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Abstract: Person re-identification is generally divided into two part: the first is how to represent a pedestrian by discrim-
inative visual descriptors and the second is how to compare them by suitable distance metrics. Conventional
methods isolate these into two parts, the first part usually unsupervised and the second part supervised. The
Bag-of-Words (BoW) model is a widely used image representing descriptor in part one. Its codebook is simply
generated by clustering visual features in Euclidean space, however, it is not optimal. In this paper, we propose
to use a metric learning techniques of part two in the codebook generation phase of BoW. In particular, the
proposed codebook is clustered under Mahalanobis distance which is learned supervised. Then local feature
is compared with the codewords in the codebook by the trained Mahalanobis distance metric. Extensive ex-
periments prove that our proposed method is effective. With several low level features extracted on superpixel
and fused together, our method outperforms state-of-the-art on person re-identification benchmarks including
VIPeR, PRID 450S, and Market-1501.

1 INTRODUCTION

Person re-identification (Gong et al., 2014) is an im-
portant task in video surveillance systems. The key
challenge is the large intra-class appearance varia-
tions, usually caused by various human body poses,
illuminations, and different camera views. Further-
more, the poor quality of video sequences makes it
difficult to develop robust and efficient features.

Generally speaking, person re-identification can
be divided into two parts: first how to represent a
pedestrian by discriminative visual descriptors and
second how to compare them by suitable distance
metrics. Bag of words (BoW) model and its vari-
ants is one of the most widely used part one image
descriptor technology in person re-id systems with
significant performance (Lu and Shengjin, 2015). In
the traditional BoW approaches, images are divided
into patches and local features are first extracted to
represent these patches. Then a codebook of visual
words is generated by unsupervised clustering. Af-
ter that, the image is represented by histogram vectors
obtained by mapping and quantizing the local features
into the visual words in the codebook.

However, it is not optimal to cluster visual words
by k-means in Euclidian space, which implicitly as-
sumes that local features of the same person usually

have closer Euclidian distance, which does not always
stand in practical.

Part two metric learning methods learn suitable
distance metrics of image descriptors to distinguish
correct and wrong matching pairs. However, conven-
tional methods always isolate part one and part two,
the first part usually unsupervised and the second part
supervised.

To this end, this paper proposes to borrow some
part two metric learning techniques to learn a suitable
distance for local features in part one BoW model.
In particular, a Mahalanobis distance is trained on lo-
cal features extracted from pedestrian images. Then
codebook of visual words is clustered under this Ma-
halanobis distance. We formulate the codebook gen-
eration task as a distance metric learning problem and
propose to use KISSME (Köstinger et al., 2012) to
solve it efficiently. When integrated with conven-
tional part two metric learning methods, our proposed
method also achieves good performance. The over-
all framework of our proposed method is shown in
Fig 1. Finally, we outperform state-of-the-art result
by applying KISSME (Köstinger et al., 2012) metric
learning for local features in the BoW model and Null
Space (Zhang et al., 2016a) metric learning for image
descriptors after the BoW model.

In summary, our contributions are three-fold: 1),
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Figure 1: The framework of metric learning in codebook
generation of Bag-of-Words.

to the best of our knowledge, we are the first to pro-
pose metric learning for BoW low level features; 2),
we propose KISSME (Köstinger et al., 2012) to learn
a suitable metric for low level features; 3) we inte-
grate the proposed local feature level metric learning
method with conventional part two image descriptor
level metric learning methods and achieve state-of-
the-art results.

The rest of this paper is organized as follows. In
Section 2, a brief discussion of several related works
on person re-identification is made. In Section 3 we
introduce our method. The experimental results are
shown and examined in Section 4. Finally, we draw
our conclusions in Section 5.

2 RELATED WORK

Generally speaking, person re-id include two basic
parts: how to represent a pedestrian and how to com-
pare them, and most efforts on person re-id could
be roughly divided into these two categories (Zheng
et al., 2016b).

The first category focuses on discriminative vi-
sual descriptor extraction. Gray and Tao (Gray and
Tao, 2008) use RGB, HS, and YCbCr color chan-
nels and 21 texture filters on luminance V channel,
and partition pedestrian images into horizontal strips.
Farenzena et al. (Farenzena et al., 2010) compute a
symmetrical axis for each body part to handle view-
point variations, based on which the weighted color
histogram, the maximally stable color regions, and
the recurrent high-structured patches are calculated.
Zhao et al. (Zhao et al., 2013) propose to extract 32-
dim LAB color histogram and 128-dim SIFT descrip-
tor from each 10*10 patch. Das et al. (Das et al.,
2014) use HSV histograms on the head, torso and
legs. Li et al. (Li et al., 2013) aggregate local color

features by hierarchical Gaussianization (Zhou et al.,
2009; Chen et al., 2015) to capture spatial informa-
tion. Pedagadi et al. (Pedagadi et al., 2013) extract
color histograms from HSV and YUV spaces and then
apply PCA dimension reduction. Liu et al. (Liu et al.,
2014) extract HSV histogram, gradient histogram,
and the LBP histogram from each patch. Yang et al.
(Yang et al., 2014) propose the salient color names
based color descriptor (SCNCD) and different color
spaces are analyzed. In (Liao et al., 2015), LOMO
is proposed to maximize the occurrence of each local
pattern among all horizontal sub-windows to tackle
viewpoint changes and the Retinex transform and a
scale invariant texture operator are applied to handle
illumination variations. In (Lu and Shengjin, 2015),
Bag-of-Words (BoW) model is proposed to aggregate
the 11-dim color names feature (Van de Weijer et al.,
2007) from each local patch.

The second category learns suitable distance met-
rics to distinguish correct and wrong match pairs.
Specifically, most metric learning methods focus on
Mahalanobis form metrics, which generalizes Eu-
clidean distance using linear scaling and rotation of
the feature space, and the distance between two fea-
ture vectors xi and x j could be written as

s(xi,x j) =
√

(xi− x j)T M(xi− x j), (1)

where M is the positive semi-definite Mahalanobis
matrix. Weinberger and Saul (Weinberger and Saul,
2009) propose the large margin nearest neighbor
learning (LMNN) which sets up a perimeter for cor-
rect match pairs and punishes those wrong match
pairs. In (Köstinger et al., 2012), KIEEME is pro-
posed under the assumption that xi − x j is a Gaus-
sian distribution with zero mean. Hirzer et al. (Hirzer
et al., 2012) obtained a simplified formulation and a
promising performance by relaxing the positivity con-
straint required in Mahalanobis metric learning. Li et
al. (Li et al., 2013) propose locally-adaptive decision
functions (LADF) combining a global distance metric
and a locally adapted threshold rule in person verifi-
cation. Chen et al. (Chen et al., 2015) add a bilin-
ear similarity in addition to the Mahalanobis distance
to model cross-patch similarities. Liao and Li (Liao
and Li, 2015) propose weighting the positive and
negative samples differently. In (Liao et al., 2015),
XQDA is proposed as an extension of Bayesian face
and KISSME, in that a discriminant subspace is fur-
ther learned together with a distance metric. It learns
a projection w to the low-dimensional subspace in
a similar way as linear discriminant analysis (LDA)
(Scholkopft and Mullert, 1999) with
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J (w) =
wT Sbw
wT Sww

(2)

maximized, where Sb is the between-class scatter ma-
trix and Sw is the within-class scatter matrix. Zhang
et al. (Zhang et al., 2016a) propose Null Space to
further employ the null Foley-Sammon transform to
learn a discriminative null space with the projection
w where the within-class scatter is zero and between-
class scatter is positive, thus maximizing J (w) to pos-
itive infinite.

Recently some works based on deep learning are
also used to tackle person re-id problem. Filter pair-
ing neural network (FPNN) (Li et al., 2014) is pro-
posed to jointly handle misalignment, photometric
and geometric transforms, occlusions and background
clutter with the ability of automatically learning fea-
tures optimal for the re-identification task. Ahmed et
al. (Ahmed et al., 2015) present a deep convolutional
architecture and propose a method for simultaneously
learning features and a corresponding similarity met-
ric for person re-identification. Compared to hand-
crafted features and metric learning methods, Yi et al.
(Yi et al., 2014) proposes a more general way that can
learn a similarity metric from image pixels directly by
using a ”siamese” deep neural network. A scalable
distance driven feature learning framework based on
the deep neural network is presented in (Ding et al.,
2015). Zheng et al. (Zheng et al., 2016c) propose
a new siamese network that simultaneously computes
identification loss and verification loss, which learns
a discriminative embedding and a similarity measure-
ment at the same time. Pose invariant embedding
(PIE) is proposed as a pedestrian descriptor in (Zheng
et al., 2017), which aims at aligning pedestrians to a
standard pose to help re-id accuracy.

3 THE APPROACH

3.1 Review of Bog-of-Words in Person
Re-identification

The BoW model represents an image as a collection
of visual words. We briefly review the BoW model
in person re-identification in previous approaches (Lu
and Shengjin, 2015; Zheng et al., 2015). First, an
pedestrian image i is segmented as superpixels by
SLIC method (Achanta et al., 2012). Superpixel al-
gorithms cluster pixels into perceptually meaningful
atomic regions according to the pixel similarity of
color and texture, which capture image redundancy
and provide a convenient primitive to compute robust
image features. To enhance geometric constraints,

the pedestrian image is usually partitioned into hor-
izontal strips with equal width. Then in superpixel k
of strip j, the low level high-dimensional appearance
features are extracted as fi, j,k ∈ R d and d is the fea-
ture vector length. These low level features may con-
tain much noise and redundancy, and are often diffi-
cult to use directly. Hence, a codebook C = {c(l)}
of visual words is generated by clustering (usually
standard k-means) on these features and each word
c corresponds to a cluster center with l in a finite in-
dex set. The mapping, termed as a quantizer, is de-
noted by: f→ c(l(f)). The function l(·) is called an
encoder, and function c(·) is called a decoder (Gray,
1984). The encoder l(f) maps any f to the index of its
nearest codeword in the codebook C . Here multiple
assignment (MA) (Jegou et al., 2008) is employed,
where the local feature fi, j,k is assigned to some of
the most similar visual words by measuring the dis-
tance between them. Thus the histogram of the visual
words representing strip j is obtained by encoding the
local features into the codebook, which is denoted
as di, j = histogram{l(fi, j,k)|k ∈ strip j}. Each vi-
sual word is generally weighted using the TF scheme
[2], [3]. We also use pedestrian parsing and back-
ground extraction techniques (Luo et al., 2013) and
only the superpixels which contain pedestrian parts
are considered and counted in our BoW model. The
BoW descriptor of image i is the concatenation of
di = [di,1, · · · ,di, j, · · · ,di,J ]. Finally, the distance of
two images i1 and i2 can be directly calculated as the
Euclidean distance between di1 and di2, that is,

s(i1, i2) =
√

(di1−di2)T · (di1−di2). (3)

Or conventional part two metric learning methods can
be applied to improve re-id performance by super-
vised labels. Most of them focus on Mahalanobis
based metrics, which generalizes Euclidean distance
using linear scalings and rotations of the feature space
and can be written as

s(i1, i2) =
√

(di1−di2)T M(di1−di2), (4)

where M is the positive semi-definite Mahalanobis
matrix.

Fusing different low level features together could
provide more rich information. We consider four dif-
ferent appearance based features: color histograms
(CH or namely HSV) (Lu and Shengjin, 2015), color
names (CN) (Berlin and Kay, 1991; Van de Weijer
et al., 2007), HOG (Dalal and Triggs, 2005), and
SILTP (Liao et al., 2010) to cover both color and tex-
ture characteristics. They are all l1 normalized fol-
lowed by

√
(·) operator before BoW quantization, as

the Euclidean distance on root feature space is equiv-
alent to the Hellinger distance on original feature
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space, and Hellinger kernel performs better consid-
ering histogram similarity (Arandjelović and Zisser-
man, 2012). The fusion is applied at image descriptor
level, which has been demonstrated effective. Dif-
ferent codebooks C HSV , CCN , C HOG, and C SILT P are
generated for each low level feature separately, thus
the BoW image descriptor of each feature is calcu-
lated respectively. Then the final descriptor of image
i is concatenated as di = [dHSV

i ,dCN
i ,dHOG

i ,dSILT P
i ].

3.1.1 Color Histograms

HSV is typically used to describe color characteristics
within one region. First, the image is transferred to
the HSV color space. Then the statistical distribution
of hue (H) and saturation (S) channels is calculated
respectively with each channel quantized to 10 bins.
Luminance (V) channel is excluded because of huge
illumination changes in person re-identification tasks.

3.1.2 Color Names

CN are semantic attributes obtained through assigning
linguistic color labels to image pixels. Here, we use
the descriptors learned from real-world images like
Google Images to map RGB values of a pixel to 11
color terms (Van de Weijer et al., 2007). The CN de-
scriptor assigns each pixel an 11-D vector, each di-
mension corresponding to one of the 11 basic colors.
Afterward, the CN descriptor of a superpixel region is
computed as the average value of each pixel.

3.1.3 HOG

HOG is a classical texture descriptor which counts oc-
currences of gradient orientation in localized portions
of an image. We separate gradient orientation into 9
bins and calculate on the gray image.

3.1.4 Scale Invariant Local Ternary Pattern

SILTP (Liao et al., 2010) descriptor is an improved
operator over the well-known Local Binary Pattern
(LBP) (Ojala et al., 1996). LBP has a nice invari-
ant property under monotonic gray-scale transforms,
however, it is not robust to image noises. SILTP
improves LBP by introducing a scale invariant local
comparison tolerance, achieving invariance to inten-
sity scale changes and robustness to image noises.
Within each superpixel, we extract 2 scales of SILTP
histograms (SILT P0.3

4,3 and SILT P0.3
4,5 ) as suggested in

(Liao et al., 2015).

3.2 Bag-of-Words Framework and
Codebook Generation

Codebook generation is a critical step of building the
BoW model. Conventional approach simply clus-
ters low level appearance features by unsupervised
k-means in Euclidean space. In this paper, we sug-
gest applying supervised metric learning methods and
cluster features in Mahalanobis space with its trained
distance metrics.

We denote the feature vector of superpixel k in the
strip j of image i as fi, j,k, whereas fi, j,k ∈ R d and d
is the feature vector length. And (fi1, j,k1, fi2, j,k2) is a
pairwise feature instance where they belong to two su-
perpixels in the same horizontal strip j of two differ-
ent images. Here, only features belonging to the same
horizontal strip are collected as pairwise instance,
which is quite reasonable because of the geometric
constraints of pedestrian images, thus dramatically re-
duce the amount of pairwise feature instances as well
as the computational complexity. We further denote P
as the positive set of pairwise feature instances where
the first feature and the second feature belong to same
person, i.e, (fi1, j,k1, fi2, j,k2) ∈ P , id(i1) = id(i2). And
we denote N as the negative set of pairwise feature
instances, i.e, (fi1, j,k1, fi2, j,k2) ∈ N , id(i1) 6= id(i2).
The goal of our task is to learn a distance metric
M′ (to be distinguished with M in conventional part
two metric learning methods) to effectively measure
distance between any two visual features fi1, j,k1 and
fi2, j,k2, which is often represented as

d(fi1, j,k1, fi2, j,k2) =√
(fi1, j,k1− fi2, j,k2)T M′(fi1, j,k1− fi2, j,k2),

(5)

where matrix M′ is the d×d Mahalanobis matrix that
must be positive and semi-definite.

Many metric learning methods are proposed to
learn an optimized M′. In this paper, we use KISSME
(Köstinger et al., 2012) and apply it in our BoW code-
book generation. KISSME is a bayesian method and
only assumes (fi1, j,k1 − fi2, j,k2) is gaussian distribu-
tion, which is quite reasonable in our case. The com-
putation is simple yet the algorithm is effective:

∆P = ∑
(fi1, j,k1,fi2, j,k2)∈P

(fi1, j,k1− fi2, j,k2) · (fi1, j,k1− fi2, j,k2)
T

(6)

∆N = ∑
(fi1, j,k1,fi2, j,k2)∈N

(fi1, j,k1− fi2, j,k2) · (fi1, j,k1− fi2, j,k2)
T

(7)
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M′ = ∆
−1
P −∆

−1
N . (8)

Our codebook can be generated by clustering low-
level features under the learned distance metric as
above. We collect all the features with background re-
moved. Then k-means clustering is applied based on
the optimized Mahalanobis distance metric M′. Fi-
nally, we build our codebook on the clustering cen-
ters.

Applying our codebook in test phase is straight-
forward. We first extract low-level features from a
novel test image. Then the feature is compared with
visual words in the codebook by the trained Maha-
lanobis distance M′. Finally, the visual word his-
togram of a pedestrian image strip is calculated and
the image descriptor is the concatenation of all stripes
in one image.

The image descriptor generated above can be
compared directly under Euclidean distance or con-
ventional part two metric learning methods. These
part two metric learning methods operate on image
descriptor level, while our proposed method operates
on low level visual features in part one. We will
demonstrate in section 4 that our proposed method
can be directly integrated with these conventional
methods with a significant performance boost.

4 EXPERIMENTS

To evaluate the effectiveness of our method, we con-
ducted experiments on 3 public benchmark datasets:
the VIPeR (Gray et al., 2007), the PRID 450S (Roth
et al., 2014), and the Market-1501 (Zheng et al., 2015;
Zheng et al., 2016a) datasets. The conventional eval-
uation protocol split the dataset into training and test
part. For unsupervised methods evaluation, only test
samples are used. The BoW codebook size is set to
350 for each feature. An average of 500 superpix-
els per image are generated by SLIC method and its
compactness parameter is set to 20. Considering re-
identification as a ranking problem, the performance
is measured in Cumulative Matching Characteristics
(CMC).

4.1 Datasets

4.1.1 VIPeR

The 1264 images which are normalized to 128x48
pixels in the VIPeR dataset are captured from 2 dif-
ferent cameras in outdoor environment, including 632
individuals and 2 images for each person. It is the
large variances in viewpoint, pose, resolution, and il-
lumination that makes VIPeR very challenging. In

conventional evaluations, the dataset is randomly di-
vided into 2 equal parts, one for training, and the other
for testing. In one trial, images are taken as probe se-
quentially and matched against the opposite camera.
10 trials are repeated and the average result is calcu-
lated.

4.1.2 PRID 450S

450 single-shot image pairs depicting walking hu-
mans are captured from 2 disjoint surveillance cam-
eras. Pedestrian bounding boxes are manually la-
beled with a vertical resolution of 100-150 pixels,
while the resolution of original images is 720*576
pixels. Moreover, part-level segmentation is provided
describing the following regions: head, torso, legs,
carried object at torso level (if any) and carried object
below torso (if any). Like VIPeR, we randomly parti-
tion the dataset into two equal parts, one for training,
and the other for testing. 10 trials are repeated.

4.1.3 Market-1501

Market-1501 consists of 32668 detected person
bounding boxes of 1501 individuals captured by 6
cameras (5 high-resolution and 1 low-resolution) with
overlaps. Each identity is captured by 2 cameras at
least, and may have multiple images in one camera.
For each identity in test, one query image in each
camera is selected, therefore multiple queries are used
for each identity. Note that, the selected 3368 queries
are hand-drawn, instead of DPM-detected as in the
gallery. The provided fixed training and test set are
used under both single-query and multi-query evalua-
tion settings.

4.2 Exploration of Metric Learning in
BoW Codebook Generation

We first compare the performance of our pro-
posed method against conventional baseline BoW ap-
proaches on VIPeR dataset. The performance is eval-
uated on 3 different part two metric learning methods
(KISSME (Köstinger et al., 2012), XQDA (Liao et al.,
2015), Null Space (Zhang et al., 2016a)) on image de-
scriptor level respectively as well as directly applying
Euclidean distance on image descriptors without part
two metric learning methods. The baseline method
applies BoW descriptor simply on Euclidean space
without any pedestrian labels, which is totally unsu-
pervised. As shown in Figure 2, our proposed method
performs better than baseline method with 1.7% rank
1 recognition rate gain. When part two metric learn-
ing methods are integrated, the performance gain on
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Table 1: Comparison to the State-of-the-Art Results on VIPeR.

method r1 (%) r5 (%) r10 (%) r20 (%) r30 (%)
SCSP (Chen et al., 2016a) 53.5 82.6 91.5 96.6 -

Kernel X-CRC (Prates and Schwartz, 2016) 51.6 80.8 89.4 95.3 97.4
FFN (Wu et al., 2016b) 51.1 81.0 91.4 96.9 -

Triplet Loss (Cheng et al., 2016) 47.8 74.7 84.8 91.1 94.3
LSSL (Yang et al., 2016) 47.8 77.9 87.6 94.2 -

Metric Ensembles (Paisitkriangkrai et al., 2015) 44.9 76.3 88.2 94.9 -
LSSCDL (Zhang et al., 2016b) 42.7 - 84.3 91.9 -

LOMO + Null Space (Zhang et al., 2016a) 42.3 71.5 82.9 92.1 -
NLML (Huang et al., 2015) 42.3 71.0 85.2 94.2 -

Semantic Representation (Shi et al., 2015) 41.6 71.9 86.2 95.1 -
WARCA (Jose and Fleuret, 2016) 40.2 68.2 80.7 91.1 -

LOMO + XQDA (Liao et al., 2015) 40.0 68.0 80.5 91.1 95.5
Deep Ranking (Chen et al., 2016b) 38.4 69.2 81.3 90.4 94.1

SCNCD (Yang et al., 2014) 37.8 68.5 81.2 90.4 94.2
Correspondence Structure Learning (Shen et al., 2015) 34.8 68.7 82.3 91.8 94.9

Baseline BoW 48.7 77.5 87.0 93.9 -
Proposed + Null Space 50.0 79.0 88.1 94.5 97.0

Table 2: Comparison to the State-of-the-Art Results on PRID 450S.

method r1 (%) r5 (%) r10 (%) r20 (%) r30 (%)
Kernel X-CRC (Prates and Schwartz, 2016) 68.8 91.2 95.9 98.4 99.0

FFN (Wu et al., 2016b) 66.6 86.8 92.8 96.9 -
LSSCDL (Zhang et al., 2016b) 60.5 - 88.6 93.6 -

Semantic Representation (Shi et al., 2015) 44.9 71.7 77.5 86.7 -
Correspondence Structure Learning (Shen et al., 2015) 44.4 71.6 82.2 89.8 93.3

SCNCD (Yang et al., 2014) 41.6 68.9 79.4 87.8 95.4
Baseline BoW 68.0 88.0 93.8 97.2 -

Proposed + Null Space 70.7 90.7 94.8 97.8 99.2

rank 1 recognition rate reaches 1.8% with KISSME
metric learning, 0.7% with XQDA metric learning,
and 1.3% with Null Space metric learning.
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Figure 2: CMC curves on the VIPeR dataset, by comparing
the proposed approach to conventional baseline methods.
Euclidean distance, KISSME, XQDA, and Null Space are
employed on image descriptor level respectively.

The improvement of our proposed method against
baseline BoW method is most notable, because the
baseline method is totally unsupervised, while the
proposed method applies supervised label data on

BoW low level feature level. The baseline method
with KISSME metric learning outperforms our pro-
posed method without any part two metric learning
methods, which suggests that our proposed local fea-
ture level metric learning method is an improvement
but not replacement of conventional image descriptor
level metric learning methods.

4.3 Comparison to the State-of-the-Art
Results

In this section, we compare our proposed method with
the state-of-the-art approaches. Specifically, we adopt
Null Space as the part two image descriptor level met-
ric learning method.

We first compare our approach with the state-of-
the-art results on VIPeR in Table 1. We obtain a rank
1 re-identification rate of 50.0% on VIPeR, which is
comparable to the best result.

Table 2 compares our results to the state-of-the-
art approaches on PRID 450S. We yields rank 1 re-
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Table 3: Comparison to the State-of-the-Art Results on Market-1501.

methods r1 (%) mAP (%)

Metric learning

WARCA (Jose and Fleuret, 2016) 45.16 -
TMA (Martinel et al., 2016) 47.92 22.31
SCSP (Chen et al., 2016a) 51.90 26.35

LOMO+Null Space (Zhang et al., 2016a) 55.43 29.87
Baseline BoW 63.87 36.04

Proposed+Null Space 64.13 36.21

Deep learning

PersonNet (Wu et al., 2016a) 37.21 18.57
CAN (Liu et al., 2016a) 48.24 24.43
SSDAL (Su et al., 2016) 39.4 19.6

Triplet CNN (Liu et al., 2016b) 45.1 -
Histogram Loss (Ustinova and Lempitsky, 2016) 59.47 -

Gated Siamese CNN (Varior et al., 2016) 65.88 39.55

identification rate of 70.7% with Null Space metric
learning, which is superior to the best result (Prates
and Schwartz, 2016) by 1.9%.

As for the large scale datasets like Market-1501,
we roughly classify supervised learning methods into
two categories, the first conventional metric learning
based approaches, and the second deep learning based
approaches. Our method yields rank 1 recognition of
64.13% and mAP of 36.21% under the single query
mode with Null Space (Zhang et al., 2016a) metric
learning, which outperforms the best metric learning
approaches by 8.7% on rank 1 and 6.3% on mAP, as
shown in Table 3. Our result even outperforms many
other deep learning based approaches and is com-
parable to the recent state-of-the-art method Gated
Siamese CNN (Varior et al., 2016), which is quite
outstanding because Market-1501 is generally consid-
ered more suitable for deep learning based methods
with its large image volume.

5 CONCLUSIONS

In this paper, we propose an improved BoW method
that learns a suitable metric distance of low level
features in codebook generation for person re-
identification. The approach uses KISSME metric
learning for local features, and can be effectively inte-
grated with conventional image descriptor level met-
ric learning algorithms. Experiments demonstrate the
effectiveness and robustness of our method. The pro-
posed method outperforms state-of-the-art results on
VIPeR, PRID 450S, and Market-1501 integrated with
part two Null Space metric learning method.
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