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Abstract. Accurately forecasting the electricity demand and feedback on separate
appliances can lead to natural energy-saving behaviors and higher energy efficiency. In
this paper, a supervised additive factor hidden Markov model including the exogenous
influencing factors is developed to forecast the electricity usage of appliance in building
based on the hourly data, where the model is trained with the first part of appliances data
to get optimized parameters and tuned with aggregate electricity data in forecasting. The
model successfully forecast the usage of all appliances for a mall building and the
accuracies for appliances are all larger than 60%, which is higher than most similar
analyses, especially same frequency data analysis. By adding the influence factors, the
AFHMM model gives a more accurate result in lower frequency data, which can be
widely used in energy monitoring of buildings.

1. Introduction
Environmental pollution and shortages of resources are two continuously concerning but unresolved

problems of the past decades, which are related to the sustainable development of the world.
Developing energy-saving technologies to improve the efficiency of energy utilization is an
important and effective strategy to reduce wastes of resources and emissions of pollutants. Among
the numerous energy-saving strategies, accurately forecasting the electricity demand of each
appliance and feedback to users let the users know their detailed electricity behaviors and lead to
natural energy-saving behavior and higher energy efficiency without affecting normal life, especially
for commercial buildings [1,2]. Ref [3] finds that the energy-saving ratio grows fast with more
feedback information [4-6], where real-time information about appliances can even approach 50%
[6] energy-saving.

There are two problems for the forecasting of the usage of appliances, data frequency and models.
First, the traditional forecasting analyses [7-10] always use electricity data monthly or yearly in
China, which cannot satisfy the demand to separate the behaviors of appliances. Second, the models
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of other analyses [3] in forecasting the usage of appliances can only apply to data with frequency in
kHz level or get a result with accuracy lower than 55% for hourly data [11]. In this paper, we develop
a new model by considering the influences for the additive factor hidden Markov model (AFHMM)
[12], which can forecast the electricity consumption of appliances with aggregate electricity data in
long-term and get a high accurate result for hourly data [13] collected by smart meters in Shanghai.
The method is possible to be shared to buildings without collectors of appliances and used in energy
monitoring.

2. Model

The AFHMM is shown in Figure 1 [12]. Suppose that every appliance is a hidden Markov process
with multiple different states and is represented by a submodel, where the electricity consumption for
each state is influenced by many exogenous factors such as weather, outdoor temperature, holiday,
night and others. While the aggregate electricity consumption, i.e., the summarization of the usage of
all appliances, is also a hidden Markov process. The states of the additive model are the combination
of the states of submodels and the number of states are the product of all the numbers of submodels.

Figure 1. Additive factor hidden Markov model.

The analysis process is split into the following several steps:

1 Separate the electricity data of the appliances into two continuous parts: the training set and the
testing set. The training set is used for optimizing the model with data of aggregate and separate
electricity consumption and all influencing factors, while the testing set is used for testing the effect
and accuracy of the model only with data of aggregate electricity consumption and influencing
factors.

2 Get the parameters of each submodel to construct the AFHMM model with all aggregate data.
Get the state of aggregate data in a test set by observations, and decode it to every appliance.

3 Predict the expected value of each appliance in a test period by training the model without
observations. Repair the expected value of each appliance by aggregate observations and states from
the additive HMM model.

4 Compare the measured and forecasting data by calculating the accuracy of model training and
testing.

2.1. AFHMM model and HMM model

Suppose that the probability of total usage at one state satisfies a normal distribution and that the
expected value is the summarization of corresponding states of submodels, while the expected values
of submodels are linear functions of influencing factors and the probabilities also satisfy normal
distributions:

p(Y(8™) = N(EZL, 70 81,2 (5) "
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where Y, is the aggregate value, N is the number of appliances, S" s the state of i-th appliance

attime t, y¥(s") is the expected value of i-th appliance under state SU) at time t and O, is
the outer influencing factors. The expected value of each appliance is related with many other
variables and they are measured independently with electricity. The number of states for the i-th

appliance m® is obtained by Bayesian information criterion (BIC) [14] and the EM method. Each
appliance includes initial state probability, transition matrix, outer effects, and normal distribution

sigma.

2.2. Determine the AFHMM model

The parameters of additive FHMM model is obtained by combining the parameters of each appliance.
The total number of states is the product of that of all appliances. And the state probability, transition
matrix and state distribution parameters are Kronecker products [15] of separate appliances.

: N i i i : N i N
p(S(lN) |Yt) =Hi:1 p()(S() | yt())’ S(lN) = i:lS( ) XHk 1m(k) (3)

where p(S(LN) |Y,) is the posterior probability of state S™) under the condition of aggregate

usage Y, at time t for the system, and p(i)( |y(')) is the similar probability for i -th

appliance, where the state of system is a Kronecker combination of all appliances. By fixing the
parameters, the conditional state distribution of the AFHMM model of the test period can be obtained
by repeating the following processes:

pS™™ [t+1)=p(s™ ) T
BS™ [t+)" (Y. (S™Y))
= (N)
Z p(Yt+1(s )) (4)

is the transition matrix for the entire model. By decoding the aggregate state

ﬁ(S(LN) |Yt+1) =

where F(xN)

distribution with the method of inverse equation (5), the state of each appliance f’( | t+1)

each time mn future 1s obtained.

2.3. Predict and adjust for separate appliances
For every appliance, there is no electricity data in the testing set. The expected values can be
obtained only by the training model:

(u)( |t+h) |yt-> Fh/Zp(" (.)) rn

véi’h(s<”)=f“)(éﬁhls‘), 75, = B (V€ +h) §,(s") )

where f is the length of training set, f(')( o | s« ) is the linear function of influencing

factors O,, from equation (2). To predict h stage, the conditional state probability

195



IWEMSE 2018 - International Workshop on Environmental Management, Science and Engineering

(')( | y(") transition matrix (), and the measured value of related variables in the future are

used. Because the state probability is only related with the former stage state, the state probability in
the future is determined by multiplying the conditional state probability at this time and the transition
matrix. The expected values of each state in the future are obtained only if the related variables are
collected. With the state probability and expected values of each state, the expected value at each
stage in the future can be gained.

However, the predicted values only depend on the training observations, which would shift from
the real values if some changes happen. In the test period, the aggregate values are collected and
useful for adjusting the values for appliances. The deviation between the observed aggregation and
the summation of predicted values of all appliances is shared by all appliances with deviation of two
continuous days and fluctuation contributions. For the deviation contribution, we suppose that the
state of electricity consumption does not change at the same hour between two continuous days for a
whole building, then the deviation of each appliance contributes a corresponding percentage. The
forecasting result is:

® 0]
0 o) per;” x per, — (i)
yt+lday yt+1day Z per(|) % per(|) (Yt+1day Z, 1yt+1day

(6)

where Vt(ﬂday is the predicted value at the same hour one day later and perl“) and perz(‘) are

the adjusting percentages in deviation and fluctuation. According to the optimal allocation principle,
the percentages are:

m®
v () () D (i
yt+1day yt p (i) _ Z ( | t+1day ) S(
(i) 0 ! t+lday — N, m(') — 0y
z, 1(yt+1day yt ) Z| 4, 50 ( | t+1day ) ( )

where f)( | t+1day) is the time ratio in S state of the i-th appliance, which is derived

(i) i
pe rl[ +1day

(7

from the inverse equation (3) mentioned in Section 2.2.

2.4. Calculate the accuracy of model and disaggregation
The relative error between measured and estimated values is used to represent the accuracy of the
model, which is defined as:

error) = \/Zt (" - yt(i))Z/Zt(yt(i) )2 (8)

where yfi) is the observation and Vt(i) are the estimated values from the model. The relative

error is used to examine the accuracy of the model in training and test set. The relative error of
different appliances is compared to find the difficult level of accurate prediction for different
appliances. And the accuracy of each appliance is defined as accu® =1—error® .

3. Data and results

3.1. Data
The electricity data we use contains the hourly electricity consumption for five types of appliances
and aggregation during January Ist, 2016 and December 31, 2016 for one mall building. The five
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types of appliances are lighting, air conditioner, movement, management, and others. In addition to
the electricity data, we adopt some hourly variables that influence the electricity usage, such as
weather, holiday, and day or night hours. The weather data contains temperature, raining, wind
velocity, pressure, and humidity. The holiday is represented by two dummy variables, where 00
means a workday (not weekday), 10 means legal holidays, 11 means a regular rest day (weekend, but
not legal holidays). Day or night is a dummy variable; 1 is day and 0 is night, which is obtained by
clustering electricity data and differs among different appliances.

3.2. Analysisresult

3.2.1 Submodel training with training set. The data length is 8,784 in total, in which the first 7,000
values are grouped for the training set and the last 1,784 values are used for the test. We apply the
HMM to each appliance and the fit results are listed in Table 1. From the table, we can see that the
optimized numbers of states for all appliances are larger than 10, and most of the relative errors are
smaller than 10%. The relative error for management is a little large, but the absolute consumption of
this item is much smaller than others, which hardly affects the total forecasting. Figure 2 compares
part of the measured and fitted values for the four types of appliances, and to be clearly, only results
of seven days before and after the boundary time of training and testing are shown. The figures show
that the model fits the measured values very well.

Table 1. Fit result for the training set, including the number of states (State No.), BIC, number
of degree of freedom, root mean square error (RMSE) and relative error.

State No. BIC NDF RMSE Relative error (% )
Lighting 16 66,844.81 447 15.02 1.98
Air condition 13 61,405.45 324 20.9 5.33
M ovement 12 46,488.02 287 4,98 2.91
M anagement 16 46,416.37 447 341 15.25
Others 11 72,364.48 252 31.38 8.61
Aggregation 12 82,146.14 287 67.04 3.90
lighting AC
% B — measmed—l subfit —— predict‘ § a — measured—— subfit —— predict
£ 8- £ g
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Figure 2. Comparison between the measured, model fit and forecasting values, where blue lines are
the boundaries for the training and testing sets, the black curves are measured values, the green
curves before the blue boundary lines are the model training results and after the blue lines are the
model forecasting values, and the red curves are adjusted values with aggregate data. The x-axis is
days, and the y-axis is electricity consumption.

3.2.2 Submodel forecasting in testing set. We predict the multi-stage for each appliance with an
optimized training model and influencing factors in the testing set and compare the expected values
with measured data in Table 2 and Figure 2. Table 2 lists the relative errors of prediction for all
appliances and the errors differ a lot for different appliances. Lighting and movement have the
smallest error, and their errors in training are also the smallest with lower than 3%. The air
conditioner has the largest forecasting error with 55.4% while its training error is not the largest,
meaning that the randomness of air conditioner usage is large, and the historical data cannot describe
all behaviors of air conditioners. For management and others, forecasting errors are 38.4% and 34.1%
and the training errors are also the largest, meaning that the model now has a limited ability to
describe the data. The comparison shows that the forecasting error is decided by both the
performance of training model and volatility of real electricity usage. Figure 2 also compares the
measured and forecasting values for each appliance in the testing part with the black and green
curves. To show the result clearly, only 180 hours in the training set and testing set are plotted.

Table 2. The relative error for model training, forecasting and adjustment processes.

Alr

Lighting conditioner M ovement M anagement Others Mean | Aggregation
Training (%) 1.98 5.33 291 15.25 8.61 4.33 3.90
Forecasting (%) 13.99 55.39 12.52 38.32 34.10 2151 16.33
Adjustment (%) 12.46 37.53 10.52 32.02 32.25 17.15 —

3.2.3 Adjusting the forecasting values with aggregate data. Combining the forecasting values of
appliances and aggregate electricity data in the testing set, the usage of appliances in the testing set
are adjusted and shown as red curves in Figure 2 and the relative errors are listed in Table 2. After
the adjustment of aggregate data, the estimated values of each appliance are closer to the real
measured values, especially for air conditioners. The relative errors of each appliance are also smaller
than simple model forecasting, especially for air conditioners and management such that the relative
error reduces from 55.4% and 38.4% to 37.6% and 32.1%. The mean relative error for all appliances
is only 17.15%, which corresponding to a very high accuracy.
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3.3. Discussion

Above all, we get a result of mean accuracy 82.85% for the forecasting of appliances with hourly
data by using supervised AFHMM model, which is more accurate than other similar analyses.
Czarnek N. [16] compares the results for some public datasets with frequency of 1/s and 1/min by
several models, such as KNN, random forest, linear support vector machine and SVM with radial
kernel, where the accuracy ranges from 8% to 92%. Where only the accuracies of AMPds data
obtained by KNN and random forest models are larger than our work, but the data frequency is 1/min,
which is too large to be widely shared. Kolter J. Z [17] analyses the hourly Plugwise data with
supervised sparse coding model, but he only got a result with 55% accuracy. For the appliances,
lighting and movement have almost 90% accuracy, while for air conditioner and management, the
accuracy is only about 65% because of large fluctuation, meaning that we need improve the
performance of model with more attention on the usage of air conditioner and management. The
model in this work uses both data of appliances and aggregation for training, but in forecasting only
aggregation and influence factors data are used, which is possible to be applied in buildings without
appliance collectors only if we include the information of buildings in the training model.

4. Conclusions
In this paper, a supervised additive factorial hidden Markov model is developed by including
exogenous influences to forecast the electricity usage in appliance level. The model adopts EM
method to train the training dataset and obtain optimized parameters for submodel of each appliance
with both disaggregate and aggregate electricity data, and exogenous influence data. While in testing
process, the fitted parameters of submodels and exogenous influence data are used to forecast the
usage of appliances, and the aggregate electricity is used to adjust the values. The accuracy of the
model in training and testing dataset is calculated by comparing the estimated and measured values.
By applying the model to a dataset of one year hourly electricity consumption data for five types of
appliances in one building collected by smart meters in Shanghai, we get optimized parameters for
submodels with first 7,000 values as training set and forecast the appliances usage with last values as
testing set. The performance of model on training set is perfect with relative errors smaller than 7%
except for the usage of others. The performances of model in final forecasting results differ a lot for
different appliances, where the relative errors are 12.46%, 10.52%, 37.53%, 32.02%, 32.25% for the
usage of lighting, movement, air conditioner, management and others, respectively. The performance
of lighting and movement is best, while that of air conditioner is worst because of the large
randomness and fluctuation of usage in air conditioner for the diversity of human behaviors. We need
to pay more attention on the behaviour analysis on the usage of air conditioner to improve the
performance of model. The mean accuracy of all appliances is 82.85%, which is much higher than
analyses with same frequency data, and even larger than most analyses with higher frequency data.
The model proposed in this paper can forecast the usage of main appliances in hourly frequency
perfectly. In the future, we need to collect data of more types of buildings and include more influence
factors to extend the model and optimize the parameters of the model, in order to forecast the usage
of appliances for buildings without sub-collectors. The information about usage of appliances
feedback to users and energy suppliers can improve the efficiencies of energy-saving and monitoring,
which is a good way to overcome environmental pollution and shortages of resources.
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