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Abstract: GIMLI is a 384-bit permutation proposed by Bernstein et al. at CHES 2017. It is designed with the goal of
achieving both high security and high performance across a wide range of hardware and software platforms.
Since GIMLI can be used as a building block for many cryptographic schemes, it is important to understand
its concrete security. To the best of our knowledge, third party cryptanalysis of GIMLI is limited. In this
paper, we identify some zero-sum distinguishers for 14-round GIMLI with the inside-out technique, which are
one-round longer than the integral distinguishers presented by the designers. Although we obtain improved
cryptanalysis results, these zero-sum distinguishers are far from threatening the full version of GIMLI.

1 INTRODUCTION

Permutations with large state sizes and desired cryp-
tographic properties facilitate the construction of
many cryptographic schemes, including high-security
(tweakable) block ciphers, stream ciphers, message
authentication codes, hash functions, etc. For ex-
ample, the winner of the SHA-3 competition, Kec-
cak hash function, uses a permutation operating on
a 1600-bit state known as the Keccak- f permuta-
tion (Bertoni et al., 2013). Also, we have message
authentication code (Chaskey (Mouha et al., 2014)),
and stream cipher (Salsa20 (Bernstein, 2008)) built on
ARX permutations. However, existing designs suffer
from the problem of showing significant performance
variation when implemented in different platforms,
severely limiting their range of applications. There-
fore, a single primitive that performs well (not neces-
sarily the best) on all common platforms will benefit
the designers and implementors a lot.

With this goal in mind, Bernstein et al. pre-
sented the GIMLI design at CHES 2017 (Bernstein
et al., 2017). What distinguishes GIMLI from pre-
vious designs is that its performance strikes the bal-
ance across a wide spectrum of platforms by skill-
fully avoiding those platform-specific hazards lead-
ing to poor performance for many primitives simulta-
neously. Therefore, cryptographic schemes designed
based on GIMLI are expected to be efficient when

implemented on 64-bit Intel/AMD server CPUs, 32-
bit ARM smartphone CPUs, 32-bit ARM microcon-
trollers, 8-bit AVR microcontrollers, FPGAs, and
ASICs with or without side-channel protections. We
refer the reader to http://gimli.cr.yp.to for sample im-
plementations and detailed benchmarks.

Given these merits of GIMLI, it has the potential
to be employed in many future designs. Therefore,
it is essential to have a thorough understanding of its
security. Besides the initial cryptanalysis provided by
the designers (Bernstein et al., 2017), we are aware of
only one third party cryptanalysis (Hamburg, 2017).
However, the claimed results of (Hamburg, 2017)
is largely irrelevant to the original design, since the
“attack” is against an artificial and ad-hoc mode (see
http://gimli.cr.yp.to/statement.html for the statement
from the GIMLI team). In this paper, we provide an-
other third party cryptanalysis concerning Zero-Sum
Distinguishers by using MILP, which has been used
to automate many cryptanalytic techniques (Mouha
et al., 2012; Sun et al., 2014; Xiang et al., 2016;
Sasaki and Todo, 2017; Cui et al., 2016; Shi et al.,
2018; Fu et al., 2016). We identify a set of zero-sum
distinguishers for 14-round GIMLI. To the best of
our knowledge, these are the best distinguishers for
GIMLI so far.

Organization. In Section 2, we give a brief de-
scription of the GIMLI permutation. We show how
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Fig 1: The state of GIMLI.

Fig 2: The 32-bit word si, j in row i and column j.

to evaluate the algebraic degree of a boolean function
with division property in Section 3, which is the main
cryptanalytic tool employed in this work. The inside-
out technique for finding zero-sums is introduced in
Section 4. In Section 5, we identify many zero-sum
distinguishers of 14-round GIMLI with the methods
presented in Section 3 and Section 4. We conclude in
Section 6 and give some discussion of future work.

2 DESCRIPTION OF THE GIMLI
PERMUTATION

GIMLI is a 384-bit permutation. There are 24 rounds
in GIMLI, numbered 24,23, . . . , 1. The input 384-bit
data is arranged into a 3×4 matrix of 32-bit words as
shown in Fig. 1. Let si, j ∈W denote the 32-bit word
in row i and column j for 0 ≤ i < 3 and 0 ≤ j < 4,
where W is the set of all 32-bit words (see Fig. 2).
The 384-bit state is then manipulated according to Al-
gorithm 2 to produce the output. The inverse of the
GIMLI permutation can be derived from Algorithm 1
and we put it into Appendix 6.

3 ALGEBRAIC DEGREE
EVALUATION WITH DIVISION
PROPERTY

The Division property, introduced by Todo at EU-
ROCRYPT 2015 (Todo, 2015), is a generalization
of the integral property, and its bit-based version
was applied in the cryptanalysis of SIMON at FSE
2016 (Todo and Morii, 2016).

Let F2 denote the finite field of two elements, and
Z represent the set of integers. The Hamming weight
wt(v) of a vector v ∈ Fn

2 is defined as the number of

Algorithm 1: The GIMLI permutation.

Input: s = (si, j) ∈W 3×4

Output: GIMLI(s) = (si, j) ∈W 3×4

1 for r from 24 downto 1 inclusive do
2 for j ∈ {0, · · · ,3} do
3 x← s0, j ≪ 24
4 y← s1, j ≪ 9
5 z← s2, j
6 s2, j← x⊕ (z� 1)⊕ ((y∧ z)� 2)
7 s1, j← y⊕ x⊕ ((x∨ z)� 1)
8 s0, j← z⊕ y⊕ ((x∧ y)� 3)
9 end

10

11 if r mod 4 = 0 then
12 s0,0,s0,1,s0,2,s0,3← s0,1,s0,0,s0,3,s0,2
13 else if r mod 4 = 2 then
14 s0,0,s0,1,s0,2,s0,3← s0,2,s0,3,s0,0,s0,1
15 end
16 if r mod 4 = 0 then
17 s0,0 = s0,0⊕0x9e377900⊕ r
18 end
19 end
20 return (si, j)

nonzero entries in v. For vectors k=(k0,k1, · · · ,kn−1)
and u = (u0,u1, · · · ,un−1) in {0,1}n ⊆ Z, we say u <
k if ui ≥ ki for any i ∈ {0, · · · ,n−1}.

Let f : Fn
2→ F2 be an n-variable boolean function

whose Algebraic Normal Form (ANF) is

f (x) =
⊕
v∈Fn

2

a f
v ·xv

where v = (v0,v1, · · · ,vn−1), xv = ∏
n−1
i=0 xvi

i , and we
call a f

v ∈ F2 the ANF coefficient of f . The algebraic
degree of f is defined as deg( f ) = max{wt(v) : a f

v 6=
0}. A vectorial boolean function G = (g0, · · · ,gm−1) :
Fn

2 → Fm
2 is a sequence of m boolean functions gi :

Fn
2 → F2 with 0 ≤ i < m, and the algebraic degree

deg(G) of G is defined as max{deg(gi) : 0≤ i < m}.
Definition 1 (Bit-based Division Property (Todo and
Morii, 2016)). Let X be a multiset whose elements
belong to Fn

2. When the multiset X has the division
property D1n

K , where K denotes a subset of {0,1}n ⊆
Zn, it satisfies the following condition⊕
x∈X

πu(x)=

{
unknown if there are k ∈K, s.t. u < k
0 otherwise

where u = (u0,u1, · · · ,un−1) ∈ {0,1}n ⊆ Zn, x =

(x0,x1, · · · ,xn−1) ∈ Fn
2, and πu(x) = ∏

n−1
i=0 xui

i .

If a multiset X has division property D1n

K , after the
application of a vectorial boolean function F : Fn

2 →
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Fm
2 , the division property of the output multiset Y be-

comes D1m

K′
. We say D1n

K propagates to D1m

K′
, which is

denoted by D1n

K
F−→D1m

K′
, or K F−→K′ .

Definition 2 (Division Trail (Xiang et al., 2016)). Let
F be the round function of an iterated block cipher.
Assume that the input multi-set to the block cipher has
initial division property D1n

K0
with K0 = {k}. This ini-

tial division property propagates through the round
function which forms a chain

D1n

K0

F−→D1n

K1

F−→D1n

K2

F−→ ·· ·

For any vector k∗i ∈ Ki(i ≥ 1), there must exist a
vector k∗i−1 in Ki−1 such that k∗i−1 can propagate to
k∗i according to the rules of division property prop-
agation. Furthermore, for (k0,k1, · · · ,kr) ∈ K0 ×
K1 × ·· · ×Kr, if ki−1 can propagate to ki for all
i ∈ {1,2, · · · ,r}, we call (k0,k1, · · · ,kr) an r-round
division trail.

Given k and k′, whether there is a division trail
k→ k′ for F can be determined by the resolution of
a Mixed-Integer Linear Programming (MILP) model
encoding the propagation rules of the division proper-
ties (Xiang et al., 2016). We refer the reader to (Xi-
ang et al., 2016) for more information on MILP-aided
analysis of division properties.

Besides its natural application in finding integral
distinguishers, it turns out that the division property
can be a very generic tool for probing the structure of
boolean functions whose explicit ANFs are not avail-
able due to resource limitation. In particular, the prop-
agation of division properties can be used to evaluate
the degree of a boolean function (Todo et al., 2017).

Lemma 1 (Todo, Isobe, Hao, and Meier (Todo et al.,
2017)). Let f : Fn

2→ F2 be a boolean function whose
ANF coefficients are denoted by a f

v (v ∈ Fn
2), and k ∈

Fn
2. Then a f

v = 0 for all v < k if there is no division

trail such that k f−→ 1.

Lemma 1 leads to the following two propositions
for evaluating the degrees of (vectorial) boolean func-
tions.

Proposition 1. Let f : Fn
2→ F2 be a boolean function.

Then the degree of f is upper bounded by d+1 where

d = maxk∈Fn
2
{wt(k) : k f−→ 1 is a division trail}.

Proposition 2. Let F : Fn
2 → Fn

2 be a vectorial
boolean function. Then the degree of F is upper
bounded by d + 1 where d = maxk∈Fn

2
{wt(k) : k F−→

e j is a division trail for some j ∈ {0, · · · ,n−1}} and
e j is the jth unit vector.

x G H F(x)

Fig 3: F = H◦G.

4 THE INSIDE-OUT TECHNIQUE
FOR FINDING ZERO-SUM
DISTINGUISHERS

The so-called zero-sum distinguisher was proposed
by Aumasson and Meier in (Aumasson and Meier,
2009), which can be regarded as a generalization
of the integral property (a.k.a. saturation prop-
erty) (Daemen et al., 1997; Knudsen and Wagner,
2002).

Definition 3 (Zero-Sum Distinguisher (Aumasson
and Meier, 2009; Boura and Canteaut, 2010)). Let
F : Fn

2 → Fn
2 be a permutation. A zero-sum is a set

X ⊆ Fn
2 of inputs such that⊕

x∈X
x≡ 0 and

⊕
x∈X

F(x)≡ 0 .

Since it is expected that a randomly chosen permuta-
tion does not have many zero-sums, the existence of
many such sets of inputs can be seen as a distinguish-
ing property of F.

The zero-sum distinguishers are intimately related
to the integral distinguishers whose existence has a
close connection with the degree of the underlying
boolean functions.

Let I be a subset of {0, · · · ,n−1}with cardinality
|I |, and δ(I ) be the subspace spanned by {ei : i ∈ I}.
For a vector a ∈ Fn

2, δa(I ) is defined to be the set
{x + a : x ∈ δ(I )}. That is, δa(I ) is the set of all
vectors whose values indexed by I traverse all pos-
sible values while the values at other positions are
fixed to constants according to a. It is easy to check
that for any a ∈ Fn

2, and any I whose cardinality is
strictly greater than 1, ⊕x∈δa(I )x ≡ 0. Moreover, if
deg(F)< n, and |I |> deg(F), then for any a ∈ Fn

2,⊕
x∈δa(I )

F(x)≡ 0.

Therefore, many zero-sums δa(I ) for F with
deg(F) < n can be identified. Since F is a permu-
tation, we can construct zero-sums from the mid-
dle (the inside-out technique (Aumasson and Meier,
2009; Boura and Canteaut, 2010)) by exploiting the
knowledge of the degrees of both the forward and
backward directions of F as depicted in Fig. 3.

Firstly, F is decomposed into H◦G, where G and
H are n-bit permutations. Assuming that deg(G−1)<
n and deg(H) < n, then for any a ∈ Fn

2 and I with
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0 1 . . . 4 δa(I)

5 rounds

5 6 . . . 13

9 rounds

Fig 4: Apply the inside-out technique to 14-round GIMLI.

|I | = max{deg(G−1),deg(H)}+ 1, δa(I ) is a zero-
sum for both G−1 and H. Consequently, we have⊕

x∈G−1(δa(I ))

x≡ 0

and ⊕
x∈G−1(δa(I ))

F(x) =
⊕

x∈G−1(δa(I ))

H◦G(x)

=
⊕

y∈δa(I )
H(y)

= 0

which indicates that G−1(δa(I )) is a zero-sum for F.

5 ZERO-SUM DISTINGUISHERS
FOR ROUND-REDUCED GIMLI

To apply the inside-out technique, We split the 14-
round GIMLI into the first 5 rounds (denoted by G)
and the last 9 rounds (denoted by H) as depicted in
Fig. 4. Then the degrees of G−1 and H are evaluated
with the method introduced in Sect. 3. Therefore, we
need to set up MILP models encoding the propagation
of division properties for round-reduced GIMLI and
its inverse. According to the specification of GIMLI
presented in Algorithm 1 (also see Appendix 6 for
its inverse), the MILP models can be constructed by
properly assembling the MILP models for the follow-
ing three operations.

Modeling S-box. We treat the non-linear operation
(x′,y′,z′) = (y∧ z,x∨ z,x∧ y) in GIMLI as a 3× 3 S-
box, and use the method presented in (Boura and Can-
teaut, 2016) to retrieve its propagation rules (see Ta-
ble 1) of the division property. Using the convex hull
computation approach (Sun et al., 2014), the propa-
gation rule shown in Table 1 can be transformed into
the following linear inequalities

x+ z−2x′−3y′−2z′+2≥ 0

− x+ y′+ z′ ≥ 0

− z+ x′+ y′ ≥ 0

− y+ x′+ z′ ≥ 0

x+ y+ z− x′− y′− z′ ≥ 0

where all variables involved are binaries.

Table 1: Propagation rule of (x′,y′,z′) = (y∧ z,x∨ z,x∧ y).

Input Output
(0,0,0) (0,0,0)
(0,0,1) (0,1,0) (1,0,0)
(0,1,0) (0,0,1) (1,0,0)
(0,1,1) (1,0,0)
(1,0,0) (0,0,1) (0,1,0)
(1,0,1) (0,1,0) (1,0,1)
(1,1,0) (0,0,1)
(1,1,1) (1,0,1)

Modeling COPY. Let a COPY−−−→ (b0, · · · ,bm−1) be a
division trail of COPY. Then a = b0 + · · ·+ bm−1,
where all variables involved are binaries.

Modeling XOR. Let (a0, · · · ,am−1)
XOR−−−→ b be a di-

vision trail of XOR. Then a0 + · · ·+am−1 = b, where
all variables involved are binaries.

After assembling the above constraints for all op-
erations involved in the underlying permutation, we
can check whether d is an upper bound of the degree
of the permutation as follows. We impose additional
constraints dictating that

n−1

∑
i=0

ui ≥ d and
n−1

∑
i=0

vi = 1, (1)

where ui’s and vi’s are the variables representing the
input and output division properties, respectively (n=
384 for GIMLI). If the resulting model is infeasible,
then the algebraic degree of the underlying permuta-
tion is upper bounded by d due to Proposition 2.

Firstly, we evaluate the degree of H. Note that the
degree evaluation of H has already been done by the
design team. However, we still perform this process
to verify our implementation against the results pro-
vided by the designers. The upper bounds of the de-
grees for round reduced versions of H (up to 9 rounds)
are summarized in Table 2, which match the results
provided in (Bernstein et al., 2017).

We then evaluate the degrees of round-reduced
G−1, and the results are listed in Table 3. Note that
the bounds we get are not necessarily tight. In our
experiment, we observed that when we set the d in
equation (1) to be a very small value, the resolution
time of the MILP model can be very long. Therefore,
we prefer to choose a d which may be much larger
than the degree of the analyzed permutation.

According to the above results and the discus-
sion of Sect. 4, We can conclude that G−1(δa(I ))
with |I | > 350 is a zero-sum of 14-round GIMLI for
any a ∈ Fn

2. Finally, we note that all models are
solved by the Gurobi optimizer (Gurobi Optimization,
2013) and all experiments are performed on a com-
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Table 2: The upper bounds of the degrees of round-reduced GIMLI.

# Rounds 1 2 3 4 5 6 7 8 9
Bounds 2 4 8 16 29 52 95 163 266

Table 3: The upper bounds of the degrees of round-reduced G−1.

# rounds 1 2 3 4 5
Bounds 32 63 141 170 350

puter running Ubuntu 16.04 TLS system with Intel(R)
Core(TM) i5-4590 CPU @ 3.30GHz.

6 CONCLUSION AND
DISCUSSION

In this work, by analyzing the degrees of round-
reduced versions of the GIMLI permutation and its
inverse, we obtained a set of 14-round zero-sum dis-
tinguishers, which achieves one-round improvement
compared with the results offered by the designers.
More specifically, the 14-round zero-sum distinguish-
ers are constructed with the knowledge of the alge-
braic degree of the vectorial boolean function repre-
senting the output of 9-round GIMLI permutation and
the upper bound of the degree of the inverse of 5-
round GIMLI permutation, where the evaluation of the
algebraic degrees is performed by solving MILP mod-
els encoding the propagation of the division proper-
ties. Note that we are only able to get the upper bound
of the algebraic degrees under our current computa-
tional resources. Therefore, it is interesting to investi-
gate whether tighter bounds can be obtained. We ex-
pect that a more accurate degree evaluation may help
to extend the zero-sum distinguisher one more round.
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APPENDIX

Algorithm 2: The reversed GIMLI permutation

Input: s = (si, j) ∈W 3×4

Output: GIMLI−1(s) = (s̃i, j) ∈W 3×4

1 for r from 24 downto 1 inclusive do
2 if r mod 4 = 0 then
3 s0,0 = s0,0⊕0x9e377900⊕ r
4 end
5 if r mod 4 = 0 then
6 s0,0,s0,1,s0,2,s0,3← s0,1,s0,0,s0,3,s0,2
7 else if r mod 4 = 2 then
8 s0,0,s0,1,s0,2,s0,3← s0,2,s0,3,s0,0,s0,1
9 end

10

11 for j ∈ {0, · · · ,3} do
12 s̃0, j,0← s2, j,0
13 s̃1, j,0← s1, j,0⊕ s̃0, j,0
14 s̃2, j,0← s0, j,0⊕ s̃1, j,0
15 s̃0, j,1← s2, j,1⊕ s̃2, j,0
16 s̃1, j,1← s1, j,1⊕ s̃0, j,1⊕ (s̃2, j,0∨ s̃0, j,0)
17 s̃2, j,1← s0, j,1⊕ s̃1, j,1
18 s̃0, j,2← s2, j,2⊕ s̃2, j,1⊕ (s̃1, j,0∧ s̃2, j,0)
19 s̃1, j,2← s1, j,2⊕ s̃0, j,2⊕ (s̃2, j,1∨ s̃0, j,1)
20 s̃2, j,2← s0, j,2⊕ s̃1, j,2
21

22 for k ∈ {3, · · · ,31} do
23 s̃0, j,k← s2, j,k⊕ s̃2, j,k−1⊕ (s̃1, j,k−2∧

s̃2, j,k−2)
24 s̃1, j,k←

s1, j,k⊕ s̃0, j,k⊕ (s̃2, j,k−1∨ s̃0, j,k−1)
25 s̃2, j,k←

s0, j,k⊕ s̃1, j,k⊕ (s̃0, j,k−3∧ s̃1, j,k−3)

26 end
27

28 s̃0, j← s̃0, j ≪−24
29 s̃1, j← s̃1, j ≪−9
30 end
31 end
32 return (s̃i, j)

Zero-sum Distinguishers for Round-reduced GIMLI Permutation
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