asymptotic rooster weight (y(t)) 
tended to the mature weight parameter. Dynamic of 

the rooster weight for the best parameters also 

confirmed the analytical properties. The rooster 

weight also tended to the mature weight parameter. A 

comparison between observed and predicted rooster 

weight is shown in Figure 1. From the figure, it can 

be seen that the predicted rooster weight of the 

fractional order logistic model did not significantly 
differ from the observed data. 

 

Figure 1: Comparison between observed and predicted 
rooster weight. 

4 CONCLUSION 

Fractional order growth model has been applied to 

describe dynamic of rooster weight. Parameters of the 

model were estimated from secondary data cited from 

literature. The fractional order logistic model was 

found to give more accurate results than the classical 

logistic growth model. 
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