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Abstract: Today, Model-Based Systems Engineering (MBSE) is widely used in the successful design of complex 

systems in various industries. It intends to provide a complete description of the design process of complex 

systems in form of a V-Model or one of its various extensions thereof (extended V-Model). While already 

several formal languages like Unified Modelling Language (UML) and Systems Modelling Language 

(SysML) are used to formally describe the design process and behavioural aspects of the design as well, 

models in UM- or SysML are still mostly assembled and connected manually. Instead, graph-based design 

languages based on UML make use of the digital representation of the design process with the additional 

benefit of a repeatable execution encoded in an activity diagram within a rule set. This allows for a seamless 

transformation of a formerly mainly manual MBSE-approach towards a fully automated, machine-executable 

MBSE approach. The article will focus on the impact of graph-based design on that transition from classical 

MBSE towards machine-executable MBSE. We show this with the example of an automotive dashboard. 

1 INTRODUCTION 

The product development process with its various 

development steps becomes more and more complex. 

The need for improvements of the current product 

development throughout all development steps is 

therefore clearly given. Most engineering tasks are 

performed in domain specific tools without interfaces 

to other domains. Typical examples for frequently 

used digital assistance tools are domain-specific 

design and simulation tools such as CAD-kernels, 

FEM- and CFD-solvers, spreadsheet calculators and 

others. However, all these domain-specific models 

require interfaces between each other in order to 

exchange design information. Since the information 

exchange between different programs often exhibits 

design information losses, the interlinked design 

models are often inconsistent to each other, which 

causes serious information gaps in-between the 

various design models throughout the development 

process. One approach to resolve this issue is a 

generic and abstract central model which can be 

translated into each desired domain-specific model. It 

serves as a single source of truth for complex design. 

Graph-based design languages possess such a central 

model (called design graph) in UML and are capable 

to map this into many domain-specific target formats. 

With this novel approach, an abstract digital twin of 

the developed product can be created in UML. It is 

adjusted and refined throughout all development 

steps: Formal requirements engineering, digital 

product design and virtual verification and validation. 

A formal requirements-based engineering provides 

functional and logical dependencies within the model. 

From these dependencies, a finite system state 

machine can be derived. This state machine is 

consistent with the given system requirements and 

can be tested as an executable model. It enables the 

product designers to visualize the consequences and 

constraints put on the model through decisions made 

during requirements engineering. The dependencies 

intrinsically included in formal product requirements 

reduce the solution space to its true degrees of 

freedom. The remaining degrees of freedom are the 

actual design decisions left for product design. All 

possible product variants can be considered, 

evaluated and turned into design decisions. The 

automation of all this allows an optimization under 
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inclusion of all relevant design domains. This is 

called digital product design. It is based on a central 

model in one design language while optimizations are 

performed in domain specific models. This derived 

digital product or digital twin can be digitally verified 

and validated against the given tests derived from 

formal requirements. Digital verification and 

validation within an executable model bridge the gaps 

occurring in the existing manual development 

process. It provides a solution approach towards a 

consistent and machine-executable digital V-Model 

via graph-based design languages. This article 

presents the idea of a digital, machine-executable V-

Model with integrated and consistent development 

steps and a digital twin of the product as its work item. 

It will illustrate the advantages of this novel, re-

executable extension to MBSE using the example of 

an automotive dashboard. The paper is structured in 

the following way: First, an overview of the V-Model 

with common tasks are given and put in relation to the 

engineering technique of graph-based design. The 

showcase in form of a (digital) automotive dashboard 

is introduced and described. It is followed by three 

core sections. Each section addresses one of the three 

main phases of the V-Model (Specification, 

Development and Testing). Each section describes 

the engineering tasks for digital product development 

of the particular V-Model phase. In addition, this is 

applied to the showcase (automotive dashboard). The 

paper closes with a discussion about limitations, 

related work and an overall conclusion. The main 

contribution of this paper is the presentation of an 

automated, machine-executable approach that aligns 

and integrates all engineering tasks occurring during 

product development in one single model.  

2 GRAPH-BASED DESIGN AND 

DIGITAL V-MODEL 

This paper combines the idea of digital product 

design with the state of the art industrial product 

development process in form of the V-Model. The 

foundation of the digital development approach are 

so-called graph-based design languages. 

2.1 Graph-based Design Languages 

Graph-based design languages are an abstract form of 

system representation and the corresponding design 

process in form of a graph. Background and 

foundational approaches are mentioned in section 8. 

This work focuses on an approach developed and 

proposed by (Rudolph, 2006 and Rudolph et al., 

2013). Figure 1 provides an overview about this 

particular approach. The total of all entities occurring 

in the design is called vocabulary. In the approach all 

vocabulary is represented in a class diagram, thus 

each entity is represented as one class with attributes 

and relationships (links, dependencies and others) to 

other classes. From the class diagram, objects are 

instantiated. This is controlled through a rule set. It 

defines when classes instantiate objects and how 

these objects are linked to each other. Vocabulary and 

rule set therefore build a 'production system'. The rule 

execution with object instantiation creates the so 

called 'design graph'. Nodes in the graph are abstract 

objects (class instantiations) and edges represent 

relationships and dependencies between the objects.  

 

Figure 1: Graph-based design process (Rudolph, 2006). 

In addition, boundary conditions and underlying 

equations exist, must be considered and solved. 

Generating the graph and solving the equation system 

is performed in one step by a design compiler. The 

compiler generates the graph and the 'solution path 

generator' solves the underlying equations. The 

design graph is an abstract representation of the 

system and is thus a general model. To work with and 

consider specific domains, interfaces to particular 

domains like CAD, FEM and others are required. 

Through the interfaces domain specific models are 

derived. In the specific domain, analysis can be 

performed. The adjustments are fed back to the 

general model through so called 'round trip 

engineering'. This approach is the backbone of the 

digital product development presented in this paper. 

2.2 Digital V-Model 

In development of complex systems, the V-model is 

state of the art. It combines the three core steps of 

product development (specification, design and 

development and verification and validation). The 

classic V-Model (figure 2) contains the 'vertical 

continuity' along the ‘V’, which already existed in the 

waterfall model. This means that each phase provides 

work products to the next phase. In addition, the 

'horizontal continuity' allows back linking from 

verification and validation with the test items and test 

results to the specification phase and its requirements. 
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While in theory all three steps are well integrated, in 

industrial setups the steps are usually detached. A 

specification phase and development phase often do 

not align. Specification is seen as a needed 

documentation but often not as a useful development 

artefact. This is often due to the informal nature of 

requirements in classic development. 
 

 

Figure 2: V-Model (in automotive context). 

The proposed approach in this paper digitalizes 

both phases (in fact all three phases. Software-in-the-

loop (SIL) and model-in-the-loop (MIL) tests can be 

performed virtually) and naturally aligns them. The 

following sections show the formalization of 

requirements (section 4) during specification, digital 

product development (section 5) and digital 

verification and validation (section 6). All work items 

are formally described and provide useful input for 

the next development phase. The formal and digital 

gestalt allows a repetitive execution with adaptations 

(adjusted parameters, boundary conditions, different 

design variants). We call this re-executable V-Model. 

3 SHOWCASE 

In the following, a dashboard is used as an illustrative 

example. The dashboard has already served as public 

demonstrator in ITEA3-Project IDEALISM. It 

includes engineering services of an automated finite 

element analysis and an automated 3D wire harness 

model generation. In the ITEA3-Project IDEALISM, 

the dashboard had a predetermined class A surface 

(usually defined by industrial product designers, here 

simplified due to intellectual property issues) and, a 

customer specific wire-harness. In terms of the 

machine-executable V-Model, the development 

process is following a sequential processing of the 

requirements. First, the car options (provided by the 

customer) are processed. Typical customer options 

are add-ons such as the navigation system option, a 

better sound system or a rear driving camera. 

Together with the class A surface specified by the 

design department, all these additional equipment or 

switches lead to the final geometry of the automotive 

dashboard (see figure 3).  
 

 

Figure 3: Simplified dashboard geometry (ITEA3, 20018). 

Since the electric system for the light system of 

the car needs to be incorporated, all the control 

software for the controller hardware and all electrical 

cable connections between the electrical components 

need to be designed. The complete automation of the 

electrical 3D wire harness model generation and an 

automated finite element analysis of the dashboard 

cross beam has already been successfully 

demonstrated in the ITEA3-Project IDEALISM. 

Thus, the paper will focus on the automated, 

requirements-driven generation of the software for 

the outside light system. Of course, there will be some 

simplifications in respect to the full light system. The 

code generation is limited here, in the way that the 

light system consists of simple headlights and a set of 

left and right turn indicators. 

4 REQUIREMENT 

ENGINEERING 

The first phase of product development in the V-

model is concerned with requirements engineering. In 

classic approaches, documentation occurs in textual 

form. While this form is needed for non-engineering 

tasks like marketing, law and others, the complexity 

of today's systems cannot accurately be expressed in 

textual requirements. To maintain the textual form 

while adjusting to formal representations, a text-to-

model (T2M) transformation seems suitable. (Walter 

et al., 2017) showed such formalization from 

structured textual representations to finite state 

machines (FSM). This section recaptures this 

approach and places it into the overall graph-based 

design methodology. Subsection 4.1 introduces the 

general formalization idea. Subsection 4.2 applies it 

to functional requirements, which allows generating 
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the inner logic of a product in form of a FSM. In 

addition, Subsection 4.3 shows how formalized non-

functional requirements can provide a starting point 

for geometry and topology design of the product. 

Functional and non-functional requirements are 

shown with the previously introduced dashboard. 

4.1 Formalization 

Textual represented requirements are state of the art 

in industrial contexts because natural language (NL) 

can be created and read simple. While this is an 

advantage of such unstructured textual expressions, 

such representations are prone to syntax errors, 

inconsistencies and are not easily processed machine-

based. An applicable solution are specification 

patterns. They provide a certain degree of structure. 

Specification pattern systems (SPS) by (Dwyer et al., 

1998) are one common form of language patterns. 

SPS provides a syntactical structure and contains an 

empirical mapping to linear temporal logic (LTL). 

(Walter et al., 2017) combines this approach with a 

reduction of LTL to first order logic (FOL) with the 

underlying data structure. FOL can be put into 

standard form like conjunctive normal form (CNF). 

This leads to a formalization process chain from 

textual description (NL) to formalized logic in form 

of CNF. The general mapping is shown in figure 4. 
 

 

Figure 4: Formalization process, (Walter et al., 2017). 

Generally, SPS patterns are defined for functional 

requirements. (Glinz, 2007) separated requirements 

into functional and non-functional (NFR) with further 

separation of NFR into performance, quality and 

constraints. It is often not possible to represent quality 

and performance requirements through SPS, yet 

constrains are often simple and thus expressible in 

SPS. This is useful for data represented in form of 

constraints. Boundary conditions, which are often 

used to express geometry in graph-based design, can 

therefore be formalized. Thus, geometry can be 

derived from its requirements through this approach.  

4.2 Functional Requirements - FSM 

Functional requirements can be formalized with the 

process shown in figure 4. The example below shows 

a requirement for outside light behaviour of the 

automotive dashboard. Initially it is stated in natural 

language (NL). An appropriate specification pattern 

(SPS) is selected (see: 'SPS abstract'). The concrete 

expression is created by replacing the abstract 

variables with concrete system parameters.  
 

NL: The exterior light must turn on when rotary light 

switch is turned in position exterior and turned off 

when turned in position off. 
 

SPS – abstract: P is true after Q until R 
 

SPS – concrete: ExteriorLight[Ext] is true after 
RotaryLightSwitch[Ext] until RotaryLightSwitch[Off] 
 

LTL abstract: G (Q I P U (R OR G (P))) 
  G - Global; I - Implies; U – Until;   P = ExteriorLight[Ext]; 

  Q = RotaryLightSwitch[Ext]; R = RotaryLightSwitch[Off] 
 

Defined SPS to LTL mapping is used to create LTL 

expression needed to derive the finite state machine 

(FSM). Due to space constraints LTL and FSM are 

only represented in abstract form (see: figure 5). The 

given parameters can be used to generate the specific 

FSM. (Walter et al., 2017) calls this 'requirement 

FSM', it generates one FSM per requirement.  
 

 

Figure 5: Abstract Requirement shown as FSM. 

It is possible to connect multiple FSM to one 

system FSM including all functional requirements. 

(see Walter et al., 2017 and Kam et al., 2012). An 

advantage of such an approach is, that during the 

specification process, it is possible to create the 

specified system FSM in real-time. This reduces 

specification misconceptions as well as 

inconsistencies between requirements. 

4.3 Non-Functional Reqs. - Geometry 

In graph-based design, geometrical forms are often 

expressed through a combination of boundary 

conditions and constraints. The class diagram that 

contains classes for the particular geometrical 

elements contains additional constraints which are 

considered once the solution path generator solves the 

underling equation system. By definition of (Glinz, 

2007), constraints are one group of non-functional 

requirements. This allows us to formalize the initially 

informal process and represent functional and non-

functional requirements formally.  
  

Req1: HorizontLengthMax[80cm] is true globally 
 

Req2:VerticalLengthMaxUS[60cm] OR 

VerticalLengthMaxEurope[55cm] is true globally 
 

The given example provides two non-functional 

requirements about the outer dimensions of the 

dashboard. While HorizontalLengthMax[80cm] is 

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

204



 

rather simple, VerticalLengthMax[60/55cm] depends 

on the variants US and Europe. Other constraints will 

specify the particular variant. The appropriate 

VerticalLengthMax[*] is automatically included. 

Formalizing and resolving all geometrical constraints 

with the solution path generator creates a consistent 

model, which can be derived to a geometry domain.  

  

Figure 6: Dashboard geometry (ITEA3, 2018). 

Furthermore, if a navigation system is included, 

this navigation system needs to be provided with the 

appropriate electrical connections for power and data. 

Figure 6 shows the geometry of the dashboard. Since 

boundary conditions are considered, the derived 

model necessarily is consistent with the given 

constraints. These constraints follow the normal 

requirements process, which is mandatory in 

industrial contexts. Requirements can be changed, the 

model is updated and the geometry is derived in real-

time. If requirements are inconsistent, this becomes 

apparent directly during the specification phase, not 

just in later development steps. Variants can be 

generated and evaluated against each other. The 

following section will use the generated FSM. It 

makes use of the inner logic and the created geometry 

to perform particular system design tasks. We use 

cable wiring as the example product design task. 

5 DEVELOPMENT 

In terms of the machine-executable V-Model, the 

development process is steered by a sequential 

processing of the requirements. First, the car 

configuration is considered. This highly depends on 

customization. Examples are add-ons such as the 

navigation system, or a rear-driving camera. Together 

with the class A surface, all additional equipment’s 

lead to the final geometry of the dashboard (see figure 

6). In the IDEALISM project, finite element analysis 

and 3D wire harness modelling were shown as two 

particular examples for digital product design with 

graph-based design languages. In Figure 7, the 

resulting geometry with the routed cables is shown. 

This allows for all specified functionality of the 

outside light control to be certainly included in the 

design solution. 

  

Figure 7: Automatic wire harness creation (ITEA3, 2018). 

The geometry was created with the 3D wire 

harness plug-in of the Design Cockpit 43 (IILS, 2018) 

with the use of graph-based design languages. It made 

use of the previously defined geometry of the 

customized automotive dashboard variant. 

6 VERIFICATION & 

VALIDATION 

This section discusses how throughout the 

specification process and particularly on the right-

hand side of the V-Model, verification and validation 

can be performed against the digital model. This 

significantly reduces costs and time throughout 

development while product quality can be 

maintained. Four show cases for digital verification 

and validation are addressed. This only represents a 

selection of possible digital tests. 

6.1 Verification – Static Analysis 

The inner logic of an electric system can naturally 

only be verified as soon as it explicitly exists. Classic 

approaches develop the inner logic incrementally in 

the development phase. This is inefficient, since the 

inner logic already encodes the system requirements. 

'Development' is therefore in fact only a 'pseudo-

development' in regards to inner logic which only 

expresses the implicit dependencies provided in the 

requirements. The shown approach allows to verify 

the inner logic at the moment of the requirement 

specification. It was shown in section 4, that 

requirements can be converted into the system FSM 
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in real-time. It is therefore possible to perform static 

analysis against the system FSM. This verifies the 

consistency of each particular state. For example two 

inconsistent parameters can exist at one state.  
 

Req1: ExetriorLight[On] is always true when 

IgnitionSwitch[On] 
 

Req2: ExetriorLight[Off] is always true when 

IgnitionSwitch[On] AND GearPos[Parking] 
 

E.g. ExteriorLight[On] AND ExteriorLight[Off] at 

one state would be inconsistent. In addition it can be 

verified whether all requirements are consistent to 

each other. If not, the solution space is an empty set 

and no model can exist in alignment with the given 

requirements. Inconsistency between requirements is 

a particular valuable information and the only way to 

proof, before the development phase, that no such 

inconsistencies exist, is direct 'requirement-to-model' 

conversion followed by verification. The given two 

requirements are not consistent for at least one 

particular state in the system FSM. Considering 

industrial systems with more than 2000 requirements, 

it is impossible to manually oversee and check for 

inconsistencies. This is usually only revealed once the 

system is developed. Static analysis with a model 

consistent with the requirements allows for state 

consistency and overall requirement consistency 

before development. 

6.2 Verification – Fault Tree Analysis 

A system is just as robust as its weakest link. While 

this is common knowledge, it is often not that easy to 

proof in early design phases that a certain system 

robustness is given. Fault-tree analysis is a post 

process to system design and upfront guesses with 

safety factors are often used. This assures that 

redesigns can be avoided when fault-tree analysis 

reveals insufficient system robustness after system 

design is completed. Safety factors for a product 

design are in fact a reduction to the product quality. 

Alternative is a system redesign if robustness turns 

out to be insufficient. This comes with significant 

extensions in development time. Graph-based design 

languages allow fault-tree analysis to be part of the 

actual design process. (Riestenpatt and Rudolph, 

2014) showed that it could be included in system 

design by adding failure probabilities to all 

components and including the architectural structure 

into the analysis. Architectural structure allows to 

calculate whether a component as a single point of 

failure or a component with a backup system (failure 

probability arises from the parallel connection) is 

required. In contrast to classic design, this analysis is 

part of the system design. Minimal accepted system 

robustness is given and all design variants are 

calculated for its system robustness. All variants with 

insufficient robustness are excluded from the set of 

possible correct solutions.  

6.3 Validation - Physical 

The dashboard cross beam needs to be functionally 

qualified with the use of a finite element analysis. 

Graph-based design allows for such a qualification 

with an FEM-analysis by triggering an external tool 

and feeding results back to the main model. Results 

are shown in Figure 8. The displacements using an 

artificial colour plate. Based on the finite element 

analysis, a modal analysis can be computed to get an 

indication about the first eigenfrequencies. 

 

Figure 8: Finite Element Analysis (ITEA3, 2018). 

6.4 Validation - Functional 

The classic prove of functional correctness is 

performed by testing the finished physical product 

and its functionality. The digital twin contains correct 

geometry and the state machine provides 

functionality. An executable state machine therefore 

allows for a digital functional test. In digital form. this 

can be performed much earlier in the life cycle and is 

therefore cost-efficient. Due to space constraints, we 

cannot elaborate further on this topic. 

7 LIMITATIONS 

In this section, we want to address potential 

limitations and address whether these challenge the 

overall approach. The most relevant question is how 

well does a digitally designed model mimic the reality 

and the later derived physical product. This question 

should be addressed per domain. Many common 

domains are already well modelled digitally in 
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isolation. Geometry (here shown with the dashboard 

geometry) is established and enriched with geometry 

related analysis in form of FEM, CFD and others. 

Another example is the functional domain, which is 

already often modelled in form of state machines. It 

represent the inner functionality. The overall 

contribution of this paper is mostly in the 

combination of these established domains through a 

general model and an integrated process, rather than 

improving domain specific models. What must be 

seen more critical are domains that cannot be 

formalized like certain non-functional requirements, 

user based design decisions and management tasks. 

Our stand on this is, that while no formal description 

is possible, it can simple not be considered. This is 

regardless of digital or classic development. Next, we 

shall address the question what domains are feasible 

for such an approach. The example given here is an 

automotive cockpit. Based on previous work, 

airplanes, satellites and ships are feasible products. 

The only limitation is, that for every new domain, a 

specific design language has to be created and 

implemented. For the listed products and its domains, 

such design languages exist. For others we see no 

limitation other than effort for design and 

implementation. Overall, we see few limitations in 

modelling of particular domains due to informality of 

these domains, limitation in regards to availability of 

domain specific design languages and shortage in 

trained engineers in this field. None of the limitations 

represent a significant hindrance to the approach, thus 

it is useful for industrial system design. 

8 RELATED WORK 

The overall idea presented in this paper is built on the 

idea of graph-based design as proposed by (Rudolph, 

2006). This includes design languages in general, as 

well as product design and industrial applications in 

various domains. (Prusinkiewicz and Lindenmayer, 

2012) described design languages with L-systems. 

(Stiny, 1980) introduces shape grammars where 

building blocks are lines and shapes instead of words. 

Systematic product development is described with the 

V-Model. The V-Model roots in the Waterfall model. 

(Böhm, 1988) provides a comprehensive discussion 

about V-Model and Waterfall model. Another 

prominent collection of (industrial) product design 

principals is (Pahl and Beitz, 2013) yet, all phases of 

product design are only described in "semi-formal" 

form. In contrast, various applications and techniques 

in the field of design languages applied to the 

development phases are shown with formal 

approaches by Rudolph: (Schmidt and Rudolph, 

2016) described abstract geometry as an essential 

building block for graph-based design. Various 

advantages of graph-based-driven design in regards 

to geometrical and functional design were shown: 

(Schäfer and Rudolph, 2005, Gross and Rudolph, 

2005), both on Satellite Design, (Vogel et al., 2012) - 

SCR (Selective Catalytic Reduction) systems, fault-

tree analysis in (Riestenpatt and Rudolph, 2014). The 

still existing gap between development and overall 

product design is closed by the work of (Walter et al. 

2017). The left out phases of requirements 

engineering and verification and validation are 

addressed. Classic influences for requirements 

engineering are (Glinz, 2007, Maalej and Thurimella, 

2013) and standards (ISO 29148, 2011). Solutions for 

formal and thus digital processing are presented. 

(Walter et al., 2017) based his work on the use of 

specification patterns for requirements engineering. 

Common requirement specification patterns are 

Master (Sophist, 2018), EARS (Mavin and 

Wilkinson, 2009) and Specification Pattern Systems 

(Dwyer et al., 1998). Further, linear temporal logic 

proposed by (Prior 1967 and Kamp, 1968) are used 

for formal representation. Logic is processed like 

shown in (Artale and Franconi, 1998). The particular 

description of finite state machines used in this work 

is (Kam et al., 2012). While various fields and works 

are touched and addressed, it is not possible to 

mention all related work in this brief overview. 

9 CONCLUSION 

In this work, a re-executable MBSE approach was 

presented. The premise of this paper was to introduce, 

discuss and apply a digital design methodology for 

industrial product design. The existing approach of 

graph-based design, classically focused on product 

design during the development phase. It was enriched 

with the approaches for requirements engineering and 

verification and validation. This allows for an 

integrated and fully digital product development 

process along the V-Model. Formal requirements 

engineering as shown by (Walter et al., 2018) is 

combined with graph-based design (Rudolph, 2006) 

and various formal verification and validation efforts 

like (Riestenpatt and Rudolph, 2014). The resulting 

product design consists of a digital model that holds 

all work items created over all disciplines along the 

V-Model. The digital gestalt of the created model 

allows iteration of design parameters at any step of 

the design process and provides the opportunity of a 

real-time re-execution of the overall process with 
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adjusted design parameters. All generated design 

variants are consistent with the given boundary 

conditions. A systematic evaluation and selection 

process can be performed afterwards. Classic 

approaches (without a digital re-execution) create 

only one or a few design variants while this approach 

explores the full solution space. It reveals full variety 

of possible and consistent designs. This article 

showed the process with the example of an 

automotive dashboard and selected engineering tasks 

(requirements formalization, cable wiring and 

verification and validation). We see the approach 

presented as a starting point for further digital 

engineering efforts across all engineering domains. 

The approach can be extended incrementally to 

achieve a more digital product design process with 

tremendous time and cost reduction while improving 

overall product quality. 
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