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Abstract: The classification of voice diseases has many applications in health, in diseases treatment, and in the design 

of new medical equipment for helping doctors in diagnosing pathologies related to the voice. This work uses 

the parameters of the glottal signal to help the identification of two types of voice disorders related to the 

pathologies of the vocal folds: nodule and unilateral paralysis. The parameters of the glottal signal are obtained 

through a known inverse filtering method and they are used as inputs to an Artificial Neural Network, RNN, 

LSTM, a Support Vector Machine and also to a Hidden Markov Model, to obtain the classification, and to 

compare the results, of the voice signals into three different groups: speakers with nodule in the vocal folds; 

speakers with unilateral paralysis of the vocal folds; and speakers with normal voices, that is, without nodule 

or unilateral paralysis present in the vocal folds. The database is composed of 248 voice recordings (signals 

of vowels production) containing samples corresponding to the three groups mentioned. In this study a larger 

database was used for the classification when compared with similar studies, and its classification rate is 

superior to other studies, reaching 99.2%. 

1 INTRODUCTION 

The diagnosis of voice pathologies currently requires 

invasive endoscopy procedures, such as laryn-

gostroboscopy or surgical microlaryngoscopy.  

However, one wants to aid the pre-diagnosis of the 

vocal folds pathologies with computer-based, 

decision support diagnostic tools using voice signals. 

Two pathologies related to the vocal folds will be 

considered here: nodules and unilateral paralysis 

(Roy N et al., 2017) (Francis D. O. At al., 2014).  

Vocal cord nodules are growth on both vocal folds 

caused by their repeated and incorrect usage, which 

permits the developing of swollen spots on them. The 

nodules will become larger and stiffer the longer the 

vocal incorrect usage continues. Singers, teachers and 

announcers are examples most probably to have this 

kind of pathology in the vocal folds (Francis D. O. At 

al., 2014).  Unilateral vocal fold paralysis (UVFP) 

occurs from a dysfunction of the recurrent laryngeal 

or vagus nerve innervating the larynx. It causes a 

characteristic breathy voice often accompanied by 

swallowing disability, a weak cough, and the 

sensation of shortness of breath. This is a common 

cause of neurogenic hoarseness. When this paralysis 

is properly evaluated and treated, normal speaking 

voice is typically restored (Steffen N Pedrosa V. V. 

and Kazuo R., Pontes P, 2009) (Behlau M, Pontes PP, 

1995). 

The aim here is to evaluate the use of glottal 

signals (signal obtained just after the vocal folds and 

before the vocal tract) for providing better 

classification models of the pathologies discussed 

above. The most common method for extracting 

voice features is directly from the voice signal (Roy 

N et al., 2017). 

However, many researchers have looked for some 

characteristics extracted from the glottal signal, not 

only for identifying pathologies related to the vocal 

folds, but also to other applications, as to synthesize 

voice (Henrich, N., 2001)( Henrich N, d'Alessandro 

C., 2014)  or identifying vocal aging (Mendonza L., 

Vellasco M., Cataldo E., 2014). 

The process of obtaining the glottal signal, from 

the voice signal, has been facilitated due to the 

development of algorithms which can perform an 
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inverse filtering from the voice signal, eliminating the 

influence of the vocal tract (Software Aparat). 

Different methods have been used to classify 

diseases related to the voice, such as Hidden Markov 

Models (HMM) (Francis D. O. At al., 2014), 

Gaussian Mixture Models (GMM) and Artificial 

Neural Networks (Steffen N Pedrosa V. V. and  

Kazuo R., Pontes P, 2009), all of them using as inputs 

Mel-Frequency Cepstral Coefficients (MFCC) and 

parameters such as jitter and shimmer. However, as 

most voice disorders are due to some disorder on the 

vocal folds dynamics, it is best to work with 

parameters extracted from the glottal signal, since the 

signal is produced by the vocal folds.  

In (Rosa I. S., 2005) (Londoño J., Llorente J., 

2010), (Wang X, Zhang J, Yan Y, 2009) the Mel-

frequency cepstral coefficients (MFCC) were used as 

input parameters to classify pathologies. A database 

composed of 12 recordings for men and women, 

resulting in a maximum performance of 80% 

accuracy (Londoño J., Llorente J., 2010). MFCC have 

also been proved to be effective in speaker 

recognition problems. However, their performance is 

not as effective in the classification of voice 

pathologies.  In (Rosa I. S., 2005), several models for 

the classification of voice pathologies are compared. 

The best performance has been provided by a neural 

network based model, differing from speaker 

recognition applications where best results are 

usually obtained with GMM and HMM. This is 

probably because classification of voice pathologies 

does not fully depend on temporal features of the 

voice, and the pathology causes change in the voice 

signal (Hariharan, M., 2009). 

Therefore, the main objective of this work is to 

evaluate the performance of voice pathologies 

classification models based on parameters extracted 

from the glottal signal. Additionally, a new database 

was created, with a larger number of voice 

recordings, which allows a better evaluation of the 

influence of each parameter in the classification 

performance.  

This paper is organized as follows. Methods 

section explains how the glottal signal is obtained and 

how the features, extracted from the glottal signal, are 

used. Proposed Methodology section presents the 

three classifiers evaluated in this paper, so their 

performance can be evaluated in voice pathologies 

classification: Neural Network, Support Vector 

Machine and Hidden Markov Model. Results section 

presents the database details, results obtained and 

their analysis. Lastly, Conclusions are outlined in the 

final section. 

2 METHODS 

2.1 The Glottal Signal 

The voice signal production, particularly the one 

related to voiced sounds, e.g. vowels, starts with the 

contraction-expansion of the lungs, generating a 

pressure difference between the air in the lungs and 

the air near the mouth. The airflow created passes 

through the vocal folds, which oscillate in a frequency 

called the fundamental frequency of the voice. This 

oscillation modifies the airflow coming from the 

lungs, changing it into air pulses. The pressure signal 

formed by the air pulses is quasi-periodic and it is 

called the glottal signal (M. D. O. Rosa., 2000). 

2.2 Features Extracted from the 
Glottal Signal 

The glottal signal is obtained performing an inverse 

filtering on the voice signal, which consists on 

eliminating the influence of the vocal tract and the 

voice radiation caused by the mouth, preserving the 

glottal signal characteristics (Pulakka H., 2005). The 

inverse filtering algorithm used here is the so-called 

PSIAIF (Pitch Synchronous Iterative Adaptive 

Inverse Filtering) (Mendonza L., Vellasco M., 

Cataldo E., 2014) (Pulakka H., 2005). It was chosen 

due to its high performance and ease development. 

There is a toolbox implementation in Matlab®, called 

Aparat (Software Aparat), which was constructed 

especially based on the PSIAIF method to obtain the 

glottal signal and to extract its main features or 

parameters. The parameters that will be used can be 

divided into three groups: time domain, frequency 

domain, and the ones that represent the variations of 

the fundamental frequency. More details about these 

parameters can be found in (Pulakka H., 2005). 

2.2.1 Time-domain Parameters of the 
Glottal Signal 

The time domain parameters which can be 

extracted from the glottal signal are described below 

(Wang X, Zhang J, Yan Y, 2009) (Pulakka H., 2005). 

 Closing phase (Ko): describes the interval 

between the instant of the maximum opening of 

the vocal folds and the instant where they close 

(M. D. O. Rosa., 2000); 

 Opening phase (Ka): describes the interval 

between the instant where the vocal folds start 

the oscillation up to their maximum opening 

(M. D. O. Rosa., 2000); 
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 Open quotient (OQ): The ratio between the 

total time of the vocal folds opening and the 

total time of a cycle (or period) of the glottal 

signal (T). It is inversely proportional to the 

intensity of the voice. The smaller it is, the 

higher the voice intensity (Wang X, Zhang J, 

Yan Y, 2009) (Pulakka H., 2005); 

 Close quotient (CIQ): The ratio between the 

closing phase parameter (Ko) and the total 

length of a glottal pulse (T) (Pulakka H., 2005). 

It is inversely proportional to the voice 

intensity. The smaller it is, the higher the voice 

intensity; 

 Amplitude quotient (AQ): The ratio between 

the glottal signal amplitude (Av) and the 

minimum value of the glottal signal derivative 

[16]. It is re-lated to the speaker phonation 

(Pulakka H., 2005); 

 Normalized amplitude quotient (NAQ): It is 

calculated by the ratio between the amplitude 

quotient (AQ) and the total time length of the 

glottal pulse (T) (Pulakka H., 2005); 

 Open quotient defined by the Liljencrants-Fant 

model (OQa): This is another opening quotient 

but calculated by the Liljencrants-Fant model 

for inverse filtering. Details about this model 

can be found in (Wang X, Zhang J, Yan Y, 

2009); 

 Quasi open quotient (QoQ): It is the 

relationship between the glottal signal opening 

at the exact instant of the oscillation and the 

closing time. It has been used in some works to 

classify emotions (Wang X, Zhang J, Yan Y, 

2009); 

 Speed quotient (SQ): defined as the ratio of the 

opening phase length to the closing phase 

length (Pulakka H., 2005); 

2.2.2 Frequency Domain Parameters 

 Difference between harmonics (DH12): Also 

known as H1-H2, it is the difference between 

the values of the first and second harmonics of 

the glottal signal (Wang X, Zhang J, Yan Y, 

2009) (Pulakka H., 2005). This parameter has 

been used to measure vocal quality; 

 Harmonics richness factor (HRF): relates the 

first harmonic (H1) with the sum of the energy 

of the other harmonics (Hk) (Pulakka H., 

2005). It has also been used to measure vocal 

quality; 

2.2.3 Parameters that Represent Variations 
and Perturbations in the Fundamental 
Frequency 

 Jitter: variations in fundamental frequency 

between successive vibratory cycles (Wang X, 

Zhang J, Yan Y, 2009) (Pulakka H., 2005). 

Changes in jitter may be indicative of 

neurological or psychological difficulties (Roy 

N et al., 2017); 

 Shimmer: variations in amplitude of the glottal 

flow between successive vibratory cycles 

(Wang X, Zhang J, Yan Y, 2009) (Pulakka H., 

2005). Changing the shimmer is found mainly 

in the presence of mass lesions in the vocal 

folds, such as polyps, edema, or carcinomas 

(Roy N et al., 2017); 

3 PROPOSED METHODOLOGY 

FOR VOICE PATHOLOGIES 

CLASSIFICATION 

The proposed model used has two stages: the first 

stage is the features extraction, where all the above 

mentioned parameters from the glottal signal are 

obtained; the second stage is the classification 

module, where four algorithms have been selected to 

classify different pathologies of the voice - a 

multilayer perceptron (MLP) neural network, a 

support vec-tor machine, Long short-term memory 

(LSTM) and a Hidden Markov Model (HMM), for 

comparison reasons. The proposed methodology is 

illustrated in Figure 1 and each model is described in 

the following sub-sections. A similar methodology 

has been already applied for classifying voice aging 

(Mendonza L., Vellasco M., Cataldo E., 2014), with 

very good results. 

 

Figure 1: Methodology used for the classification of voice 

pathologies. 

3.1 Inverse Filtering 

For each vocal utterance a corresponding glottal 

signal is obtained by inverse filtering (PSIAIF meth-

od) and the parameters are extracted using the Aparat 

(Software Aparat) and Praat (Software Praat) 

software. The following parameters are obtained: 
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fundamental frequency (fo), jitter, shimmer, Ko, Ka, 

NAQ, AQ, CIQ, OQ1, OQ2, Oqa, Qoq, SQ1, SQ2, 

DH12, and HRF. The parameters are separated 

according to the groups to which they belong. In 

particular, OQ was divided into OQ1 and OQ2, the 

open quotients calculated from the so-called primary 

and secondary openings of the glottal flow. The 

difference between OQ1 and OQ2 is that OQ1 is 

calculated from the closure of the glottal flow until 

the closure of the next glottal flow, and OQ2 is 

calculated from de opening until the closure of the 

glottal flow; SQ, as well, was divided into speed 

quotients calculated from the primary and secondary 

openings of glottal signal. It is important to mention 

that some parameters provide similar information, 

but, in this phase, all of them will be considered. 

3.2 Classification Module 

For the classification of voice pathologies four 

classifiers have been used: Artificial Neural 

Networks (ANN), Support Vector Machine (SVM), 

LSTM and Hidden Markov Models (HMM). 

For the ANN classifier, a multi-layer perceptron 

(MLP) structure, trained with the back-propagation 

algorithm, was chosen, since it is a universal 

approximator. Different topologies were examined 

with different numbers of neurons in the hidden layer 

to seek the best generalization performance. For the 

SVM classifier, different kernels (polynomial, radial 

basis function (RBF), and sigmoid) and different 

values for the normalization coefficient (C) were 

evaluated to determine the optimal settings. Final-ly, 

an Estimate-Maximize (Baum Welch) approach was 

used to train three HMM models (one HMM for each 

output class), each one to maximize the likelihood of 

the training data with respect to the unknown 

parameters. To classify a sequence into one of the 

three classes, the log-likelihood given by each model 

is computed, and the most likely model defines the 

class that the test sequence belongs to. Left-to-right 

HMM models with five states and three Gaussian 

mixtures were trained in order to obtain an optimal 

classification rate. 

4 RESULTS 

4.1 Database 

Most of the works on vocal folds diseases 

classification just classify speakers into two groups: 

speakers with disease (all kinds of disease) and 

speakers with normal voices (Rosa I. S., 2005), 

(Londoño J., Llorente J., 2010). In this work the type 

of disease is also identified, helping in the indication 

if the patient has nodule or paralysis on the vocal 

folds, or neither one. 

The developed database is composed of 248 

records consisting of voices of both genders, women 

and men, with different ages, and it is divided into 

three groups: 12 speakers with nodule on the vocal 

folds; 8 speakers with vocal folds paralysis; and 11 

speakers with normal voices. Eight voice records 

were taken from each speaker. This database was 

obtained from a speech therapist in Rio de Janeiro 

among people in treatment. 

For the recordings is used a computer, the Doctor 

speech software and an omnidirectional microphone. 

The voices were recorded in a doctor's office. 

The speakers belonging to the pathology groups 

(nodule and paralysis) have different categories of the 

disease in each group, as described in Tables 1 and 2. 

The following tables describe the speakers in more 

details. 

Table 1: Speakers with Nodule on the Vocal Folds (F – 

Female, M – Male). 

Speaker Gender Age Description of 

the disease 

Speaker 1 F 42 Bilateral nod-

ules  causing a 

small irregular 

vocal cord 

chink 

Speaker 2 F 38 Bilateral nod-

ules with mid-

posterior  chink 

Speaker 3 F 24 Vocal nodules 

with moderate 

and severe 

anterior and 

posterior 

irregular chinks 

Speaker 4 F 53 Vocal nodules 

with an 

irregular vocal 

cord chink 

Speaker 5 F 53 Vocal nodules 

with  an 

irregular vocal 

cord chink 
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Table 1: Speakers with Nodule on the Vocal Folds (F – 

Female, M – Male) (Cont.). 

Speaker 6 F 38 Vocal nodules 

with mid-

posterior chink 

Speaker 7 F 34 Vocal nodules 

with mid-

posterior chink 

Speaker 8 F 32 Fibrous nodules 

- mid-posterior 

chink - great 

vocal effort 

Speaker 9 F 29 Vocal nodules 

with mid-

posterior chink 

Speaker 10 F 33 Vocal 

nodules with 
an irregular 

vocal cord 

chink 

Speaker 11 F 28 Vocal 

nodules with 

a slight  
irregular 

vocal cord 

chink 

Speaker 12 F 28 Vocal 
nodules with 

mid-posterior 
chink 

Table 2: Speakers with Vocal Folds Paralysis (F – Female, 

M – Male). 

Speaker Gender Age Description 

of the disease 

Speaker 13 M 50 Right vocal 

fold paralysis 

with scar re-
traction in the 

middle 1/3 -  

anterior spin-
dle chink   

(lar-yngeal 

trauma 
sequel) 

Speaker 14 M 50 Right 
hemilarynx  

idiopathic 

paralysiswith 
slight vocal 

cord bowing 

Speaker 15 M 24 Right vocal 

cord paralysis 
with spindle 

chink 

Speaker 16 F 69 Right vocal 
cord paralysis 

in 

paramedian 
posi-tion with 

a slight 

bowing and a 
slight  

spindle chink 

- paralytic 
falsetto 

Speaker 17 F 45 Left vocal 

cord paralysis 
in the left 

median and 

paramedian 
positions – 

no chinks 

Speaker 18 F 43 Right 

hemilarynx  
idio-pathic 

paralysis  - 

para-median 
position 

Speaker 19 M 66 Left vocal 

cord paralysis 
with a slight 

bow-ing 

(intubation 
trauma) 

Speaker 20 M 53 Right vocal 

cord paralysis 
in 

paramedian 

position - left 
vocal fold 

stiffness 
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Table 3: Speakers with No Disease (F - Female, M – Male). 

Speaker Gender Age 

Speaker 21 F 56 

Speaker 22 M 30 

Speaker 23 F 41 

Speaker 24 M 46 

Speaker 25 F 61 

Speaker 26 M 35 

Speaker 27 M 63 

Speaker 28 M 48 

Speaker 29 M 26 

Speaker 30 F 56 

Speaker 31 F 56 

4.2 Analysis of the Parameters for 
Classification 

In order to evaluate the influence of each input 

parameter in the classification of voice diseases, the 

box-plot [24] function was used. The boxplot was 

constructed for each of the parameters extracted from 

the glottal signal, in order to see their influence in 

each type of pathology or normal voices and to 

compare their behavior. The three boxplots for each 

group are related to Nodule, Paralysis and Normal 

Voices, respectively. To facilitate the analysis and 

better understand the parameters variation, their 

boxplots were grouped and analyzed by each type of 

parameter: Time-domain parameters, Frequency-

domain parameters and Parameters that Represent 

Variations and Perturbations in the Fundamental 

Frequency, as described in the following sub-sections 

and in Figures 2 to 15. 

4.2.1 Time-domain Parameters of the 
Glottal Signal 

The following figures shows the corresponding 

boxplots for the so-called time-domain parameters 

extracted from the glottal signal, where some 

interesting observations can be extract-ed. The 

parameter Ko, which shows the closing phase of the 

vocal folds, is higher in normal voices than in voices 

with the pathologies considered (Figure 2). OQ1, 

OQ2, CIQ, AQ and NAQ parameters (Figure 4 to 8) 

imply that normal voices have more intensity and 

better voice quality when compared with pathologies. 

The values of the parameters SQ1 and SQ2 are lower 

in normal voices, which indicate a shortening in the 

structure of the vocal folds when one has these 

diseases, especially paralysis (Figures 11 and 12). 

 

Figure 2: Closing phase(Ko). 

 

Figure 3: Opening phase(Ka). 
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Figure 4: Open quotient(OQ1). 

 

Figure 5: Open quotient (OQ2). 

 

Figure 6: Close quotient(CIQ). 

 

Figure 7: Amplitude quotient (AQ). 

 

Figure 8: Normalized amplitude quotient (NAQ). 

 

Figure 9: Open quotient defined by the Liljencrants-Fant 

model (OQa). 

 

Figure 10: Quasi opening quotient (QoQ). 

 

Figure 11: Speed quotient (SQ1). 
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Figure 12: Speed quotient (SQ). 

4.2.2 Frequency Domain Parameters 

Figures 13 to 15 show the corresponding boxplots 

related to the frequency domain parameters. 

 

Figure 13: Fundamental Frequency (F0). 

 

Figure 14: Difference between harmonics (DH12). 

 

Figure 15: Harmonics richness factor (HRF). 

The fundamental frequency (Fig. 13) has a wide 

variation for voices with unilateral paralysis, showing 

a greater disturbance in the vocal folds. Voices with 

nodules have less variation of fundamental frequency 

when compared with normal voices. Harmonics 

richness factor (Fig. 15) changes a lot for unilateral 

paralysis. 

4.2.3 Parameters That Represent Variations 
and Perturbations in the Fundamental 
Frequency 

Figures 16 and 17 present the boxplots of the 

parameters directed related to the variations and 

perturbations of the fundamental frequency. 

 

Figure 16: Jitter. 

 

Figure 17: Shimmer. 

As can be seen from these boxplots, in the 

pathologies cases, the function of the vocal folds is 

greatly compromised, which is indicated by jitter and 

shimmer parameters, as shown in Figures 16 and 17. 

Jitter and shimmer parameters vary the most in the 

voice when paralysis occurs. Jitter and Shimmer are 

very high in voices with paralysis, proving to have 

affected the most the vocal folds. 

4.2.4 Analysis of the Classification Results 

Classification of the pathologies was performed using 

four different classifiers: ANN, SVM, LSTM and 

HMM. For each classifier, three cases were 

considered for the input parameters: (i) only the 
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parameters extracted from the glottal signal, (ii) only 

the MFCCs, and (iii) a combination of (i) and (ii). The 

results for each input configuration are presented in 

the following sub-sections. 

Classification Results with the Parameters of the 

Glottal Signal. In this case, the inputs of the 

classifiers are 16 parameters of the glottal signal. The 

original database was divided into training, validation 

and test sets, where 70% of the database was used for 

training, 20% for validation, and 10% for testing. For 

ANN (after performing lots of tests varying the 

number of the neurons in the hidden layer) the best 

result was obtained with 8 processors in the hidden 

layer.  

Considering the SVM as the classifier, the best 

result was achieved when a RBF kernel was used with 

a regularization constant of C=1 and a Gaussian 

standard deviation of σ=1. 

Our model is a deep recurrent neural network with 

two layers of 100 LSTM cells each.  The bottommost 

layer is the input layer where we inject each time 

frame of an individual example at each time step. The 

layer contains 13 units that would contain the 

coefficients of the time frames. The next layer is two 

layers are LSTM recurrent layers.  

An Estimate-Maximize (Baum Welch) approach 

was used to train three HMM models (one HMM for 

each class), each one to maximize the likelihood of 

the training data with respect to the unknown 

parameters. To classify a sequence into one of the 

three classes, the log-likelihood given by each model 

is computed, and the most likely model defines the 

class that the test sequence belongs to. Left-to-right 

HMM models with five states and three Gaussian 

mixtures were trained in order to obtain an optimal 

classification rate. 

The classifiers has three outputs: speakers with 

nodule on the vocal folds, containing 93 voice 

records, speaker with vocal folds paralysis, 

containing 67 records, and speaker with normal voice, 

containing 88 records. 

4.2.5 Classification Results with  
Mel-Frequency Cepstral Coefficients 
(MFCCS) 

Mel-Frequency Cepstral Coefficients (MFCCs) are 

coefficients that collectively make up an MFC and are 

derived from a type of cepstral representation of the 

audio clip (a nonlinear "spectrum-of-a-spectrum"). 

MFCCs are common in speaker recognition, which is 

the task of recognizing people from their voices. 12 

MFC coefficients were used, the number most often 

used in the literature (Rosa I. S., 2005) (Londoño J., 

Llorente J., 2010). 

The inputs of the classifiers are, therefore, 12 

MFC coefficients in this case. The original database 

was divided into training, validation and test sets, 

where 70% of the database was used for training, 20% 

for validation, and 10% for testing, as in the previous 

case. After lots of tests varying the number of the 

neurons, the best result was achieved with 6 

processors in the hidden layer. Considering the SVM 

as the classifier, the best result was achieved when a 

RBF kernel was used with a regularization constant 

of C= 0,8 and a Gaussian standard deviation of σ=1. 

HMM configuration is the same as above.  

LSTM had the best performance with 100 cells. 

4.2.6 Classification Results with Combining 
MFCCs and Glottal Signal Parameters 

In this third configuration, the input vector of the 

classifiers is composed of 12 MFC coefficients and 

16 parameters of the glottal signal. The original 

database was also divided into training, validation 

and test sets, where 70% of the database was used for 

training, 20% for validation, and 10% for testing. 

After lots of tests, the best ANN configuration was 

obtained with 9 processors in the hidden layer. 

Considering the SVM as the classifier, the best result 

was achieved when a RBF kernel was used with a 

regularization constant of C= 2 and a Gaussian 

standard deviation of σ=1. HMM and LSTM 

configuration is the same as above. 

4.2.7 Discussion 

Table 4 presents a summary of the results obtained 

with all three classifiers and all four configurations of 

input signals. As can be seen from the results in Table 

4, the classification was successful with the glottal 

signal parameters, despite having an imbalanced 

database (fewer samples for voices with paralysis) 

and factors such as gender and age difference 

between speakers, reaching the conclusion that these 

parameters are good discriminators for classifying 

voice disorders.  

When using only MFCC parameters, the best 

result is obtained with the LSTM classifier, since its 

stochastic behaviour can better handle temporal 

samples. 

The combination of MFCCs and glottal signal 

parameters provided the best classification results, 

with an increase of 1% in the average performance 

when compared with the results with only glottal 

signal parameters. The best classification 

performance was obtained with the LSTM classifier, 
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with over 98,3% accuracy. The results were obtained 

by Intel® Optimization for TensorFlow. The LSTM 

network was run on a gold Xeon processor showing 

faster speed than on a 1080 nvidea graphics board in 

30% under the same conditions. 

Table 4: Classification of Voice Pathologies. 

Parameters ANN HMM LSTM SVM 

Parameters of 

the glottal 
signal 

95.8% 82% 97% 96.2% 

MFCCs 75.2% 87% 94% 80% 

Glottal signal 

parameters 
and MFCCs 

96.6% 92% 98.3% 97.2% 

 

LSTM 
Xeon 1080 Nvidia 

527 sec 742 sec Training 

time 

5 CONCLUSIONS 

The aim of this work was the classification of two 

voice diseases: nodule and unilateral paralysis and the 

evaluation of the impact of parameters from the 

glottal signal on this identification. Three different 

classifiers have been used, to compare their 

performance: an Artificial Neural Network, a Support 

Vector Machine, LSTM and a Hidden Markov 

Model. 

From the results obtained, it can be verified that 

glottal signal parameters are more relevant to 

discriminate pathologies of the vocal folds than 

MFCC’s, when they are evaluated individually. This 

is the case even when the database is composed of 

individuals with different genders and ages, providing 

an average accuracy over 99%. 
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