
From Manual to Machine-executable Model-based Systems

Engineering via Graph-based Design Languages

Benedikt Walter1, Dennis Kaiser2 and Stephan Rudolph3
1Research & Development MB Passenger Cars, Daimler AG, Kolumbusstraße 19 + 21, 71059 Sindelfingen, Germany

2IILS mbH, Albstraße 6, 72818 Trochtelfingen, Germany

 3University of Stuttgart, IFB, Pfaffenwaldring 31, 70569 Stuttgart, Germany

Keywords: Graph-based Design Languages, V-Model, Model-based Systems Engineering, Requirements-driven

Engineering, Executable Model, Digital Product Design.

Abstract: Today, Model-Based Systems Engineering (MBSE) is widely used in the successful design of complex

systems in various industries. It intends to provide a complete description of the design process of complex

systems in form of a V-Model or one of its various extensions thereof (extended V-Model). While already

several formal languages like Unified Modelling Language (UML) and Systems Modelling Language

(SysML) are used to formally describe the design process and behavioural aspects of the design as well,

models in UM- or SysML are still mostly assembled and connected manually. Instead, graph-based design

languages based on UML make use of the digital representation of the design process with the additional

benefit of a repeatable execution encoded in an activity diagram within a rule set. This allows for a seamless

transformation of a formerly mainly manual MBSE-approach towards a fully automated, machine-executable

MBSE approach. The article will focus on the impact of graph-based design on that transition from classical

MBSE towards machine-executable MBSE. We show this with the example of an automotive dashboard.

1 INTRODUCTION

The product development process with its various

development steps becomes more and more complex.

The need for improvements of the current product

development throughout all development steps is

therefore clearly given. Most engineering tasks are

performed in domain specific tools without interfaces

to other domains. Typical examples for frequently

used digital assistance tools are domain-specific

design and simulation tools such as CAD-kernels,

FEM- and CFD-solvers, spreadsheet calculators and

others. However, all these domain-specific models

require interfaces between each other in order to

exchange design information. Since the information

exchange between different programs often exhibits

design information losses, the interlinked design

models are often inconsistent to each other, which

causes serious information gaps in-between the

various design models throughout the development

process. One approach to resolve this issue is a

generic and abstract central model which can be

translated into each desired domain-specific model. It

serves as a single source of truth for complex design.

Graph-based design languages possess such a central

model (called design graph) in UML and are capable

to map this into many domain-specific target formats.

With this novel approach, an abstract digital twin of

the developed product can be created in UML. It is

adjusted and refined throughout all development

steps: Formal requirements engineering, digital

product design and virtual verification and validation.

A formal requirements-based engineering provides

functional and logical dependencies within the model.

From these dependencies, a finite system state

machine can be derived. This state machine is

consistent with the given system requirements and

can be tested as an executable model. It enables the

product designers to visualize the consequences and

constraints put on the model through decisions made

during requirements engineering. The dependencies

intrinsically included in formal product requirements

reduce the solution space to its true degrees of

freedom. The remaining degrees of freedom are the

actual design decisions left for product design. All

possible product variants can be considered,

evaluated and turned into design decisions. The

automation of all this allows an optimization under

Walter, B., Kaiser, D. and Rudolph, S.
From Manual to Machine-executable Model-based Systems Engineering via Graph-based Design Languages.
DOI: 10.5220/0007236702010208
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 201-208
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

201

inclusion of all relevant design domains. This is

called digital product design. It is based on a central

model in one design language while optimizations are

performed in domain specific models. This derived

digital product or digital twin can be digitally verified

and validated against the given tests derived from

formal requirements. Digital verification and

validation within an executable model bridge the gaps

occurring in the existing manual development

process. It provides a solution approach towards a

consistent and machine-executable digital V-Model

via graph-based design languages. This article

presents the idea of a digital, machine-executable V-

Model with integrated and consistent development

steps and a digital twin of the product as its work item.

It will illustrate the advantages of this novel, re-

executable extension to MBSE using the example of

an automotive dashboard. The paper is structured in

the following way: First, an overview of the V-Model

with common tasks are given and put in relation to the

engineering technique of graph-based design. The

showcase in form of a (digital) automotive dashboard

is introduced and described. It is followed by three

core sections. Each section addresses one of the three

main phases of the V-Model (Specification,

Development and Testing). Each section describes

the engineering tasks for digital product development

of the particular V-Model phase. In addition, this is

applied to the showcase (automotive dashboard). The

paper closes with a discussion about limitations,

related work and an overall conclusion. The main

contribution of this paper is the presentation of an

automated, machine-executable approach that aligns

and integrates all engineering tasks occurring during

product development in one single model.

2 GRAPH-BASED DESIGN AND

DIGITAL V-MODEL

This paper combines the idea of digital product

design with the state of the art industrial product

development process in form of the V-Model. The

foundation of the digital development approach are

so-called graph-based design languages.

2.1 Graph-based Design Languages

Graph-based design languages are an abstract form of

system representation and the corresponding design

process in form of a graph. Background and

foundational approaches are mentioned in section 8.

This work focuses on an approach developed and

proposed by (Rudolph, 2006 and Rudolph et al.,

2013). Figure 1 provides an overview about this

particular approach. The total of all entities occurring

in the design is called vocabulary. In the approach all

vocabulary is represented in a class diagram, thus

each entity is represented as one class with attributes

and relationships (links, dependencies and others) to

other classes. From the class diagram, objects are

instantiated. This is controlled through a rule set. It

defines when classes instantiate objects and how

these objects are linked to each other. Vocabulary and

rule set therefore build a 'production system'. The rule

execution with object instantiation creates the so

called 'design graph'. Nodes in the graph are abstract

objects (class instantiations) and edges represent

relationships and dependencies between the objects.

Figure 1: Graph-based design process (Rudolph, 2006).

In addition, boundary conditions and underlying

equations exist, must be considered and solved.

Generating the graph and solving the equation system

is performed in one step by a design compiler. The

compiler generates the graph and the 'solution path

generator' solves the underlying equations. The

design graph is an abstract representation of the

system and is thus a general model. To work with and

consider specific domains, interfaces to particular

domains like CAD, FEM and others are required.

Through the interfaces domain specific models are

derived. In the specific domain, analysis can be

performed. The adjustments are fed back to the

general model through so called 'round trip

engineering'. This approach is the backbone of the

digital product development presented in this paper.

2.2 Digital V-Model

In development of complex systems, the V-model is

state of the art. It combines the three core steps of

product development (specification, design and

development and verification and validation). The

classic V-Model (figure 2) contains the 'vertical

continuity' along the ‘V’, which already existed in the

waterfall model. This means that each phase provides

work products to the next phase. In addition, the

'horizontal continuity' allows back linking from

verification and validation with the test items and test

results to the specification phase and its requirements.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

202

While in theory all three steps are well integrated, in

industrial setups the steps are usually detached. A

specification phase and development phase often do

not align. Specification is seen as a needed

documentation but often not as a useful development

artefact. This is often due to the informal nature of

requirements in classic development.

Figure 2: V-Model (in automotive context).

The proposed approach in this paper digitalizes

both phases (in fact all three phases. Software-in-the-

loop (SIL) and model-in-the-loop (MIL) tests can be

performed virtually) and naturally aligns them. The

following sections show the formalization of

requirements (section 4) during specification, digital

product development (section 5) and digital

verification and validation (section 6). All work items

are formally described and provide useful input for

the next development phase. The formal and digital

gestalt allows a repetitive execution with adaptations

(adjusted parameters, boundary conditions, different

design variants). We call this re-executable V-Model.

3 SHOWCASE

In the following, a dashboard is used as an illustrative

example. The dashboard has already served as public

demonstrator in ITEA3-Project IDEALISM. It

includes engineering services of an automated finite

element analysis and an automated 3D wire harness

model generation. In the ITEA3-Project IDEALISM,

the dashboard had a predetermined class A surface

(usually defined by industrial product designers, here

simplified due to intellectual property issues) and, a

customer specific wire-harness. In terms of the

machine-executable V-Model, the development

process is following a sequential processing of the

requirements. First, the car options (provided by the

customer) are processed. Typical customer options

are add-ons such as the navigation system option, a

better sound system or a rear driving camera.

Together with the class A surface specified by the

design department, all these additional equipment or

switches lead to the final geometry of the automotive

dashboard (see figure 3).

Figure 3: Simplified dashboard geometry (ITEA3, 20018).

Since the electric system for the light system of

the car needs to be incorporated, all the control

software for the controller hardware and all electrical

cable connections between the electrical components

need to be designed. The complete automation of the

electrical 3D wire harness model generation and an

automated finite element analysis of the dashboard

cross beam has already been successfully

demonstrated in the ITEA3-Project IDEALISM.

Thus, the paper will focus on the automated,

requirements-driven generation of the software for

the outside light system. Of course, there will be some

simplifications in respect to the full light system. The

code generation is limited here, in the way that the

light system consists of simple headlights and a set of

left and right turn indicators.

4 REQUIREMENT

ENGINEERING

The first phase of product development in the V-

model is concerned with requirements engineering. In

classic approaches, documentation occurs in textual

form. While this form is needed for non-engineering

tasks like marketing, law and others, the complexity

of today's systems cannot accurately be expressed in

textual requirements. To maintain the textual form

while adjusting to formal representations, a text-to-

model (T2M) transformation seems suitable. (Walter

et al., 2017) showed such formalization from

structured textual representations to finite state

machines (FSM). This section recaptures this

approach and places it into the overall graph-based

design methodology. Subsection 4.1 introduces the

general formalization idea. Subsection 4.2 applies it

to functional requirements, which allows generating

From Manual to Machine-executable Model-based Systems Engineering via Graph-based Design Languages

203

the inner logic of a product in form of a FSM. In

addition, Subsection 4.3 shows how formalized non-

functional requirements can provide a starting point

for geometry and topology design of the product.

Functional and non-functional requirements are

shown with the previously introduced dashboard.

4.1 Formalization

Textual represented requirements are state of the art

in industrial contexts because natural language (NL)

can be created and read simple. While this is an

advantage of such unstructured textual expressions,

such representations are prone to syntax errors,

inconsistencies and are not easily processed machine-

based. An applicable solution are specification

patterns. They provide a certain degree of structure.

Specification pattern systems (SPS) by (Dwyer et al.,

1998) are one common form of language patterns.

SPS provides a syntactical structure and contains an

empirical mapping to linear temporal logic (LTL).

(Walter et al., 2017) combines this approach with a

reduction of LTL to first order logic (FOL) with the

underlying data structure. FOL can be put into

standard form like conjunctive normal form (CNF).

This leads to a formalization process chain from

textual description (NL) to formalized logic in form

of CNF. The general mapping is shown in figure 4.

Figure 4: Formalization process, (Walter et al., 2017).

Generally, SPS patterns are defined for functional

requirements. (Glinz, 2007) separated requirements

into functional and non-functional (NFR) with further

separation of NFR into performance, quality and

constraints. It is often not possible to represent quality

and performance requirements through SPS, yet

constrains are often simple and thus expressible in

SPS. This is useful for data represented in form of

constraints. Boundary conditions, which are often

used to express geometry in graph-based design, can

therefore be formalized. Thus, geometry can be

derived from its requirements through this approach.

4.2 Functional Requirements - FSM

Functional requirements can be formalized with the

process shown in figure 4. The example below shows

a requirement for outside light behaviour of the

automotive dashboard. Initially it is stated in natural

language (NL). An appropriate specification pattern

(SPS) is selected (see: 'SPS abstract'). The concrete

expression is created by replacing the abstract

variables with concrete system parameters.

NL: The exterior light must turn on when rotary light

switch is turned in position exterior and turned off

when turned in position off.

SPS – abstract: P is true after Q until R

SPS – concrete: ExteriorLight[Ext] is true after
RotaryLightSwitch[Ext] until RotaryLightSwitch[Off]

LTL abstract: G (Q I P U (R OR G (P)))
 G - Global; I - Implies; U – Until; P = ExteriorLight[Ext];

 Q = RotaryLightSwitch[Ext]; R = RotaryLightSwitch[Off]

Defined SPS to LTL mapping is used to create LTL

expression needed to derive the finite state machine

(FSM). Due to space constraints LTL and FSM are

only represented in abstract form (see: figure 5). The

given parameters can be used to generate the specific

FSM. (Walter et al., 2017) calls this 'requirement

FSM', it generates one FSM per requirement.

Figure 5: Abstract Requirement shown as FSM.

It is possible to connect multiple FSM to one

system FSM including all functional requirements.

(see Walter et al., 2017 and Kam et al., 2012). An

advantage of such an approach is, that during the

specification process, it is possible to create the

specified system FSM in real-time. This reduces

specification misconceptions as well as

inconsistencies between requirements.

4.3 Non-Functional Reqs. - Geometry

In graph-based design, geometrical forms are often

expressed through a combination of boundary

conditions and constraints. The class diagram that

contains classes for the particular geometrical

elements contains additional constraints which are

considered once the solution path generator solves the

underling equation system. By definition of (Glinz,

2007), constraints are one group of non-functional

requirements. This allows us to formalize the initially

informal process and represent functional and non-

functional requirements formally.

Req1: HorizontLengthMax[80cm] is true globally

Req2:VerticalLengthMaxUS[60cm] OR

VerticalLengthMaxEurope[55cm] is true globally

The given example provides two non-functional

requirements about the outer dimensions of the

dashboard. While HorizontalLengthMax[80cm] is

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

204

rather simple, VerticalLengthMax[60/55cm] depends

on the variants US and Europe. Other constraints will

specify the particular variant. The appropriate

VerticalLengthMax[*] is automatically included.

Formalizing and resolving all geometrical constraints

with the solution path generator creates a consistent

model, which can be derived to a geometry domain.

Figure 6: Dashboard geometry (ITEA3, 2018).

Furthermore, if a navigation system is included,

this navigation system needs to be provided with the

appropriate electrical connections for power and data.

Figure 6 shows the geometry of the dashboard. Since

boundary conditions are considered, the derived

model necessarily is consistent with the given

constraints. These constraints follow the normal

requirements process, which is mandatory in

industrial contexts. Requirements can be changed, the

model is updated and the geometry is derived in real-

time. If requirements are inconsistent, this becomes

apparent directly during the specification phase, not

just in later development steps. Variants can be

generated and evaluated against each other. The

following section will use the generated FSM. It

makes use of the inner logic and the created geometry

to perform particular system design tasks. We use

cable wiring as the example product design task.

5 DEVELOPMENT

In terms of the machine-executable V-Model, the

development process is steered by a sequential

processing of the requirements. First, the car

configuration is considered. This highly depends on

customization. Examples are add-ons such as the

navigation system, or a rear-driving camera. Together

with the class A surface, all additional equipment’s

lead to the final geometry of the dashboard (see figure

6). In the IDEALISM project, finite element analysis

and 3D wire harness modelling were shown as two

particular examples for digital product design with

graph-based design languages. In Figure 7, the

resulting geometry with the routed cables is shown.

This allows for all specified functionality of the

outside light control to be certainly included in the

design solution.

Figure 7: Automatic wire harness creation (ITEA3, 2018).

The geometry was created with the 3D wire

harness plug-in of the Design Cockpit 43 (IILS, 2018)

with the use of graph-based design languages. It made

use of the previously defined geometry of the

customized automotive dashboard variant.

6 VERIFICATION &

VALIDATION

This section discusses how throughout the

specification process and particularly on the right-

hand side of the V-Model, verification and validation

can be performed against the digital model. This

significantly reduces costs and time throughout

development while product quality can be

maintained. Four show cases for digital verification

and validation are addressed. This only represents a

selection of possible digital tests.

6.1 Verification – Static Analysis

The inner logic of an electric system can naturally

only be verified as soon as it explicitly exists. Classic

approaches develop the inner logic incrementally in

the development phase. This is inefficient, since the

inner logic already encodes the system requirements.

'Development' is therefore in fact only a 'pseudo-

development' in regards to inner logic which only

expresses the implicit dependencies provided in the

requirements. The shown approach allows to verify

the inner logic at the moment of the requirement

specification. It was shown in section 4, that

requirements can be converted into the system FSM

From Manual to Machine-executable Model-based Systems Engineering via Graph-based Design Languages

205

in real-time. It is therefore possible to perform static

analysis against the system FSM. This verifies the

consistency of each particular state. For example two

inconsistent parameters can exist at one state.

Req1: ExetriorLight[On] is always true when

IgnitionSwitch[On]

Req2: ExetriorLight[Off] is always true when

IgnitionSwitch[On] AND GearPos[Parking]

E.g. ExteriorLight[On] AND ExteriorLight[Off] at

one state would be inconsistent. In addition it can be

verified whether all requirements are consistent to

each other. If not, the solution space is an empty set

and no model can exist in alignment with the given

requirements. Inconsistency between requirements is

a particular valuable information and the only way to

proof, before the development phase, that no such

inconsistencies exist, is direct 'requirement-to-model'

conversion followed by verification. The given two

requirements are not consistent for at least one

particular state in the system FSM. Considering

industrial systems with more than 2000 requirements,

it is impossible to manually oversee and check for

inconsistencies. This is usually only revealed once the

system is developed. Static analysis with a model

consistent with the requirements allows for state

consistency and overall requirement consistency

before development.

6.2 Verification – Fault Tree Analysis

A system is just as robust as its weakest link. While

this is common knowledge, it is often not that easy to

proof in early design phases that a certain system

robustness is given. Fault-tree analysis is a post

process to system design and upfront guesses with

safety factors are often used. This assures that

redesigns can be avoided when fault-tree analysis

reveals insufficient system robustness after system

design is completed. Safety factors for a product

design are in fact a reduction to the product quality.

Alternative is a system redesign if robustness turns

out to be insufficient. This comes with significant

extensions in development time. Graph-based design

languages allow fault-tree analysis to be part of the

actual design process. (Riestenpatt and Rudolph,

2014) showed that it could be included in system

design by adding failure probabilities to all

components and including the architectural structure

into the analysis. Architectural structure allows to

calculate whether a component as a single point of

failure or a component with a backup system (failure

probability arises from the parallel connection) is

required. In contrast to classic design, this analysis is

part of the system design. Minimal accepted system

robustness is given and all design variants are

calculated for its system robustness. All variants with

insufficient robustness are excluded from the set of

possible correct solutions.

6.3 Validation - Physical

The dashboard cross beam needs to be functionally

qualified with the use of a finite element analysis.

Graph-based design allows for such a qualification

with an FEM-analysis by triggering an external tool

and feeding results back to the main model. Results

are shown in Figure 8. The displacements using an

artificial colour plate. Based on the finite element

analysis, a modal analysis can be computed to get an

indication about the first eigenfrequencies.

Figure 8: Finite Element Analysis (ITEA3, 2018).

6.4 Validation - Functional

The classic prove of functional correctness is

performed by testing the finished physical product

and its functionality. The digital twin contains correct

geometry and the state machine provides

functionality. An executable state machine therefore

allows for a digital functional test. In digital form. this

can be performed much earlier in the life cycle and is

therefore cost-efficient. Due to space constraints, we

cannot elaborate further on this topic.

7 LIMITATIONS

In this section, we want to address potential

limitations and address whether these challenge the

overall approach. The most relevant question is how

well does a digitally designed model mimic the reality

and the later derived physical product. This question

should be addressed per domain. Many common

domains are already well modelled digitally in

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

206

isolation. Geometry (here shown with the dashboard

geometry) is established and enriched with geometry

related analysis in form of FEM, CFD and others.

Another example is the functional domain, which is

already often modelled in form of state machines. It

represent the inner functionality. The overall

contribution of this paper is mostly in the

combination of these established domains through a

general model and an integrated process, rather than

improving domain specific models. What must be

seen more critical are domains that cannot be

formalized like certain non-functional requirements,

user based design decisions and management tasks.

Our stand on this is, that while no formal description

is possible, it can simple not be considered. This is

regardless of digital or classic development. Next, we

shall address the question what domains are feasible

for such an approach. The example given here is an

automotive cockpit. Based on previous work,

airplanes, satellites and ships are feasible products.

The only limitation is, that for every new domain, a

specific design language has to be created and

implemented. For the listed products and its domains,

such design languages exist. For others we see no

limitation other than effort for design and

implementation. Overall, we see few limitations in

modelling of particular domains due to informality of

these domains, limitation in regards to availability of

domain specific design languages and shortage in

trained engineers in this field. None of the limitations

represent a significant hindrance to the approach, thus

it is useful for industrial system design.

8 RELATED WORK

The overall idea presented in this paper is built on the

idea of graph-based design as proposed by (Rudolph,

2006). This includes design languages in general, as

well as product design and industrial applications in

various domains. (Prusinkiewicz and Lindenmayer,

2012) described design languages with L-systems.

(Stiny, 1980) introduces shape grammars where

building blocks are lines and shapes instead of words.

Systematic product development is described with the

V-Model. The V-Model roots in the Waterfall model.

(Böhm, 1988) provides a comprehensive discussion

about V-Model and Waterfall model. Another

prominent collection of (industrial) product design

principals is (Pahl and Beitz, 2013) yet, all phases of

product design are only described in "semi-formal"

form. In contrast, various applications and techniques

in the field of design languages applied to the

development phases are shown with formal

approaches by Rudolph: (Schmidt and Rudolph,

2016) described abstract geometry as an essential

building block for graph-based design. Various

advantages of graph-based-driven design in regards

to geometrical and functional design were shown:

(Schäfer and Rudolph, 2005, Gross and Rudolph,

2005), both on Satellite Design, (Vogel et al., 2012) -

SCR (Selective Catalytic Reduction) systems, fault-

tree analysis in (Riestenpatt and Rudolph, 2014). The

still existing gap between development and overall

product design is closed by the work of (Walter et al.

2017). The left out phases of requirements

engineering and verification and validation are

addressed. Classic influences for requirements

engineering are (Glinz, 2007, Maalej and Thurimella,

2013) and standards (ISO 29148, 2011). Solutions for

formal and thus digital processing are presented.

(Walter et al., 2017) based his work on the use of

specification patterns for requirements engineering.

Common requirement specification patterns are

Master (Sophist, 2018), EARS (Mavin and

Wilkinson, 2009) and Specification Pattern Systems

(Dwyer et al., 1998). Further, linear temporal logic

proposed by (Prior 1967 and Kamp, 1968) are used

for formal representation. Logic is processed like

shown in (Artale and Franconi, 1998). The particular

description of finite state machines used in this work

is (Kam et al., 2012). While various fields and works

are touched and addressed, it is not possible to

mention all related work in this brief overview.

9 CONCLUSION

In this work, a re-executable MBSE approach was

presented. The premise of this paper was to introduce,

discuss and apply a digital design methodology for

industrial product design. The existing approach of

graph-based design, classically focused on product

design during the development phase. It was enriched

with the approaches for requirements engineering and

verification and validation. This allows for an

integrated and fully digital product development

process along the V-Model. Formal requirements

engineering as shown by (Walter et al., 2018) is

combined with graph-based design (Rudolph, 2006)

and various formal verification and validation efforts

like (Riestenpatt and Rudolph, 2014). The resulting

product design consists of a digital model that holds

all work items created over all disciplines along the

V-Model. The digital gestalt of the created model

allows iteration of design parameters at any step of

the design process and provides the opportunity of a

real-time re-execution of the overall process with

From Manual to Machine-executable Model-based Systems Engineering via Graph-based Design Languages

207

adjusted design parameters. All generated design

variants are consistent with the given boundary

conditions. A systematic evaluation and selection

process can be performed afterwards. Classic

approaches (without a digital re-execution) create

only one or a few design variants while this approach

explores the full solution space. It reveals full variety

of possible and consistent designs. This article

showed the process with the example of an

automotive dashboard and selected engineering tasks

(requirements formalization, cable wiring and

verification and validation). We see the approach

presented as a starting point for further digital

engineering efforts across all engineering domains.

The approach can be extended incrementally to

achieve a more digital product design process with

tremendous time and cost reduction while improving

overall product quality.

ACKNOWLEDGEMENTS

We would like to thank our collaborators: Dominik

Schopper and Claudia Tonhäuser at the University of

Stuttgart, Jens Schmidt, Roland Weil, Peter Arnold,

Marius Riestenpatt, Marc Eheim and Stefan Hess at

IILS mbH and Jan Martin, Jonathan Schmidt, Hanna

Dettki and Marco Piechotta at Daimler AG.

REFERENCES

Alber, R., Rudolph, S.”43 - A Generic Approach for

Engineering Design Grammars.” AAAI Spring Symposium

Computational Synthesis, 2003.

Artale, A., Franconi, E.”A Temporal Description Logic for

Reasoning about Actions and Pans.” Journal of Artificial

Intelligence Research 9, 1998.

Böhm, B.”A Spiral Model of Software Development and

Enhancement.” Computer 21, no. 5, 1988.

Dwyer, M., Avrunin G., Corbett ,J. ”Property Specification

Patterns for Finite-State Verification.” In Proceedings

of the Second Workshop on Formal Methods in

Software Practice, ACM, 1998.

IILS mbH,”Total Engineering Automation Vision and

Realization with Graph-Based Design Languages and

the Design Cockpit 43.” http://iils.de (May, 2018).

ITEA3, IDEALISEM. https://www.idealism.eu/

technologies (May, 2018).

ISO/IEC/IEEE 29148: 2011(E): ISO/IEC/IEEE Int.

Standard, Systems & Software Engineering Life Cycle

Processes Requirements Engineering. IEEE, 2011

Glinz, M.. ”On Non-Functional Requirements.” In

Requirements Engineering Conference, 2007

Gross, J., Rudolph, S. ”Generating Simulation Models from

UML-A FireSat Example.” Symposium on Theory of

Modeling & Simulation-DEVS Integrative M&S, 2012.

Gips, J., Stiny. G.”Production Systems and Grammars: A

Uniform Characterization.” Environment and Planning

B: Planning and Design 7, no. 4, 1980.

Kamp, H.”Tense Logic and the Theory of Linear Order.”,

1968.

Villa, T., Kam, T., Brayton, R., Sangiovanni-Vincentelli, A.

”Synthesis of Finite State Machines: Logic

Optimization.” Springer Science, 2012.

Kröplin, B, Rudolph, S. ”Entwurfsgrammatiken - Ein

Paradigmenwechsel.” Der Prüfingenieur 26, 2005.

Maalej, W., Thurimella, A.”Managing Requirements

Knowledge.” Springer, 2013.

Mavin, A., Wilkinson, P., Harwood, A., Novak, M.”Easy

Approach to Requirements Syntax (EARS).” In

Requirements Engineering Conference IEEE, 2009.

Pahl, G., Beitz, W.”Engineering Design:A Systematic

Approach.” Springer Science & Business Media, 2013.

Prior, A.”Past, Present and Future.” Oxford: Clarendon

Press, 1967.

Prior, A.”Time and Modality.” John Locke Lecture, 2003.

Prusinkiewicz, P., Lindenmayer, A.”The Algorithmic

Beauty of Plants.” Springer Science, 2012.

Riestenpatt, M., Rudolph, S.”Automated Fault-Tree

Analysis of Complex Systems with Graph-Based

Design Languages.” SECESA, 2014.

Rudolph, S.”A Semantic Validation Scheme for Graph-

Based Engineering Design Grammars.” In Design

Computing and Cognition06, Springer, 2006

Rudolph, S., Beichter, J., Eheim, M., Hess, S., Motzer, M.,

Weil R.,”On Multi-Disciplinary Architectural

Synthesis and Analysis of Complex Systems with

Graph-Based Design Languages.” DGLR, 2013.

Schäfer, J., Rudolph, S.”Satellite Design by Design

Grammars.” Aerospace Science & Technology 9, 2005.

Schmidt, J., Rudolph, S.”Graph-Based Design Languages:

A Lingua Franca for Product Design Including Abstract

Geometry.” IEEE, 2016.

Sophist GmbH,”MASTeR, Schablonen für alle Fälle”

2016.

Stiny, G.”Introduction to Shape and Shape Grammars.”

Environment & planning B: planning and design, 1980.

Vogel, S., Danckert B., Rudolph, S. ”Knowledge-Based

Design of SCR Systems Using Graph-Based Design

Languages.” MTZ worldwide 73, no. 9, 2012.

Walter, B., Hammes, J., Piechotta, M., Rudolph, S.”A

Formalization Method to Process Structured Natural

Language to Logic Expressions to Detect Redundant

Specification and Test Statements.” In Requirements

Engineering Conference, IEEE, 2017.

Walter, B., Schilling M., Piechotta, M., Rudolph, S.

”Improving Test Execution Efficiency through

Clustering and Reordering of Independent Test Steps.”

In Software Testing, Verification & Validation, 2018.

Walter, B., Martin, J., Rudolph, S.”A Method to

Automatically Derive the System State Machine from

Structured Natural Language Requirements through

Requirements Formalization.” INCOSE, 2018.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

208

