
Applying Metamodel-based Tooling to Object-oriented Code

Heiko Klare, Timur Saglam, Erik Burger and Ralf Reussner
Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology, Germany

Keywords: Model-driven Engineering, modelling – Programming Gap, Reverse Engineering, Model Extraction.

Abstract: Model-driven development processes mainly from the capabilities of modelling frameworks, since these offer
an explicit representation of model elements and features, as well as reusable tooling, such as transformation
languages or editor frameworks. Nevertheless, most software systems are not developed in a model-driven way
although they do contain implicit models encoded in their object-oriented design. Adaptation to model-driven
tooling imposes high manual effort and easily breaks compatibility with dependent code and existing tooling.
We present an automated and minimally intrusive approach that makes implicit models in software systems
explicit. We adapt existing object-oriented code so that it provides an explicit model representation, while
preserving its original API. As a result, capabilities of modelling frameworks, such as persistence and change
notifications, can be integrated into object-oriented code, and enable the application of reusable tools. We
provide a classification of requirements that existing code has to fulfill, usable as an indicator for the applicability
of modelling tools to them. An evaluation based on one artificial and two open-source case study systems
shows the correct preservation of the API, as well as the ability to apply tooling to the modified code.

1 INTRODUCTION

Models are commonly used to encapsulate knowledge
of a certain domain, so that further artifacts can be
derived from them, e.g., program code (Object Man-
agement Group (OMG), 2006). Developers use mod-
elling frameworks to define explicit domain metamod-
els. Hand-written object-oriented program code also
contains implicit domain metamodels in the form of do-
main knowledge that is encoded in the object-oriented
design. This implicit definition obstructs the reuse
and evolution of program code. For example, a graph
library may define interfaces and classes for vertices,
edges, and their relations. If this library is extended to
support further algorithms, which requires converting
the graphs into a representation of another library that
provides those algorithms, this must be implemented
in verbose and hand-written code. The same is true
if a visual editor for creating and modifying graphs
is added. If a graph metamodel is defined explicitly
using a modelling framework, developers can apply
metamodel-based tooling, such as transformation lan-
guages and graphical editor frameworks.

In general, modelling frameworks provide two es-
sential benefits. First, they provide abstraction by
encapsulating domain knowledge in metamodels of
classes, their properties, and operations. Hand-written
code often provides no clear separation between do-
main metamodels and, for example, infrastructure
logic and utilities. Second, a modelling framework

induces a formalism for defining metamodels and a
mapping to a representation in program code. Gener-
ators produce code that provides a specifically struc-
tured application programming interface (API), i.e., a
set of interfaces with specific methods providing well-
defined functionality, which can be seen as a contract
on which metamodel-based tools can depend. This
API especially provides a specific way to create model
elements, access their features, and persist them. Hand-
written code does usually not provide such a specific
API, but at most follows design conventions.

To enable the application of metamodel-based tools
to implicit metamodels, the gaps of missing abstrac-
tion and formalization have to be closed. First, do-
main metamodels have to be identified in code, either
by manual element selection, or by model extraction
heuristics. Second, the code has to be modified to pro-
vide the API required by the modelling framework,
which, if manually performed, is costly and error-
prone, and easily breaks its original API.

In this paper, we present an approach that automat-
ically adapts existing code containing an implicit meta-
model, so that it preserves its original API, but also
provides the API required by a modelling framework.
The proposed solution extracts a domain metamodel
from existing code, executes the code generator of the
modelling framework, and integrates the existing with
the newly generated code. It reuses both the original
code to maintain the existing API and the existing code
generator to avoid a reimplementation of the genera-

Klare, H., Saglam, T., Burger, E. and Reussner, R.
Applying Metamodel-based Tooling to Object-oriented Code.
DOI: 10.5220/0007246202170228
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 217-228
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

217



tion patterns. The benefit of this approach is that it
enables developers to apply metamodel-based tools
to implicit metamodels in program code. It closes
the formalization gap and eases the shift from code-
centric to model-driven development, which is neces-
sary to achieve a common adoption of such processes
(Meyerovich & Rabkin, 2013).

We presented the initial approach idea in prior
work (Klare et al., 2017). In this paper, we complete
the concept, discuss solutions to identified challenges
and provide an evaluation based on an implementa-
tion for the Eclipse Modeling Framework. We make
the following contributions to the topic of applying
metamodel-based tools to object-oriented code:
Concept Completion: We provide an advanced con-

cept on how to extend code to enable the applica-
tion of metamodel-based tools, while preserving
its API. The concept minimizes code modifica-
tions, reuses the code generator of the modelling
framework, and contains solutions to previously
identified challenges (Klare et al., 2017).

Requirements Classification: We provide a classifi-
cation of problem-inherent requirements that the
code has to fulfill to enable the application of
metamodel-based tooling on it. The requirements
are supposed to be an indicator whether such tool-
ing is applicable to a specific system.

Applicability Evaluation: We evaluate the applica-
bility of the approach by applying it to one arti-
ficial and two existing open-source systems, all
three containing domain metamodels. It shows the
correct preservation of code behavior and the intro-
duced applicability of metamodel-based tooling by
taking the example of a graphical editor.
We present our concepts on a simplified employee

management system. The structure of the code repre-
senting a domain metamodel is depicted in Figure 1.
It consists of an interface for employees, one class for
ordinary employees, and one for managers. They have
features for their salary, supervisor and position, which
are accessible by appropriate methods. Additionally,
each employee has a method to get fired.

2 TERMINOLOGY &
FOUNDATIONS

Metamodel Formalisms. Models are based on an
implicitly or explicitly defined metamodel formalism,
which defines the elements a model can contain and
how they can be connected. Each model is based on a
metamodel, which in turn has its own metamodel. The
topmost, self-describing metamodel is defined by the

«interface»
IEmployee

getSalary() : int
setSupervisor(m : Manager)
getSupervisor() : Manager
fire()

Employee

– salary : int
– supervisor : Manager

+ getSalary() : int
+ setSupervisor(m : Manager)
+ getSupervisor() : Manager
+ fire()

Manager

– position : String

+ setPosition(pos : String)
+ getPosition() : String

Figure 1: Simplified employee management system.

metamodel formalism, such as OMG’s Meta-Object
Facility (MOF) (ISO/IEC 19508:2014(E), 2014). We
assume a metamodel formalism that conforms to the
Essential MOF (EMOF) and has four modelling levels.
We refer to the model on the topmost level as the
metametamodel, to models on the underlying level as
metamodels and to those on the third level as models.

Modelling Frameworks. A modelling framework
is built on top of a metamodel formalism and defines
how models of that formalism can be used. It provides
reusable tools, such as editor frameworks or trans-
formation languages, in the following referred to as
metamodel-based tools. A framework especially in-
cludes a code generator that derives object-oriented
code from a metamodel, the so called metamodel code.
The generated code provides a specific API, which
defines a contract on which metamodel-based tools
can rely, e.g., for instantiating elements or accessing
features. We refer to it as the metamodel code API.

Eclipse Modeling Framework. The Eclipse Mod-
eling Framework (EMF) (Steinberg et al., 2008) is
a modelling framework, which provides the EMOF-
conform metametamodel Ecore. It defines packages,
classes, interfaces, operations and features (attributes
and references). Metamodels define explicit contain-
ment references, which induce a tree hierarchy of
model elements. The code generator maps metamodel
packages and interfaces to their Java counterparts. It
maps a metamodel class to an interface and a meta-
model implementation class with the suffix “Impl”.
Features are mapped to instance variables with acces-
sors (getters) and mutators (setters). Additionally, a
factory class is generated for each metamodel package,
providing methods that call the non-parametrized con-
structor of each metamodel implementation class in
that package. Several metamodel-based tools have
been developed for EMF, e.g., transformation lan-
guages such as QVT-O, textual editor frameworks like
Xtext, or graphical editor frameworks such as Sirius.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

218



3 Ecoreification

In this section, we discuss implicit domain metamodels
and how to make them accessible to metamodel-based
tooling.

3.1 Implicit Domain Metamodels

Software consists of data and behavior that operates
on it. The underlying domain metamodel structures
the data, in most systems implicitly represented in an
object-oriented class design and not denoted accord-
ing to a metamodel formalism. If metamodel-based
tooling for a specific modelling framework shall be ap-
plied to code, that code has to provide the metamodel
code API for that framework, on which the tools rely
(see Section 2). This especially includes the provision
of certain factories, feature accessors and mutators.
Furthermore, certain information provided by an ex-
plicit metamodel is only contained implicitly in object-
oriented code, such as features, usually encoded by
accessors and mutators, or their multiplicities.

Existing code will usually not conform to the meta-
model code API that the code generator of a modelling
framework produces for a metamodel. Therefore, it
is necessary to modify the code if metamodel-based
tools shall be applied. That modification must fulfill
two central properties. First, it must be API preserving,
so that dependent code still works properly. Second,
it must be API extending in such a way that the mod-
ified code provides the additional metamodel code
API of the modelling framework. To perform those
modifications, two essentials solution options, reim-
plementation and refactoring, can be identified. In
a reimplementation approach, an explicit metamodel
representing the original implicit domain metamodel
has to be defined and enriched with the original logic.
This option requires high manual effort as dependent
code must be adapted to the new API generated from
the metamodel. In a refactoring approach, the existing
code has to be adapted such that the existing API is
preserved but also extended with the API that would
have been generated from a metamodel in a modelling
framework. Extending the API also requires high man-
ual effort and especially extensive knowledge about
the structure of the metamodel code API to provide.

3.2 A Hybrid Approach

To circumvent the drawbacks of the two solution op-
tions, we present a hybrid approach that combines both
in two steps. In a first step, an explicit metamodel is
extracted from the implicit domain metamodel of the
existing code in a way that the code generated from

it can later be integrated with the existing code. It
uses the code generator of the modelling framework to
generate metamodel code from it. In a second step, we
adapt the existing code by integrating the metamodel
code generated in the first step. We therefore gener-
ate so called unification classes, which are inserted
into the original inheritance hierarchy and delegate ac-
cess of extracted metamodel features to the metamodel
implementation classes. Using such an integration
scheme instead of moving all logic from the existing
to the generated metamodel code ensures that only
necessary parts, especially the features, are extracted
to the metamodel and the rest of the logic remains in
the existing code, which eases its further evolution.
The benefit of this approach is that it reuses both the
original code, preserving its API, and also the existing
code generator to add the metamodel code API.

We explain these two steps in detail in the subse-
quent sections. The complete process is depicted in
Figure 2. It delivers three artifacts that together form
the final code, which are metamodel code generated
from the extracted metamodel, unification code that
combines the metamodel code with the original code,
and adapted original code, which is the original code
with adaptations that integrate the unification and meta-
model code. For ease of understanding, we explain
the concept on EMF and Ecore, on which the imple-
mentation is based. This is the reason why we call it
Ecoreification. Nevertheless, the overall concept can
be used for other modelling frameworks.

3.3 Addressed Challenges

In addition to the complete approach, we will discuss
solutions to the challenges identified in our previous
idea presentation (Klare et al., 2017):

Multiplicities: To correctly handle element collec-
tions in a model instead of handling the complete
collection as one immutable element, they have to
be represented as multi-valued features.

Containment: Ordinary Java code provides no con-
tainment relations as required in Ecore models, but
automatically removes elements that are not refer-
ences anymore using a garbage collector.

Non-parametrized Constructors: Classes in the
metamodel code must have non-parametrized con-
structors, as they are instantiated by generated fac-
tories (see Section 2). Classes in existing code do
not necessarily provide such constructors.

An orthogonal challenge is abstraction. It concerns
the identification of domain-relevant information to be
extracted from code. Since this is an independent re-
search topic, we assume a manual selection of classes
and features or the usage of an existing approach.

Applying Metamodel-based Tooling to Object-oriented Code

219



Original Code
Preprocessing

Metamodel
Generation

Metamodel
Postprocessing

Metamodel Code
Generation

Metamodel Extraction

Factory
Generation

Unification Code
Generation

Generated Code
Adaptation

Original Code
Adaptation

Code Integration

Legend

Original Code

Metamodel Code

Unification Code

Figure 2: The essential steps of the Ecoreification process, each affecting one of three involved artifacts.

4 METAMODEL EXTRACTION

In a first step, our approach extracts a metamodel
from its implicit representation in code. It is com-
parable to reverse engineering UML models, but with
an additional requirement. The code generated from
the metamodel has to be integrable with the existing
code according to the scheme presented in the subse-
quent section. Since the extraction was discussed in
detail previously (Klare et al., 2017), we only give an
overview and focus on additional pre- and postprocess-
ing, as shown in the process in Figure 2.

The mapping of Java elements to Ecore elements
is summarized in Table 1. Most elements like classes,
interfaces and their inheritance are directly mapped
to the equivalent Ecore elements. External type ref-
erences, including types of external libraries, can be
modeled as data types in Ecore (Steinberg et al., 2008).
Nested types are not supported by Ecore and thus
represented as types in a subpackage. Each field is
transferred to an attribute or reference. Accessors and
mutators are identified by an appropriate signature that
follows the standard Java naming scheme having the
prefixes “get”, “set” or “is” followed by the feature
name. If a feature is of type List, it is interpreted as a
multi-valued feature of the list content type, otherwise
it is treated as a single-valued feature. The handling
of non-list collections is discussed in Section 7.2. Re-
maining methods are extracted as operations.

The metamodel generation and the metamodel

Table 1: Mapping of Java elements to Ecore elements.

Java Element Ecore Element

Top-level Type Top-level Type
Generic Type Parameter Generic Type Parameter
External Type Reference External Data Type
Nested Type Type in Subpackage
Inheritance Inheritance
Field of Type List Multi-valued Feature
Other Field Single-valued Feature
Accessor & Mutator Feature Access
Other Method Operation

code generation steps apply the above introduced pat-
terns and run the ordinary code generator of EMF.
Applying the metamodel extraction to our employee
management system example produces the metamodel
shown in Figure 3. It contains the extracted attributes
salary and position, as well as the reference supervisor.
The generated metamodel code is shown in Figure 4.
The prefix “E” is only added to the types to clearly sep-
arate them from the original types. In the implementa-
tion, they are placed in separate packages instead. In
the following, we discuss necessary preprocessing of
the original code and necessary postprocessing of the
extracted metamodel.

4.1 Preprocessing

Before applying the metamodel extraction, some
semantics-preserving preprocessing of the existing
code is necessary. Features are extracted to the meta-
model and will later be removed from the original
code and provided by the generated metamodel code
through appropriate accessors and mutators. There-
fore, access to features has to be performed through
accessors and mutators instead of directly accessing a
field containing the feature value. To ensure this, we
perform a field encapsulation that replaces all direct
field references with appropriate method calls.

To be able to integrate the metamodel code into
the existing code, all top-level classes are made pub-
licly visible. Although this potentially exposes classes
that were only internally visible on purpose, this is
a necessary requirement to apply our approach and,
additionally, would also be necessary when manually
extracting the domain metamodel to an explicit meta-
model, as only public types are allowed there.

Finally, all Java classes in the generated metamodel
code representing a class of the metamodel must have
a non-parametrized constructor to be instantiable by
the generated factories used by tooling (see Section 2).
Therefore, we add a non-parametrized constructor to
all classes that do not have one yet. This initially
solves the Non-parametrized Constructors challenge.
The existing constructors remain in the class and can

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

220



«interface»
IEmployee

getSalary() : int
setSupervisor(m : Manager)
getSupervisor() : Manager
fire()

Employee

– salary : int
– supervisor : Manager

+ getSalary() : int
+ setSupervisor(m : Manager)
+ getSupervisor() : Manager
+ fire()

Manager

– position : String

+ setPosition(pos : String)
+ getPosition() : String

«interface»
IEmployee

getSalary() : int
setSupervisor(m : Manager)
getSupervisor() : Manager
fire()

Employee

salary : int {readonly}

+ fire()

Manager

position : String {writeable}

0..1
supervisor

{writeable}

Original Code Extracted Metamodel

Figure 3: Original code structure and extracted metamodel.

still be called from dependent code.

4.2 Postprocessing

We finally apply a postprocessing to the extracted meta-
model. Ecore requires each element to either be con-
tained within another element or to be the model root
element. Hand-written code usually has no such con-
tainment hierarchy. Objects can be referenced by any
other object and have no unique container. We there-
fore add a root container class to the metamodel, which
artificially contains all model elements that can then be
referenced from any other element. This can also be en-
hanced with a monitor on instances of the metamodel
that automatically tracks additions of references within
the model and automatically adds elements to the root
container upon initial referencing (and removes them
vice versa). Our evaluation shows that this is a suitable
solution for the Containment challenge.

5 CODE INTEGRATION

The integration of original and generated metamodel
code is split into four steps, as depicted in Figure 2. We
first generate new factories that instantiate the original
classes instead of those of the generated metamodel
code. Then unification code is generated that com-
bines the original and the metamodel code and finally
original and metamodel code are adapted, so that the
metamodel code uses the original types and the unifi-
cation code is integrated into the original inheritance

«interface»
EObject

EMF-API-Methods

«interface»
EIEmployee

getSalary() : int
setSupervisor(m : Manager)
getSupervisor() : Manager
fire()

«interface»
EEmployee

getSalary() : int
setSupervisor(m : Manager)
getSupervisor() : Manager
fire()

EEmployeeImpl

– salary : int
– supervisor : Manager

+ getSalary() : int
+ setSupervisor(m : Manager)
+ getSupervisor() : Manager
+ fire()
EMF-API-Methods

«interface»
EManager

setPosition(pos : String)
getPosition() : String

EManagerImpl

– position : String

+ setPosition(pos : String)
+ getPosition() : String

UnifiedEmployee

+ getSalary() : int
+ setSupervisor(m : Manager)
+ getSupervisor() : Manager
EMF-API-Methods

UnifiedManager

+ setPosition(pos : String)
+ getPosition() : String

1

1

«interface»
IEmployee

Employee

+ fire()

Manager

ordinary
operation

accessor and mutator
implementations

empty / never called

all methods delegate
to EEmployeeImpl

declared methods
delegate to

EManagerImpl

Legend

Adapted Original Code

Metamodel Code

Unification Code

Code after Ecoreification

Figure 4: Code structure after applying the Ecoreification.

hierarchy. Figure 4 shows the result of the integration
process for our running example.

5.1 Factory Generation

The EMF code generator produces a factory for each
metamodel package. Each factory method’s return
type is the interface of one metamodel class, e.g. EEm-
ployee. It internally instantiates the metamodel imple-
mentation class, e.g. EEmployeeImpl. We replace the
factories with ones that provide the same interface but
instantiate the original classes, e.g. Employee, instead
of the metamodel class. This is type conforming, as the
original classes also implement the metamodel class
interfaces after the code adaptation. The old factories
are moved to be reused in unification code.

Applying Metamodel-based Tooling to Object-oriented Code

221



5.2 Unification Code Generation

Unification classes represent the glue code between
the original code and generated metamodel code and
can be seen as an implementation of the generation gap
pattern (Fowler & Parsons, 2010). For each original
class, one unification class is created and inserted into
the original inheritance hierarchy. It delegates access
to features extracted to the metamodel to instances of
the metamodel implementation classes. This is less in-
trusive than integrating the delegation into the original
code, as the original classes stay mostly unmodified.

We explain the generation and insertion of a uni-
fication class on the example of the Manager class.
It is created as a subclass of the original class, thus
UnifiedManager becomes a subclass of Employee. It
implements the interface of the appropriate metamodel
class, in the example the EManager interface. A field
is added that references an instance of the correspond-
ing metamodel implementation class. For example,
UnifiedManager references an EManagerImpl object.
It is instantiated in the constructors using the original
factory, which was moved in the first integration step.
The constructors have to be the same as those of the
original superclass and just delegate to them.

The central functionality of a unification class is
the delegation of feature access to the metamodel im-
plementation class. Therefore, it implements all meth-
ods of its metamodel interface, in the example the
accessor and mutator for the position feature. All unifi-
cation classes delegate exactly the methods declared
in the interface of the metamodel class, e.g. the ac-
cessor and mutator for position in the UnifiedManager.
Other methods must not be delegated, as, for example,
delegating the method fire in UnifiedManager would
overwrite its correct implementation in Employee. The
unification class for the topmost class in an inheritance
hierarchy, such as Employee, additionally delegates
methods induced by the framework, denoted as EMF-
API-Methods in Figure 4. In EMF, those methods are
declared in the EObject interface and implemented
by all metamodel classes and define additional logic
for, e.g., resource handling. Generic type parameters
are adopted from the original class. The type param-
eters from the original class were transferred to the
metamodel, thus the type bounds in the metamodel
interface and the original class, between which the
unification class is placed, are equal.

5.3 Metamodel Code Adaptation

The generated metamodel code initially uses the meta-
model types for features and therefore for the appro-
priate method parameter and return types of accessors

and mutators. For example, the EEmployee interface
initially provides an accessor and mutator for the EM-
anager type. In contrast, the original code uses the
original types, in the example accessors and mutators
for the Manager type. This means that the parameter
and return types are covariant, as the specialized origi-
nal types also use the specialized original types. While
this is unproblematic for return types, only contravari-
ant parameter types are type safe. For this reason, the
metamodel code adaptation replaces all parameter and
return types in the metamodel interfaces and classes
with the original types. For multi-valued features, this
only concerns the list content types. Figure 4 shows
the code with that type adaption for our example.

5.4 Original Code Adaptation

To finally integrate metamodel and unification code
into the original code, two adaptations of the original
code are performed. The inheritance relations of the
original code are modified and the logic of extracted
features is removed from the original code.

The modification of inheritance relations com-
prises both classes and interfaces. The inheritance
of a class is changed to its individual unification class.
Since the unification classes inherit the original su-
perclasses instead, this simply inserts the unification
classes into the inheritance hierarchy. For example, the
UnifiedManager class is inserted into the original inher-
itance hierarchy between Manager and its superclass
Employee. Interfaces have no unification classes but
also have associated interfaces in the metamodel code.
To make an interface usable in place of its metamodel
counterpart, it has to inherit its appropriate metamodel
interface. In the example, the IEmployee interface
therefore inherits the EIEmployee interface.

Features that were extracted into classes of the
metamodel are provided by the metamodel implemen-
tation classes. Each original class has a delegation of
all feature accessors and mutators through its unifi-
cation class. Therefore, the code adaptation removes
all fields, mutators and accessors that are replaced by
metamodel features in the original code. In the ex-
ample, all fields and methods of the original classes
Employee and Manager are removed, except for the
method fire, which is an ordinary operation and there-
fore preserved in the original code. This process
changes the return types of accessors for multi-valued
features. They originally returned instances of the List
interface, whereas the generated metamodel code uses
instances of the more specialized EList interface. Nev-
ertheless, this does not break the API, as covariant
replacements of return types are type conforming, and
thus solves the Multiplicities challenge.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

222



6 EVALUATION

We conducted three case studies to show the applica-
bility of our approach. We applied it to an artificial
employee management system, used as the running
example, to an open-source graph library1 with an
implicit graph metamodel, and to an established open-
source community case study, introduced in the sub-
sequent subsection. The evaluation has two primary
goals. First, we demonstrate the API-preserving prop-
erty by showing that the code maintains its behavior.
Second, we show the applicability of metamodel-based
tools to the modified code. The evaluation is based on
our implementation for EMF, available on GitHub2.

The approach must ensure API preservation both
on a syntactic and on a semantic level. Syntactic con-
formance with the original code is checked by compil-
ing the modified code and all dependent code that uses
its API. Semantic correctness is given, if the behavior
of the system is not altered. Since this property cannot
be proven easily, we execute the code and test its cor-
rect behavior with test cases and predefined usage sce-
narios. To show the applicability of metamodel-based
tools on the modified code, we exemplarily apply an
established EMF tool on it. We employ the graphical
editor framework Sirius to develop a graphical editor
for the creation of instances of the domain metamodels
and use it to create example models.

6.1 CoCoME Community Case Study

The Common Component Modelling Example (Co-
CoME)3 is a community case study system for com-
paring component-based software development ap-
proaches (Herold et al., 2008). It implements a trading
system comprising an implicit domain metamodel with
companies, products, stores, stock items and more. We
depict an extract of those types considered in our eval-
uation in Figure 5, based on the data model from the
CoCoME documentation (Herold et al., 2008, p. 19).
CoCoME was extended in several ways. We use the so
called platform migration scenario for our evaluation
(Heinrich et al., 2016, p. 14), which migrates CoCoME
to a Java-EE-based cloud infrastructure. Herold et al.
(2008) additionally defined usage scenarios, which we
use to show semantic correctness of the modified code.

6.2 Results

We applied our approach to all three case study sys-
tems. The resulting code with example tools and

1http://graphstream-project.org/
2https://github.com/Ecorification
3https://github.com/cocome-community-case-study

«interface»
IStockItem

getSalesPrice() : Double
setSalesPrice(price : Double)
getStore() : IStore
setStore(store: IStore)
getProduct() : IProduct
setProduct(product: IProduct)

StockItem
salesPrice : Double

«interface»
IStore

getName() : String
setName(name : String)
getLocation() : String
setLocation(location : String)
getStockItems() :

Collection<IStockItem>

Store
name : String
location : String

«interface»
IProduct

getName() : String
setName(name : String)
getBarcode() : Long
setBarcode(barcode : Long)

Product
name : String
barcode : Long

store 0..1 product0..1

stockItems

*

Figure 5: Implicit CoCoME domain metamodel extract.

models developed for the evaluation can be found
on GitHub4. We had to make small modifications
to the graph library, because some extracted interfaces
have implementations that we did not extract to the
metamodel. This results in missing method implemen-
tations in those non-extracted classes, because they
finally implement the EObject interface and thus have
to provide its methods. We manually added empty
implementations of those methods to circumvent that
problem, which we further discuss in Subsection 7.1.

API Preservation. All three systems compiled and
deployed successfully after applying the Ecoreification.
While the employee management system contains only
the domain metamodel without dependent code, Co-
CoME consists of several projects and a complex in-
frastructure, which is deployed on multiple application
servers in a Maven-based build process.

To show semantic correctness of the modified code,
we defined test cases for all projects, in which we in-
stantiate classes of the domain metamodel, modify
their features and call their operations. As this only
gives an initial indication for correctness, we also ex-
ecuted the existing test cases of the graph library and
the use cases defined for CoCoME, which succeeded
and resulted in the expected system states. We assume

4https://github.com/Ecorification/CaseStudy-EmployeeManagement,

https://github.com/Ecorification/CaseStudy-CoCoME,
https://github.com/Ecorification/CaseStudy-gs-core

Applying Metamodel-based Tooling to Object-oriented Code

223



Figure 6: Example model in the CoCoME Sirius editor.

that those use cases reflect typical system usages and
call most of its logic, so that their successful execution
is a reliable indicator for correct system operation.

Metamodel-based Tool Applicability. We ex-
tended the test cases defined for initially demonstrating
semantic correctness of the API to persist and reload
the created domain models using the persistence API
of EMF. To achieve that, we had to create a virtual
container, as explained in Subsection 4.2, and to insert
the domain model elements into that container. The
models could be correctly reloaded, which shows that
features were restored and thus correctly extracted,
as well as that the persistence API itself is correctly
provided by the modified code.

We defined a graphical Sirius editor for each of
the domain metamodels to show the applicability of
metamodel-based tooling to the modified code. The
CoCoME editor enables the user to create products,
stores and stock items with their properties and re-
lationships, as shown in Figure 5. We successfully
developed example models with the editors and loaded
the models created by our initial test cases. Figure 6
shows the CoCoME editor with a simple model. To
validate the correct operation of the model change
notification mechanism of EMF, we performed modi-
fications in different editors, our Sirius-based one and
the EMF tree editor, as they update their contents upon
external modifications using those notifications.

Summary. We were able to show the applicability
of our approach by conducting typical usage scenarios
in different case studies with two existing open-source
systems. We applied original use cases as well as use
cases based on an exemplary metamodel-based tool to
demonstrate the correct operation of the modified code
in all scenarios. Nevertheless, the applied tool only
represents one exemplary use case of the approach.
The actual benefit of the approach arises from the
variety of provided mechanisms, such as persistence
and change notification, and of available tools.

6.3 Validity Threats

Our evaluation revealed the general feasibility and ap-
plicability of the approach, yet we identify and discuss
validity threads in this section. One threat to external
validity is the limited set of scenarios. By using two
open-source projects that were not developed specif-
ically for our approach and by applying predefined
usage scenarios to it, we aimed to mitigate that threat
and get as generalizable results as possible. For that
reason, we assume transferability of our results to other
scenarios. Furthermore, we focused on correctness and
applicability of the approach but did not yet validate
usability properties.

Regarding internal validity, the significance of both
evaluation aspects, the API preservation and the ap-
plicability of metamodel-based tooling, can be chal-
lenged. We did not provide a proof for the preservation
of code semantics when applying the Ecoreification.
As formally proving semantic correctness is difficult,
we found our approach to apply test cases and prede-
fined usage scenarios the best way to assure preserva-
tion of semantics. Apart from that, we already defined
the steps of the approach carefully in a way that they, to
the best of our understanding, preserve code semantics,
as they only use semantics-preserving refactorings.

Finally, graphical editors are only one example for
metamodel-based tools. It is possible that there are
reasons why other tools or scenarios may not operate
properly with our approach. Nevertheless, we selected
the tool and the scenarios carefully, so that, to the
best of our knowledge, the complete EMF API, con-
sisting of feature access, persistence and notifications,
is successfully used. The editor framework and our
scenarios require proper operation of this complete
API, which is why we assume generalizability of the
results.

7 DISCUSSION

In the following, we discuss the limitations of our
approach that we are aware of. They can be sepa-
rated into requirements that have to be fulfilled by the
existing code and are inherent to the problem, and chal-
lenges that can be solved by extending the approach.
We finally also discuss how our approach supports
further evolution of the code and its generalizability.

7.1 Application Requirements

The first category of limitations are inherent to the
problem and cannot be resolved by extending the ap-
proach. Instead, they imply requirements to the code,

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

224



which, if necessary, have to be fulfilled by refactorings.

Code Isolation. The approach has to assume that
the code it is applied to is isolated in two ways, which
we discuss in the following. First, dependent code
is only allowed to use its publicly exposed interface,
and second, dependent code must not directly imple-
ment interfaces that are extracted to the metamodel.
Although these requirement may be difficult to fulfill,
they are induced by the structure of the metamodel
code and are therefore unavoidable.

If dependent code references internal representa-
tions, such as protected feature values, it may become
incompatible when applying the approach. This is due
to the reason that features get encapsulated, so that
they are only used via accessors and mutators, as this
is the way access is encapsulated in the generated meta-
model code. This requirement is obsolete if all fields
are already encapsulated before applying the approach
or if all dependent code also gets refactored.

Interfaces of the metamodel code extend the EOb-
ject interface, which provides additional methods that
were originally not implemented by classes realizing
the interface. So the first non-abstract class of an in-
heritance hierarchy that implements the interface has
to implement those methods. If that class is not ex-
tracted to the metamodel and thus not modified by our
approach, because it is excluded or part of an external
project, it gets inconsistent. Solving this problem by
excluding all interfaces from the Ecoreification that
are implemented in dependent projects or by includ-
ing dependent projects into the Ecoreification is only
possible if all external dependencies are known. Oth-
erwise, the only solution is to update all dependent
projects afterwards and amend their implementation,
which is what we have done in the evaluation for the
graph library project (see Section 6).

Non-parametrized Constructors. The handling of
parametrized constructors was already discussed in
Subsection 4.1. Nevertheless, the initial solution to
simply add non-parametrized constructors if they are
not existing is not always applicable, especially if a
constructor requires data to correctly instantiate an
object. As non-parametrized constructors are a strict
necessity in classes of the metamodel code, the code
must be manually refactored a-priori if necessary.

Although this is a rather strict limitation, it is not
a limitation of our approach but of the underlying
problem. Metamodel-based tools have to rely on non-
parametrized constructors, as otherwise, for example,
the creation of those objects in a graphical editor is im-
possible if the data required for instantiation depended
on the element type. The only alternative would be a
complete re-implementation of the metamodel to be
able to apply metamodel-based tools, which makes the

adaptation of dependant code hard, as discussed in Sec-
tion 3. Therefore, refactoring the existing code so that
non-parametrized constructors are provided promises
to be the less elaborate solution.

7.2 Remaining Challenges

Another category of limitations comprises conceptual
and technical challenges that can be solved by extend-
ing the approach or its implementation.

Non-default Feature Access. During feature extrac-
tion, accessors and mutators are searched by signature
matching. If such a method does not contain the de-
fault logic, i.e., it modifies the field during access,
provides a transient value or even defines completely
different logic, it has to be preserved instead of replac-
ing it with the default logic generated for the meta-
model feature access. Therefore, it has to be renamed,
so that the logic remains and the final feature accessors
and mutators can be generated without conflicts.

Non-list Collections. A mechanism to extract multi-
valued features from fields of type List was explained
in Section 4. Other multi-valued feature types, such as
sets, queues or generic collections, cannot be treated
that way, as Ecore does not provide dedicated classes
for such collection types but handles all of them with
specific implementations of the Ecore-specific list im-
plementation EList. Extracting fields with such types
as multi-valued features would result in inconformant
types. To solve this issue, it is necessary to provide
further implementations of the EList interface that ad-
ditionally implement the appropriate collection inter-
faces and to integrate them into the code generation.

Technological Challenges. Apart from the pre-
sented challenges, there are rather technology-specific
ones, e.g., specific for the modelling framework, the
programming language or the project configuration.
Examples for such challenges are the resolution of
potential name clashes or dependency management.
EMF, and therefore our approach, relies on the de-
pendency management of Eclipse plug-ins and does
not natively support other systems, such as Maven or
Gradle. A resolution mechanism would have to be
implemented for each of the infrastructures to be used.

7.3 Code Evolution

We have explained in detail how our Ecoreification ap-
proach can be applied to existing code. However, code
is usually subject to change. Regarding the support
of code evolution when applying the Ecoreification,
two cases have to be distinguished, depending on who
develops and changes the code.

Applying Metamodel-based Tooling to Object-oriented Code

225



In the first case, the code is developed by the same
people that apply the Ecoreification. This allows to ap-
ply the Ecoreification and evolve the adapted code fur-
ther. Changes regarding classes or features extracted
to the metamodel can be directly applied to the meta-
model and generated into the metamodel code. Only
the metamodel code adaptation (see Subsection 5.3)
would have to be applied to the newly generated meta-
model code again. Changes to functionality that re-
mains in the original code can be applied to the original
code as if the Ecoreification was not applied at all.

In the second case, the code is developed and mod-
ified externally. In that case, it is not possible to evolve
the code with the applied Ecoreification. After each
code release, the Ecoreification has to be applied again.
Nevertheless, if the extraction scope, which defines
which classes and features were extracted, is stored,
the approach can be applied fully automated to the
modified code again, resulting in code that only differs
in the places where the original code was modified.

7.4 Generalizability

Although we presented our approach specific for EMF,
we claim that our concept is generalizable to a cer-
tain extent and can be transferred to other modelling
frameworks. In the following, we sketch necessities
for transferring the overall concept to other frame-
works. As motivated in Section 3, the essential steps
of our concept, metamodel extraction and code adap-
tation, are necessary, independent from the modelling
framework, or otherwise the code already fulfills the
required structure and no modification is necessary at
all. Since all modelling frameworks need to rely on
a specific representation of modelling concepts such
as features, either the programming language already
supports it or a code generator has to produce it fol-
lowing a specific pattern. At least if that pattern is
comparable to that of EMF, especially representing
metamodel classes as implementation classes with a
commonly implemented interface, our approach can
be transferred to the framework.

Using the example of the .NET Modeling Frame-
work (NMF) (Hinkel, 2018), our approach can be trans-
ferred completely. Some of the detailed steps can even
be omitted, as the underlying language C# already
provides a higher level of abstraction than Java. For
example, it has properties as a language feature that
can be used to define features and their accessibility.

Summarizing, the transferability of our concept
mainly depends on the comparability of the modelling
framework to EMF. The generalizability of the dis-
cussed requirements and challenges of the approach
were already argued individually.

8 RELATED WORK

The application of metamodel-based tooling to implicit
domain metamodels in existing object-oriented code
is, to the best of our knowledge, not researched in that
generality yet. Nevertheless, there are research topics
related to the single steps or the overall concept of our
approach, which we discuss in the following.

Reverse Engineering. Our approach starts with re-
verse engineering a metamodel from existing code. Re-
verse engineering is an essential and well-researched
software engineering task (Canfora et al., 2011;
Raibulet et al., 2017). Extracting models of abstract
information from a low-level representation, especially
code, helps to understand structures and dependencies.

A reverse engineering approach extracts informa-
tion according to a specific metamodel formalism. One
common area is reverse engineering of UML models
from code (Kollmann et al., 2002). Especially the ex-
traction of UML class models is comparable to our ex-
traction. A generic framework for UML reverse engi-
neering was proposed by Tonella (2005). Favre (2008)
researched specific reverse engineering approaches
that are compliant with the model-driven architecture
(Object Management Group (OMG), 2006) and use
the EMOF metamodel formalism (Favre et al., 2009).
The tool MoDisco (Brunelière et al., 2014; Brunelière
et al., 2010) extracts Ecore-based models from Java
code according to a Java metamodel.

MoDisco and UML reverse engineering tools both
extract models according to their own given meta-
model. In contrast to that, our approach extracts a
metamodel based on the Ecore metamodel formalism,
thus the models reside on different modelling levels.
Besides that difference, reverse engineering tools, in-
cluding those presented above, do not aim to perform
any integration of the extracted model with the existing
code. This reduces the constraints on the extraction
mechanism compared to our approach, as no specif-
ically structured code has to be generated and inte-
grated. Finally, our approach does not provide a major
contribution to reverse engineering, but just applies an
approach with specific constraints, which is why we
do not discuss this research field in more detail.

Modelling – Programming Gap. Using modelling
frameworks in software development always induces
a gap between models and code, as they contain in-
terdependent information that must be kept consistent.
This can be achieved with code generators or with au-
tomated round-trip engineering approaches (Aßmann,
2003) that allow the simultaneous and consistent mod-
ification of code and models.

The creation of metamodels is usually a task per-
formed with specific tools and editors. Nevertheless,

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

226



approaches like Annotated Java (Steinberg et al., 2008)
and Xcore (Bettini, 2016) aim to better embed the
metamodel specification into the ordinary program-
ming process by reusing Java syntax for defining Ecore
metamodels or embedding operation body specifica-
tions into the language. The extension of metamod-
els with further code is a common problem, as code
generators easily overwrite manual modifications of
the generated code. Special annotations as used in
Ecore or the integration of the logic specification into
the metamodel definition as in Xcore try to circum-
vent that problem. A solution pattern for this problem
is known as the “generation gap pattern” (Vlissides,
1998), which proposes to extend the class to enrich
with further logic, overwrite the appropriate methods
and use that class in clients. An extension of that pat-
tern was proposed by Fowler and Parsons (2010), who
suggest to also add a hand-written superclass of the
generated class that contains logic independent from
the generated code. This is comparable to the way we
integrate unification classes.

Our approach also contributes to closing that gap,
as it converts implicit metamodel representations in
code to explicit metamodel definitions. The discussed
approaches enhance forward engineering with a-priori
defined metamodels and are therefore suitable for new
projects. Instead, our approach aims to ease the trans-
fer of existing projects to a model-driven process.

Abstraction through Modelling. The central goal
of model-driven engineering is to improve abstraction.
Metamodels abstract from implementation details and
rely on a more strictly defined metamodel formalism
with explicit definitions of features, multiplicities, etc.,
on which metamodel-based tools can rely. Such an ab-
straction can also be achieved by rising the abstraction
of programming languages.

One approach for that is UMPLE (Garzón et al.,
2015), which integrates modelling concepts into ordi-
nary programming languages, such as C++ and Java.
It allows to textually define UML concepts, such as
associations with multiplicities, within the source code.
The developers of UMPLE also presented reverse en-
gineering approaches for integrating existing source
code into UMPLE (Garzón et al., 2014; Lethbridge
et al., 2010). This approach improves the abstraction
and makes the code specification conform to the UML
standard. In contrast to our approach, it does not rely
on an existing modelling framework with an existing
code generator, but defines its own one. This means
that it only introduces abstraction, but does not benefit
from the ability to apply metamodel-based tools for
that framework afterwards. In consequence, it must
not deal with the problem to integrate generated and
existing code in a way such that it provides the origi-

nal API as well as the one required by the modelling
framework, which makes the generation and integra-
tion of unification classes as well as the modification
of generated code necessary. and thus constitutes the
complexity of the Ecoreification approach.

Modern programming languages provide con-
structs for further abstraction, such as property def-
initions in C#, or allow to dynamically add them to the
language, such as active annotations in Xtend (Bettini,
2016; Efftinge et al., 2012). This can be employed by
modelling frameworks to avoid the implicit encoding
of required code structures in the code generated from
metamodels, as it is necessary with EMF for Java. One
such framework is NMF (Hinkel, 2018), which is able
to handle ordinary objects as model elements, because
the language already provides the required level of ab-
straction. But again, this only applies to new projects
and does not allow to apply metamodel-based tooling
to arbitrary code.

9 CONCLUSIONS & FUTURE
WORK

Model-driven software development processes mainly
benefit from reusable tooling, such as transformation
languages or editor frameworks, based on a modelling
framework. This tooling can be applied to explicit
metamodels defined with that framework, and to in-
stances of them. It relies on a specific API provided by
the code generated from metamodels. Hand-written
object-oriented code that contains implicit domain
metamodels does usually not provide this API, making
the application of metamodel-based tooling to ordinary
code impossible.

In this paper, we have presented an approach that
makes ordinary object-oriented code accessible to
metamodel-based tools. It extracts an explicit meta-
model from existing code and integrates it with the
code generated from the metamodel. The original API
is preserved, yet extended with the API required by
the modelling framework. The approach enables de-
velopers to make explicit the domain metamodels that
are implicitly encoded in object-oriented code, and to
separate them from infrastructure code and utilities
that are not part of the domain design. In consequence,
developers can profit from modelling capabilities, such
as explicit model feature representations, persistence,
and change notifications, as well as the ability to apply
reusable metamodel-based tooling.

We have implemented the approach with the
Eclipse Modeling Framework. In our evaluation, we
have applied it to three case studies: an artificial em-
ployee management system, an open-source graph li-

Applying Metamodel-based Tooling to Object-oriented Code

227



brary and an open-source community case study trad-
ing system. We were able to show that, in all three
case studies, the modified code provides the same func-
tionality as the original code, and metamodel-based
tooling can successfully be applied. The results demon-
strate the feasibility of our approach, and are a reliable
indicator for its general applicability. We will, how-
ever, conduct further case studies to confirm that the
approach can be transferred to other domains and to
other modelling frameworks. Additionally, we plan
to measure the usability of the approach, e.g., in a
controlled user study.

Our approach eases the shift from a code-centric
to a model-driven development process. Model-driven
technologies can be introduced without breaking the
compatibility to existing and dependent software and
tools. Automated extraction of domain metamodels
supports developers in this transition.

REFERENCES

Aßmann, U. (2003). “Automatic Roundtrip Engineering”.
Electronic Notes in Theoretical Computer Science,
82(5), 33–41. SC 2003, Workshop on Software Com-
position (Satellite Event for ETAPS 2003).

Bettini, L. (2016). Implementing domain-specific languages
with Xtext and Xtend. Packt Publishing Ltd.

Brunelière, H., Cabot, J., Dupé, G., & Madiot, F. (2014).
“MoDisco: A model driven reverse engineering frame-
work”. Information and Software Technology, 56(8),
1012–1032.

Brunelière, H., Cabot, J., Jouault, F., & Madiot, F. (2010).
MoDisco: A Generic And Extensible Framework For
Model Driven Reverse Engineering. In Proceedings
of the ieee/acm international conference on auto-
mated software engineering (pp. 173–174). ASE ’10.

Canfora, G., Di Penta, M., & Cerulo, L. (2011). “Achieve-
ments and Challenges in Software Reverse Engineer-
ing”. Commun. ACM, 54(4), 142–151.

Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von
Massow, R., Hasselbring, W., & Hanus, M. (2012).
Xbase: Implementing Domain-specific Languages for
Java. In Proceedings of the 11th international con-
ference on generative programming and component
engineering (pp. 112–121). GPCE ’12.

Favre, L. (2008). Formalizing MDA-Based Reverse Engi-
neering Processes. In 2008 sixth international confer-
ence on software engineering research, management
and applications (pp. 153–160).

Favre, L., Martinez, L., & Pereira, C. (2009). MDA-Based
Reverse Engineering of Object Oriented Code. In
Enterprise, business-process and information systems
modeling (pp. 251–263). Springer Berlin Heidelberg.

Fowler, M., & Parsons, R. (2010). Domain specific lan-
guages (1st). Addison-Wesley, Reading, MA, USA.

Garzón, M. A., Aljamaan, H., & Lethbridge, T. C. (2015).
Umple: A Framework for Model Driven Development
of Object-Oriented Systems. In 2015 ieee 22nd inter-

national conference on software analysis, evolution,
and reengineering (saner) (pp. 494–498).

Garzón, M. A., Lethbridge, T. C., Aljamaan, H., & Badred-
din, O. (2014). Reverse Engineering of Object-
oriented Code into Umple Using an Incremental and
Rule-based Approach. In Proceedings of 24th annual
international conference on computer science and
software engineering (pp. 91–105). CASCON ’14.
IBM Corp.

Heinrich, R., Rostami, K., & Reussner, R. (2016). The
CoCoME platform for collaborative empirical re-
search on information system evolution (tech. rep.
No. 2016,2; Karlsruhe Reports in Informatics). Karl-
sruhe Institute of Technology.

Herold, S., Klus, H., Welsch, Y., Deiters, C., Rausch, A.,
Reussner, R., . . . Pfaller, C. (2008). “CoCoME - The
Common Component Modeling Example”. In The
common component modeling example (Vol. 5153,
pp. 16–53). LNCS.

Hinkel, G. (2018). NMF: A multi-platform Modeling Frame-
work. In Theory and practice of model transforma-
tions: 11th international conference, icmt 2018, held
as part of staf 2018, toulouse, france, june 25-29,
2018. proceedings, Springer International Publishing.

ISO/IEC 19508:2014(E). (2014). Information technology –
object management group meta object facility (mof)
core. International Organization for Standardization,
Geneva, Switzerland.

Klare, H., Burger, E., Kramer, M. E., Langhammer, M.,
Saglam, T., & Reussner, R. (2017). Ecoreifica-
tion: Making Arbitrary Java Code Accessible to
Metamodel-Based Tools. In Acm/ieee 20th interna-
tional conference on model driven engineering lan-
guages and systems (models 2017).

Kollmann, R., Selonen, P., Stroulia, E., Systa, T., & Zun-
dorf, A. (2002). A Study on the Current State of the
Art in Tool-Supported UML-Based Static Reverse
Engineering. In Ninth working conference on reverse
engineering, 2002. proceedings. (pp. 22–32).

Lethbridge, T. C., Forward, A., & Badreddin, O. (2010).
Umplification: Refactoring to Incrementally Add Ab-
straction to a Program. In 2010 17th working confer-
ence on reverse engineering (pp. 220–224).

Object Management Group (OMG). (2006). Model Driven
Architecture - Specifications. OMG.

Meyerovich, L. A., & Rabkin, A. S. (2013). Empirical Analy-
sis of Programming Language Adoption. In Proceed-
ings of the 2013 acm sigplan international conference
on object oriented programming systems languages
& applications (pp. 1–18). ACM.

Raibulet, C., Fontana, F. A., & Zanoni, M. (2017). “Model-
driven reverse engineering approaches: A systematic
literature review”. IEEE Access, 5, 14516–14542.

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E.
(2008). Emf: Eclipse modeling framework (second
revised). Eclipse series. Addison-Wesley Longman,
Amsterdam.

Tonella, P. (2005). Reverse Engineering of Object Oriented
Code.

Vlissides, J. (1998). Pattern hatching: Design patterns ap-
plied. Addison-Wesley Longman Ltd.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

228


