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Abstract: In this study, an extended paradefinite Belnap–Dunn logic (PBD) is introduced as a Gentzen-type sequent
calculus. The logic PBD is an extension of Belnap–Dunn logicas well as a modified subsystem of Arieli,
Avron, and Zamansky’s ideal four-valued paradefinite logicknown as 4CC. The logic PBD is formalized on
the basis of the idea of De and Omori’s characteristic axiom scheme for an extended Belnap–Dunn logic with
classical negation (BD+), even though PBD has no classical negation connective but can simulate classical
negation. Theorems for syntactically and semantically embedding PBD into a Gentzen-type sequent calculus
for classical logic and vice versa are proved. The cut-elimination and completeness theorems for PBD are
obtained via these embedding theorems.

1 INTRODUCTION

In this study, a new extended paradefinite Belnap–
Dunn logic (PBD) is introduced as a Gentzen-type se-
quent calculus. This logic is an extension ofBelnap–
Dunn logic (also calledfirst-degree entailment logic
or useful four-valued logic) (Belnap, 1977b; Belnap,
1977a; Dunn, 1976). It is a modified subsystem of
Arieli, Avron, and Zamansky’s ideal four-valued pa-
radefinite logicknown as 4CC (Arieli and Avron,
2016; Arieli and Avron, 2017; Arieli et al., 2011).
The logic 4CC, which is also an extension of Belnap–
Dunn logic, is regarded as a variant of thelogic of
logical bilattices(Arieli and Avron, 1996; Arieli and
Avron, 1998). Belnap–Dunn logic and the logic of
logical bilattices are well-known to be used as the
logical basis for the semantics of logic programming
(Fitting, 2002). The proposed logic PBD is also a
modification of the logic PL introduced and studied
by Kamide and Zohar in (Kamide, 2017; Kamide and
Zohar, 2018) as an alternative ideal paradefinite logic
embeddable into classical logic and vice versa.

The logic PBD is deemed as a specific type
of paraconsistent logic(Priest, 2002) with multiple
names: it is calledparadefinite logicby Arieli and
Avron (Arieli and Avron, 2016; Arieli and Avron,
2017),non-alethic logicby da Costa, andparanor-

mal logic by Béziau (Beziau, 2009). Regardless of
its name, paradefinite logic incorporates the proper-
ties of bothparaconsistency, which rejectsthe prin-
ciple (α∧∼α)→β of explosion, andparacomplete-
ness, which rejectsthe lawα∨∼α of excluded mid-
dle. Paradefinite logic is known to be appropriate
for handling inconsistent and incomplete information,
i.e. indefinite information (Arieli and Avron, 2016).
Belnap–Dunn logic and 4CC are also paradefinite log-
ics. A good paradefinite logic applicable to the field
of computer science has been required.

In this study, we prove theorems for syntactically
and semantically embedding PBD into a Gentzen-
type sequent calculus LK for classical logic and vice
versa. The approach of this study is similar to those
presented by Kamide et al. in (Kamide, 2016; Kamide
and Shramko, 2017; Kamide, 2017; Kamide and
Zohar, 2018) for some paraconsistent and paradef-
inite logics, includingmultilattice logicsintroduced
by Shramko (Shramko, 2016). We obtain the cut-
elimination and completeness theorems for PBD via
these embedding theorems. Such an embedding-
based proof method has recently been studied, for ex-
ample in (Kamide, 2015; Kamide, 2016; Kamide and
Shramko, 2017; Kamide, 2017; Kamide and Zohar,
2018) to prove the cut-elimination and completeness
theorems for some paraconsistent logics.
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A motivation for developing PBD is to obtain a
goodideal paradefinite logic that can simulate classi-
cal logic in such a way that the underlying logic has
bidirectionalembeddings, i.e., embeddings from the
underlying paradefinite logic into classical logic and
vice versa. Such a logic is required in application
areas that use both paraconsistent (or inconsistency-
tolerant) and classical reasoning mechanisms. As in
such application areas, we must simultaneously han-
dle indefinite (inconsistent and incomplete) informa-
tion and definite (consistent and complete) informa-
tion. Some paraconsistent logics that can simulate
classical negation via paraconsistent double negation
have recently been studied in (Kamide, 2016; Kamide
and Shramko, 2017; Kamide, 2017; Kamide and Zo-
har, 2018). This work showed that some bidirectional
embeddings characterize such logics for representing
both indefinite and definite information.

A paradefinite logic called PL, which has such
bidirectional embeddings and hence can simulate
classical negation, was introduced and studied in
(Kamide, 2017; Kamide and Zohar, 2018). The au-
thors proved that the cut-elimination and complete-
ness theorems for PL hold by using the aforemen-
tioned embedding-based proof method. Thus, the
question considered in this study is that “Is there an-
other logic that has bidirectional embeddings?” We
answer this question by developing the new logic
PBD. We believe that the existence of such bidirec-
tional embeddings is a plausible condition for anideal
paradefinite logic originally proposed in (Arieli et al.,
2011). We therefore believe that PBD is a good alter-
native to ideal paradefinite logic.

The proposed logic PBD has a paraconsistent
negation connective∼ and a conflation connective
−, but has no classical negation connective¬. Some
{∼,−,→}-combined logical inference rules in PBD
are formalized on the basis of the idea of De and
Omori’s characteristic axiom scheme∼(α→β) ↔
¬∼α∧∼β for theextended Belnap–Dunn logic with
classical negation(BD+) (De and Omori, 2015). The
logic BD+ was shown in (De and Omori, 2015) to be
essentially equivalent toBéziau’s four-valued modal
logic PM4N (Beziau, 2011), andZaitsev’s paracon-
sistent logicFDEP (Zaitsev, 2012).

Yet another motivation for developing PBD is to
obtain a plausible paradefinite logic that is compati-
ble to the aforementioned well-studied families of ex-
tended Belnap–Dunn logics concerned with the char-
acteristic axiom scheme by De and Omori. The aim of
this study is therefore to combine the following three
ideas: (1) extending Belnap–Dunn logic with clas-
sical negation by De and Omori (and hence also by
Béziau and Zaitsev); (2) the ideal paradefinite logic

by Arieli, Avron, and Zamansky; and (3) constructing
a paradefinite logic which has bidirectional embed-
dings. Based on this aim, we elaborate on the idea of
constructing PBD next.

The negated-implication inference rules of
PBD just correspond to the axiom scheme
∼(α→β)↔−α∧∼β. This axiom scheme is
equivalent to the characteristic axiom scheme men-
tioned above∼(α→β)↔¬∼α∧∼β by assuming
the axiom scheme¬∼α ↔−α as considered im-
plicitly in (Arieli and Avron, 2016; Kamide, 2017;
Kamide and Zohar, 2018) for the logic EPL or
equivalently 4CC. The logic EPL, which has no¬,
does have some logical inference rules that implicitly
correspond to the axiom schemes¬∼α ↔−α and
¬−α ↔∼α. The conflated-implication inference
rules of PBD just correspond to the axiom scheme
−(α→β)↔∼α∨−β. This axiom scheme is equiva-
lent to the axiom scheme−(α→β)↔¬−α∨−β (or
equivalently−(α→β)↔−α→−β) by assuming the
axiom scheme¬−α ↔∼α.

We now provide some comparisons among PBD,
PL, 4CC, and EPL. Compared with PBD, the logic
PL has the logical inference rules that just correspond
to ∼(α→β)↔ α∧∼β and −(α→β)↔ α→−β in-
stead of those of PBD. The logic EPL is ob-
tained from PL by adding the initial sequents of
the form∼α,−α ⇒ and⇒∼α,−α. It was shown
in (Kamide and Zohar, 2018) that EPL and 4CC
are logically-equivalent. Compared with PBD, the
logic EPL does not have the two characteristic
properties presented in (Kamide and Zohar, 2018):
the quasi-paraconsistency, which rejectsthe prin-
ciple (∼α∧−α)→β of quasi-explosion, and the
quasi-paracompleteness, which rejects the princi-
ple ∼α ∨ −α of quasi-excluded middle. It can
be shown that the quasi-paraconsistency and quasi-
paracompleteness hold for PBD and PL. The quasi-
paraconsistency and quasi-paracompleteness will be
formally introduced and discussed in Section 3.

The structure of this paper is as follows. In Sec-
tion 2, we introduce PBD and LK and address some
basic propositions for PBD. Next, in Section 3, we
prove theorems for syntactically embedding PBD into
LK and vice versa. We also obtain the cut-elimination
theorem for PBD by using the syntactical embedding
theorem of PBD into LK. Using the cut-elimination
theorem, we obtain the quasi-paraconsistency and
quasi-paracompleteness for PBD. In Section 4, we
prove theorems for semantically embedding PBD into
LK and vice versa. Moreover, we also obtain the com-
pleteness theorem with respect to a valuation seman-
tics for PBD by using both the syntactical and seman-
tical embedding theorems from PBD into LK. Finally,
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in Section 5, we conclude this paper and address some
remarks.

2 SEQUENT CALCULUS

Formulasof ideal paradefinite logicare constructed
from countably many propositional variables by the
logical connectives∧ (conjunction),∨ (disjunction),
→ (implication),∼ (paraconsistent negation) and−
(conflation). We use small lettersp,q, ... to denote
propositional variables, Greek small lettersα,β, ... to
denote formulas, and Greek capital lettersΓ,∆, ... to
represent finite (possibly empty) sets of formulas. An
expression♯Γ with an unary connective♯ is used to
denote the set{♯γ | γ ∈ Γ}. The symbol≡ is used to
denote the equality of symbols. Asequentis an ex-
pression of the formΓ ⇒ ∆. An expressionα ⇔ β
is used to represent the abbreviation of the sequents
α ⇒ β andβ ⇒ α. An expressionL ⊢Sis used to rep-
resent the fact that a sequentSis provable in a sequent
calculusL. If L of L ⊢ S is clear from the context, we
omit L in it. We say that two sequent calculiL1 andL2
aretheorem-equivalentif {S | L1 ⊢ S} = {S | L2 ⊢ S}.
A rule R of inference is said to beadmissiblein a se-
quent calculusL if the following condition is satisfied:
For any instance

S1 · · ·Sn

S

of R, if L ⊢ Si for all i, thenL ⊢ S. Moreover,R is
said to bederivablein L if there is a derivation from
S1, · · · ,Sn to S in L. Note that a ruleR of inference is
admissible in a sequent calculusL if and only if two
sequent calculiL andL+Rare theorem-equivalent.

A Gentzen-type sequent calculus PBD for an ideal
paradefinite logic is defined as follows.

Definition 2.1 (PBD). The initial sequents ofPBD
are of the following form, for any propositional vari-
able p,

p⇒ p ∼p⇒∼p −p⇒−p.

The structural inference rules ofPBD are of the
form:

Γ ⇒ ∆,α α,Σ ⇒ Π
Γ,Σ ⇒ ∆,Π

(cut)

Γ ⇒ ∆
α,Γ ⇒ ∆ (we-left) Γ ⇒ ∆

Γ ⇒ ∆,α
(we-right).

The non-negated logical inference rules ofPBD
are of the form:

α,β,Γ ⇒ ∆
α∧β,Γ ⇒ ∆

(∧left)
Γ ⇒ ∆,α Γ ⇒ ∆,β

Γ ⇒ ∆,α∧β
(∧right)

α,Γ ⇒ ∆ β,Γ ⇒ ∆
α∨β,Γ ⇒ ∆

(∨left)
Γ ⇒ ∆,α,β

Γ ⇒ ∆,α∨β
(∨right)

Γ ⇒ ∆,α β,Σ ⇒ Π
α→β,Γ,Σ ⇒ ∆,Π

(→left)
α,Γ ⇒ ∆,β

Γ ⇒ ∆,α→β
(→right).

The∼-combined logical inference rules ofPBD
are of the form:

∼α,Γ ⇒ ∆ ∼β,Γ ⇒ ∆
∼(α∧β),Γ ⇒ ∆

(∼∧left)
Γ ⇒ ∆,∼α,∼β

Γ ⇒ ∆,∼(α∧β)
(∼∧right)

∼α,∼β,Γ ⇒ ∆
∼(α∨β),Γ ⇒ ∆

(∼∨left)
Γ ⇒ ∆,∼α Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α∨β)
(∼∨right)

−α,∼β,Γ ⇒ ∆
∼(α→β),Γ ⇒ ∆

(∼→left)
Γ ⇒ ∆,−α Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α→β)
(∼→right)

α,Γ ⇒ ∆
∼∼α,Γ ⇒ ∆

(∼∼left)
Γ ⇒ ∆,α

Γ ⇒ ∆,∼∼α
(∼∼right)

Γ ⇒ ∆,α
∼−α,Γ ⇒ ∆

(∼−left)
α,Γ ⇒ ∆

Γ ⇒ ∆,∼−α
(∼−right).

The−-combined logical inference rules ofPBD
are of the form:

−α,−β,Γ ⇒ ∆
−(α∧β),Γ ⇒ ∆

(−∧left)
Γ ⇒ ∆,−α Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α∧β)
(−∧right)

−α,Γ ⇒ ∆ −β,Γ ⇒ ∆
−(α∨β),Γ ⇒ ∆

(−∨left)
Γ ⇒ ∆,−α,−β

Γ ⇒ ∆,−(α∨β)
(−∨right)

∼α,Γ ⇒ ∆ −β,Γ ⇒ ∆
−(α→β),Γ ⇒ ∆

(−→left)
Γ ⇒ ∆,∼α,−β

Γ ⇒ ∆,−(α→β)
(−→right)

α,Γ ⇒ ∆
−−α,Γ ⇒ ∆

(−−left)
Γ ⇒ ∆,α

Γ ⇒ ∆,−−α
(−−right)

Γ ⇒ ∆,α
−∼α,Γ ⇒ ∆

(−∼left)
α,Γ ⇒ ∆

Γ ⇒ ∆,−∼α
(−∼right).

Remark 2.2. In the following, we assume the symbol
¬ as the classical negation connective, although¬ is
not included in the language ofPBD.

1. (∼→left) and (∼→right) just correspond to the
Hilbert-style axiom scheme∼(α→β) ↔ −α ∧
∼β. This axiom scheme is equivalent to the
Hilbert-style axiom scheme∼(α→β) ↔ ¬∼α ∧
∼β by assuming the Hilbert-style axiom scheme
¬∼α ↔ −α. The axiom scheme∼(α→β) ↔
¬∼α ∧ ∼β was introduced by De and Omori
for constructing the systemBD+ of extended
Belnap–Dunn logic with classical negation(De
and Omori, 2015). For the axiom scheme¬∼α ↔
−α, see the item 3 below.

2. (−→left) and (−→right) just correspond to the
Hilbert-style axiom scheme−(α→β) ↔ ∼α ∨
−β. This axiom scheme is equivalent to the
Hilbert-style axiom scheme−(α→β) ↔ ¬−α ∨
−β or equivalently−(α→β) ↔ −α→−β by as-
suming the Hilbert-style axiom scheme¬−α ↔
∼α. For the axiom scheme¬−α ↔ ∼α, see the
item 3 below.
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3. As shown in(Kamide, 2017; Kamide and Zohar,
2018), the following logical inference rules, which
implicitly correspond to the above-mentioned
Hilbert-style axiom schemes¬∼α ↔ −α and
¬−α ↔∼α, are admissible in the previously pro-
posed systemEPL:

Γ ⇒ ∆,−α
∼α,Γ ⇒ ∆

(∼left)
−α,Γ ⇒ ∆
Γ ⇒ ∆,∼α

(∼right)

Γ ⇒ ∆,∼α
−α,Γ ⇒ ∆

(−left)
∼α,Γ ⇒ ∆
Γ ⇒ ∆,−α

(−right).

However, these rules are not admissible inPBD.
4. The systemsPL andEPL which were introduced

in (Kamide, 2017; Kamide and Zohar, 2018)have
the following logical inference rules instead of
(∼→left), (∼→right), (−→left) and(−→left):

α,∼β,Γ ⇒ ∆
∼(α→β),Γ ⇒ ∆

(∼→left∗)
Γ ⇒ ∆,α Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α→β)
(∼→right∗)

Γ ⇒ ∆,α −β,Σ ⇒ Π
−(α→β),Γ,Σ ⇒ ∆,Π

(−→left∗)
α,Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α→β)
(−→right∗)

which just correspond to the Hilbert-style ax-
iom schemes∼(α→β)↔α∧∼β and−(α→β)↔
α→−β. The former axiom scheme is a char-
acteristic one forNelson’s paraconsistent four-
valued logic (Almukdad and Nelson, 1984; Nel-
son, 1949), and the latter axiom scheme is a char-
acteristic one forconnexive logics (Angell, 1962;
McCall, 1966; Wansing, 2014).

5. It was shown in(Kamide and Zohar, 2018)that
EPL is theorem-equivalent to the systemG4CC for
one of the original ideal paradefinite logics,4CC,
which was introduced by Arieli et al. in(Arieli
and Avron, 2016; Arieli and Avron, 2017).

Next, we show some basic propositions for PBD.

Proposition 2.3. Sequents of the formα ⇒ α for any
formulaα are provable in cut-freePBD.

Proof. By induction onα.

Proposition 2.4. The following sequents are provable
in cut-freePBD:

1. ∼∼α ⇔ α,

2. −−α ⇔ α,

3. ∼−α ⇔−∼α,

4. ∼(α∧β)⇔∼α∨∼β,

5. ∼(α∨β)⇔∼α∧∼β,

6. ∼(α→β)⇔−α∧∼β,

7. −(α∧β)⇔−α∧−β,

8. −(α∨β)⇔−α∨−β,

9. −(α→β)⇔∼α∨−β.

Proof. By using Proposition 2.3.
For the purpose of showing some embedding the-

orems, we introduce a Gentzen-type sequent calcu-
lus LK for classical logic. Formulas of LK are con-
structed from countably many propositional variables
by logical connectives∧, ∨, → and¬ (classical nega-
tion).

Definition 2.5 (LK) . LK is obtained from the{∼,−}-
free fragment ofPBDby adding the classical negation
inference rules of the form:

Γ ⇒ ∆,α
¬α,Γ ⇒ ∆

(¬left)
α,Γ ⇒ ∆

Γ ⇒ ∆,¬α
(¬right).

As well-known, the cut-elimination theorem holds
for LK (see e.g., (Gentzen, 1969; Takeuti, 2013)).

3 SYNTACTICAL EMBEDDING
AND CUT-ELIMINATION

We introduce a translation function from the language
of PBD into that of LK, and by using this translation,
we show several theorems for embedding PBD into
LK.

Definition 3.1. We fix a setΦ of propositional vari-
ables, and define the setsΦn := {pn | p ∈ Φ} and
Φc := {pc | p ∈ Φ} of propositional variables. The
languageLPBD of PBD is defined usingΦ, ∧,∨,→,∼
and−. The languageLLK of LK is defined usingΦ,
Φn, Φc, ∧, ∨, → and¬. A mapping f fromLPBD to
LLK is defined inductively by:

1. For any p∈ Φ, f(p) := p, f(∼p) := pn ∈ Φn and
f (−p) := pc ∈ Φc,

2. f(α∧β) := f (α)∧ f (β),
3. f(α∨β) := f (α)∨ f (β),
4. f(α→β) := f (α)→ f (β),
5. f(∼(α∧β)) := f (∼α)∨ f (∼β),
6. f(∼(α∨β)) := f (∼α)∧ f (∼β),
7. f(∼(α→β)) := f (−α)∧ f (∼β),
8. f(∼∼α) := f (α),
9. f(∼−α) := ¬ f (α),

10. f(−(α∧β)) := f (−α)∧ f (−β),
11. f(−(α∨β)) := f (−α)∨ f (−β),
12. f(−(α→β)) := f (∼α)∨ f (−β),
13. f(−−α) := f (α),
14. f(−∼α) := ¬ f (α).

An expressionf (Γ) denotes the result of replac-
ing every occurrence of a formulaα in Γ by an oc-
currence off (α). Analogous notation is used for the
other mappingg discussed later.
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Remark 3.2. A similar translation as defined in
Definition 3.1 has been used by Gurevich(Gure-
vich, 1977), Rautenberg(Rautenberg, 1979)and
Vorob’ev (Vorob’ev, 1952)to embed Nelson’s con-
structive logic(Almukdad and Nelson, 1984; Nel-
son, 1949)into intuitionistic logic. Some similar
translations have also recently been used, for exam-
ple, in (Kamide, 2015; Kamide, 2016; Kamide and
Shramko, 2017)to embed some paraconsistent logics
into classical logic.

We now show a weak theorem for syntactically
embedding PBD into LK.

Theorem 3.3 (Weak syntactical embedding from
PBD into LK). Let Γ, ∆ be sets of formulas inLPBD,
and f be the mapping defined in Definition 3.1.

1. If PBD⊢ Γ ⇒ ∆, thenLK ⊢ f (Γ)⇒ f (∆).
2. If LK − (cut)⊢ f (Γ)⇒ f (∆), thenPBD− (cut)

⊢ Γ ⇒ ∆.

Proof. • (1): By induction on the proofsP of
Γ ⇒ ∆ in PBD. We distinguish the cases according to
the last inference ofP, and show some cases.

1. Case∼p⇒∼p: The last inference ofP is of the
form: ∼p⇒∼p for any p∈ Φ. In this case, we
obtain LK⊢ f (∼p)⇒ f (∼p), i.e., LK⊢ pn ⇒ pn

(pn ∈ Φn), by the definition off .

2. Case (∼−left): The last inference ofP is of the
form:

Γ ⇒ ∆,α
∼−α,Γ ⇒ ∆

(∼−left).

By induction hypothesis, we have LK⊢
f (Γ)⇒ f (∆), f (α). Then, we obtain the required
fact: ....

f (Γ)⇒ f (∆), f (α)
¬ f (α), f (Γ)⇒ f (∆)

(¬left)

where¬ f (α) coincides withf (∼−α) by the def-
inition of f .

3. Case (∼→left): The last inference ofP is of the
form:

−α,∼β,Γ ⇒ ∆
∼(α→β),Γ ⇒ ∆

(∼→left).

By induction hypothesis, we have LK⊢
f (−α), f (∼β), f (Γ)⇒ f (∆). Then, we obtain
the required fact:

....
f (−α), f (∼β), f (Γ)⇒ f (∆)

f (−α)∧ f (∼β), f (Γ)⇒ f (∆)
(∧left)

where f (−α) ∧ f (∼β) coincides with
f (∼(α→β)) by the definition off .

4. Case (∼→right): The last inference ofP is of the
form:

Γ ⇒ ∆,−α Γ ⇒ ∆,∼β
Γ ⇒ ∆,∼(α→β)

(∼→left).

By induction hypothesis, we have LK⊢
f (Γ)⇒ f (∆), f (−α) and LK ⊢ f (Γ) ⇒
f (∆), f (∼β). Then, we obtain the required fact:

....
f (Γ)⇒ f (∆), f (−α)

....
f (Γ)⇒ f (∆), f (∼β)

f (Γ)⇒ f (∆), f (−α)∧ f (∼β)
(∧right)

where f (−α) ∧ f (∼β) coincides with
f (∼(α→β)) by the definition off .

• (2): By induction on the proofsQ of
f (Γ)⇒ f (∆) in LK − (cut). We distinguish the cases
according to the last inference ofQ. We show only
the following case.
Case (∧right): The last inference ofQ is (∧right).

1. Subcase (1): The last inference ofQ is of the
form:

f (Γ)⇒ f (∆), f (α) f (Γ)⇒ f (∆), f (β)
f (Γ)⇒ f (∆), f (α∧β)

(∧right)

where f (α ∧ β) coincides with f (α)∧ f (β) by
the definition of f . By induction hypothesis, we
have PBD− (cut)⊢ Γ ⇒ ∆,α and PBD− (cut)⊢
Γ ⇒ ∆,β. We thus obtain the required fact:

....
Γ ⇒ ∆,α

....
Γ ⇒ ∆,β

Γ ⇒ ∆,α∧β
(∧right).

2. Subcase (2): The last inference ofQ is of the
form:

f (Γ)⇒ f (∆), f (∼α) f (Γ)⇒ f (∆), f (∼β)
f (Γ)⇒ f (∆), f (∼(α∨β))

(∧right)

where f (∼(α ∨ β)) coincides with f (∼α) ∧
f (∼β) by the definition of f . By induction hy-
pothesis, we have PBD− (cut)⊢ Γ ⇒ ∆,∼α and
PBD − (cut) ⊢ Γ ⇒ ∆,∼β. We thus obtain the
required fact:

....
Γ ⇒ ∆,∼α

....
Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α∨β)
(∼∨right).
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3. Subcase (3): The last inference ofQ is of the
form:

f (Γ)⇒ f (∆), f (−α) f (Γ)⇒ f (∆), f (−β)
f (Γ)⇒ f (∆), f (−(α∧β))

(∧right)

where f (−(α ∧ β)) coincides with f (−α) ∧
f (−β) by the definition of f . By induction hy-
pothesis, we have PBD− (cut)⊢ Γ ⇒ ∆,−α and
PBD − (cut) ⊢ Γ ⇒ ∆,−β. We thus obtain the
required fact:

....
Γ ⇒ ∆,−α

....
Γ ⇒ ∆,−β

Γ ⇒ ∆,−(α∧β)
(−∧right).

4. Subcase (4): The last inference ofQ is of the
form:

f (Γ)⇒ f (∆), f (−α) f (Γ)⇒ f (∆), f (∼β)
f (Γ)⇒ f (∆), f (∼(α→β))

(∧right)

where f (∼(α→β)) coincides with f (−α) ∧
f (∼β) by the definition of f . By induction hy-
pothesis, we have PBD− (cut)⊢ Γ ⇒ ∆,−α and
PBD − (cut) ⊢ Γ ⇒ ∆,∼β. We thus obtain the
required fact:

....
Γ ⇒ ∆,−α

....
Γ ⇒ ∆,∼β

Γ ⇒ ∆,∼(α→β)
(∼→right).

Using Theorem 3.3 and the cut-elimination theo-
rem for LK, we obtain the following cut-elimination
theorem for PBD.

Theorem 3.4 (Cut-elimination for PBD). The rule
(cut) is admissible in cut-freePBD.

Proof. Suppose PBD⊢ Γ ⇒ ∆. Then, we have
LK ⊢ f (Γ)⇒ f (∆) by Theorem 3.3 (1), and hence
LK − (cut) ⊢ f (Γ)⇒ f (∆) by the cut-elimination
theorem for LK. By Theorem 3.3 (2), we obtain PBD
− (cut)⊢ Γ ⇒ ∆.

Using Theorem 3.3 and the cut-elimination theo-
rem for LK, we obtain a strong theorem for syntacti-
cally embedding PBD into LK.

Theorem 3.5(Syntactical embedding from PBD into
LK) . Let Γ, ∆ be sets of formulas inLPBD, and f be
the mapping defined in Definition 3.1.

1. PBD⊢ Γ ⇒ ∆ iff LK ⊢ f (Γ)⇒ f (∆).
2. PBD − (cut) ⊢ Γ ⇒ ∆ iff LK − (cut) ⊢

f (Γ)⇒ f (∆).
Proof. • (1): (=⇒): By Theorem 3.3 (1). (⇐=):

Suppose LK⊢ f (Γ)⇒ f (∆). Then we have LK−
(cut) ⊢ f (Γ)⇒ f (∆) by the cut-elimination theorem

for LK. We thus obtain PBD− (cut)⊢ Γ ⇒ ∆ by The-
orem 3.3 (2). Therefore we have PBD⊢ Γ ⇒ ∆.

• (2): (=⇒): Suppose PBD− (cut) ⊢ Γ ⇒ ∆.
Then we have PBD⊢ Γ ⇒ ∆. We then obtain LK⊢
f (Γ)⇒ f (∆) by Theorem 3.3 (1). Therefore we ob-
tain LK− (cut)⊢ f (Γ)⇒ f (∆) by the cut-elimination
theorem for LK. (⇐=): By Theorem 3.3 (2).

By using Theorem 3.5, we can obtain the follow-
ing theorem.

Theorem 3.6(Decidability for PBD). PBD is decid-
able.

Proof. By decidability of LK, for eachα, it is
possible to decide iff (α) is provable in LK. Then, by
Theorem 3.5, PBD is also decidable.

Using Theorem 3.4, we can show the paraconsis-
tency and quasi-paraconsistency for PBD.

Definition 3.7. A sequent system L is calledexplo-
sivewith respect to a negation-like connective♯ if L ⊢
α, ♯α ⇒ β for any formulasα andβ. A sequent sys-
tem L is calledparaconsistentwith respect to♯ if L is
not explosive with respect to♯. A sequent system L
is calledquasi-explosivewith respect to the combina-
tion of two different negation-like connectives♯ and♮
if L ⊢ ♯α, ♮α ⇒ β for any formulasα andβ. A sequent
system L is calledquasi-paraconsistentwith respect to
the combination of♯ and♮ if L is not quasi-explosive
with respect to the combination of♯ and♮.

Theorem 3.8(Paraconsistency and quasi-paraconsis-
tency for PBD). We have:

1. PBD is paraconsistent with respect to∼ and−.
2. PBD is quasi-paraconsistent with respect to the

combination of∼ and−.

Proof. Consider sequents (p,∼p⇒ q),
(p,−p⇒ q) and (∼p,−p⇒ q) where p and q
are distinct propositional variables. Then, the
unprovability of these sequents are guaranteed by
Theorem 3.4

Using Theorem 3.4, we can also show the para-
completeness and quasi-paracompleteness for PBD.

Definition 3.9. A sequent system L is calledexclu-
sive with respect to a negation-like connective♯ if L
⊢ ⇒ α, ♯α for any formulaα. A sequent system L
is called paracompletewith respect to♯ if L is not
exclusive with respect to♯. A sequent system L is
called quasi-exclusivewith respect to the combina-
tion of two different negation-like connectives♯ and
♮ if L ⊢ ⇒ ♯α, ♮α for any formulaα. A sequent sys-
tem L is calledquasi-paracompletewith respect to the
combination of♯ and♮ if L is not quasi-exclusive with
respect to the combination of♯ and♮.

Theorem 3.10 (Paracompleteness and quasi-para-
completeness for PBD). We have:
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1. PBD is paracomplete with respect to∼ and−.

2. PBD is quasi-paracomplete with respect to the
combination of∼ and−.

Proof. Consider sequents (⇒ p,∼p), (⇒ p,−p)
and (⇒∼p,−p) wherep is a propositional variable.
Then, the unprovability of these sequents are guaran-
teed by Theorem 3.4

Remark 3.11. The quasi-paraconsistency and quas-
paracompleteness do not hold forEPL (Kamide and
Zohar, 2018)or equivalently4CC (Arieli and Avron,
2016), sinceEPL has the initial sequents of the form
∼α,−α ⇒ and⇒∼α,−α. On the other hand, these
properties hold for the logicPL which was introduced
and studied in(Kamide, 2017; Kamide and Zohar,
2018).

Next, we introduce a translation function from the
language of LK into that of PBD, and by using this
translation, we show some theorems for embedding
LK into PBD.

Definition 3.12. Let LPBD andLLK be the languages
defined in Definition 3.1. A mapping g fromLLK to
LPBD is defined inductively by:

1. For any p∈ Φ, any pn ∈ Φn and any pc ∈ Φc,
g(p) := p, g(pn) :=∼p and g(pc) :=−p,

2. g(α∧β) := g(α)∧g(β),
3. g(α∨β) := g(α)∨g(β),
4. g(α→β) := g(α)→g(β),
5. g(¬α) :=∼−g(α).
Theorem 3.13 (Weak syntactical embedding from
LK into PBD). Let Γ, ∆ be sets of formulas inLLK ,
and g be the mapping defined in Definition 3.12.

1. If LK ⊢ Γ ⇒ ∆, thenPBD⊢ g(Γ)⇒ g(∆).
2. If PBD − (cut) ⊢ g(Γ)⇒ g(∆), thenLK − (cut)

⊢ Γ ⇒ ∆.

Proof. • (1): By induction on the proofsP of
Γ ⇒ ∆ in LK. We distinguish the cases according to
the last inference ofP, and show only the following
cases.

1. Casep⋆ ⇒ p⋆ with ⋆ ∈ {n,c}: The last inference
of P is of the form: p⋆ ⇒ p⋆ for any p⋆ ∈ Φ⋆

with ⋆ ∈ {n,c}. In this case, we obtain PBD
⊢ g(pn)⇒ g(pn) and PBD⊢ g(pc)⇒ g(pc) i.e.,
PBD ⊢ ∼p⇒∼p and PBD⊢ −p⇒−p, by the
definition ofg.

2. Case (¬left): The last inference ofP is of the
form:

Γ ⇒ ∆,α
¬α,Γ ⇒ ∆

(¬left)

By induction hypothesis, we have PBD⊢
g(Γ)⇒ g(∆),g(α). We then obtain the required

fact: ....
g(Γ)⇒ g(∆),g(α)

∼−g(α),g(Γ)⇒ g(∆)
(∼−left)

where∼−g(α) coincides withg(¬α) by the def-
inition of g.

• (2): By induction on the proofsQ of
g(Γ)⇒ g(∆) in PBD − (cut). We distinguish the
cases according to the last inference ofQ, and show
only the following cases.
1. Case (∼−left): The last inference ofQ is of the

form:
g(Γ)⇒ g(∆),g(α)

∼−g(α),g(Γ)⇒ g(∆)
(∼−left)

where∼−g(α) coincides withg(¬α) by the defi-
nition of g. By induction hypothesis, we have LK
− (cut)⊢ Γ ⇒ ∆,α. We thus obtain the required
fact: ....

Γ ⇒ ∆,α
¬α,Γ ⇒ ∆

(¬left).

2. Case (∧right): The last inference ofQ is of the
form:

g(Γ)⇒ g(∆),g(α) g(Γ)⇒ g(∆),g(β)
g(Γ)⇒ g(∆),g(α)∧g(β)

(∧right)

whereg(α) ∧ g(β) coincides withg(α ∧ β) by
the definition ofg. By induction hypothesis, we
have LK− (cut) ⊢ Γ ⇒ ∆,α and LK − (cut) ⊢
Γ ⇒ ∆,β. We thus obtain the required fact:

....
Γ ⇒ ∆,α

....
Γ ⇒ ∆,β

Γ ⇒ ∆,α∧β
(∧right).

Theorem 3.14(Syntactical embedding from LK into
PBD). Let Γ, ∆ be sets of formulas inLLK , and g be
the mapping defined in Definition 3.12.

1. LK ⊢ Γ ⇒ ∆ iff PBD⊢ g(Γ)⇒ g(∆).
2. LK − (cut) ⊢ Γ ⇒ ∆ iff PBD − (cut) ⊢

g(Γ)⇒ g(∆).
Proof. By using Theorems 3.13 and 3.4. Similar

to Theorem 3.5.

4 SEMANTICAL EMBEDDING
AND COMPLETENESS

We now introduce a valuation semantics for PBD by
defining the valuation function on the two-element set
of classical truth-values.
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Definition 4.1 (Semantics for PBD). Let Φ be the set
of all propositional variables,Φ∼ be the set{∼p | p∈
Φ} andΦ− be the set{−p | p∈ Φ}. A paraconsistent
valuationv∗ is a mapping fromΦ∪Φ∼∪Φ− to the set
{t, f} of truth values. The paraconsistent valuation v∗

is extended to the mapping from the set of all formulas
to {t, f} by the following clauses.

1. v∗(α∧β) = t iff v∗(α) = t and v∗(β) = t,
2. v∗(α∨β) = t iff v∗(α) = t or v∗(β) = t,
3. v∗(α→β) = t iff v∗(α) = f or v∗(β) = t,
4. v∗(∼(α∧β)) = t iff v∗(∼α) = t or v∗(∼β) = t,
5. v∗(∼(α∨β)) = t iff v∗(∼α) = t and v∗(∼β) = t,
6. v∗(∼(α→β)) = t iff v∗(−α) = t and v∗(∼β) = t,
7. v∗(∼∼α) = t iff v∗(α) = t,
8. v∗(∼−α) = t iff v∗(α) = f ,
9. v∗(−(α∧β)) = t iff v∗(−α) = t and v∗(−β) = t,

10. v∗(−(α∨β)) = t iff v∗(−α) = t or v∗(−β) = t,
11. v∗(−(α→β)) = t iff v∗(∼α) = t or v∗(−β) = t,
12. v∗(−−α) = t iff v∗(α) = t,
13. v∗(−∼α) = t iff v∗(α) = f .

A formulaα is calledPBD-valid iff v∗(α) = t holds
for all paraconsistent valuation v∗.

For the purpose of showing some semantical
embedding theorems, we present the standard two-
valued semantics for LK.

Definition 4.2 (Semantics for LK). A valuation v is
a mapping from the set of all propositional variables
to the set{t, f} of truth values. The valuation v is
extended to the mapping from the set of all formulas
to {t, f} by the following clauses.

1. v(α∧β) = t iff v(α) = t and v(β) = t,
2. v(α∨β) = t iff v(α) = t or v(β) = t,
3. v(α→β) = t iff v(α) = f or v(β) = t,
4. v(¬α) = t iff v(α) = f .

A formulaα is calledLK-valid iff v(α) = t holds for
all valuation v.

The following completeness theorem holds for
LK: For any formulaα, LK ⊢ ⇒ α iff α is LK-valid.

Next, we show a theorem for semantically embed-
ding PBD into LK.

Lemma 4.3. Let f be the mapping defined in Defini-
tion 3.1. For any paraconsistent valuation v∗, we can
construct a valuation v such that for any formulaα,
v∗(α) = t iff v( f (α)) = t.

Proof. Let Φ be a set of propositional variables,
and for each⋆ ∈ {n,c}, let Φ⋆ be the set{p⋆ | p ∈
Φ} of propositional variables. Suppose thatv∗ is a
paraconsistent valuation. Suppose thatv is a mapping
from Φ∪Φn∪Φc to {t, f} such that

1. v∗(p) = t iff v(p) = t,

2. v∗(∼p) = t iff v(pn) = t,

3. v∗(−p) = t iff v(pc) = t.

Then, the lemma is proved by induction onα.

• Base step:

1. Caseα ≡ p wherep is a propositional variable:
v∗(p) = t iff v(p) = t (by the assumption) iff
v( f (p)) = t (by the definition off ).

2. Caseα ≡ ∼p wherep is a propositional variable:
v∗(∼p) = t iff v(pn) = t (by the assumption) iff
v( f (∼p)) = t (by the definition off ).

3. Caseα ≡ −p wherep is a propositional variable:
Similar to the above case.

• Induction step: We show some cases.

1. Case α ≡ ∼∼β: v∗(∼∼β) = t iff v∗(β) =
t iff v( f (β)) = t (by induction hypothesis) iff
v( f (∼∼β)) = t (by the definition off ).

2. Case α ≡ ∼(β→γ): v∗(∼(β→γ)) = t iff
v∗(−β) = t and v∗(∼γ) = t iff v( f (−β)) = t
and v( f (∼γ)) = t (by induction hypothesis) iff
v( f (−β)∧ f (∼γ)) = t iff v( f (∼(β→γ))) = t (by
the definition off ).

3. Caseα ≡ ∼−β: v∗(∼−β) = t iff v∗(β) = f
iff v( f (β)) = f (by induction hypothesis) iff
v(¬ f (β)) = t iff v( f (∼−β)) = t (by the definition
of f ).

4. Caseα ≡−(β→γ): v∗(−(β→γ)) = t iff v∗(∼β)=
t or v∗(−γ) = t iff v( f (∼β)) = t or v( f (−γ)) = t
(by induction hypothesis) iffv( f (∼β)∨ f (−γ)) =
t iff v( f (−(β→γ))) = t (by the definition off ).

Lemma 4.4. Let f be the mapping defined in Defi-
nition 3.1. For any valuation v, we can construct a
paraconsistent valuation v∗ such that for any formula
α, v( f (α)) = t iff v∗(α) = t.

Proof. Similar to the proof of Lemma 4.3.

Theorem 4.5(Semantical embedding from PBD into
LK) . Let f be the mapping defined in Definition 3.1.
For any formulaα, α is PBD-valid iff f(α) is LK-
valid.

Proof. By Lemmas 4.3 and 4.4.

Theorem 4.6(Completeness for PBD). For any for-
mulaα, PBD⊢ ⇒ α iff α is PBD-valid.

Proof. We have: PBD⊢ ⇒ α iff LK ⊢ ⇒ f (α)
(by Theorem 3.5) ifff (α) is LK-valid (by the com-
pleteness theorem for LK) iffα is PBD-valid (by The-
orem 4.5).

Next, we show a theorem for semantically embed-
ding LK into PBD.
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Lemma 4.7. Let g be the mapping defined in Defi-
nition 3.12. For any valuation v, we can construct a
paraconsistent valuation v∗ such that for any formula
α, v(α) = t iff v∗(g(α)) = t.

Proof. Let Φ be a set of propositional variables,
and for each⋆ ∈ {n,c}, let Φ⋆ be the set{p⋆ | p ∈
Φ} of propositional variables. Suppose thatv∗ is a
paraconsistent valuation. Suppose thatv is a mapping
from Φ∪Φn∪Φc to {t, f} such that

1. v∗(p) = t iff v(p) = t,

2. v∗(∼p) = t iff v(pn) = t,

3. v∗(−p) = t iff v(pc) = t.

Then, the lemma is proved by induction onα.

• Base step:

1. Caseα ≡ p wherep is a propositional variable:
v(p) = t iff v∗(p) = t (by the assumption) iff
v∗(g(p)) = t (by the definition ofg).

2. Caseα ≡ pn wherep is a propositional variable:
v(pn) = t iff v∗(∼p) = t (by the assumption) iff
v∗(g(pn)) = t (by the definition ofg).

3. Caseα ≡ pc wherep is a propositional variable:
Similar to the above case.

• Induction step: We show only the following
case,

Case α ≡ ¬β: v(¬β) = t iff v(β) = f
iff v∗(g(β)) = f (by induction hypothesis) iff
v∗(∼−g(β)) = t iff v∗(g(¬β)) = t (by the definition
of g).

Lemma 4.8. Let g be the mapping defined in Defi-
nition 3.12. For any paraconsistent valuation v∗, we
can construct a valuation v such that for any formula
α, v∗(g(α)) = t iff v(α) = t.

Proof. Similar to the proof of Lemma 4.7.

Theorem 4.9 (Semantical embedding from LK into
PBD). Let g be the mapping defined in Definition
3.12. For any formulaα, α is LK-valid iff g(α) is
PBD-valid.

Proof. By Lemmas 4.7 and 4.8.

5 CONCLUDING REMARKS

In this study, we introduced a new extended paradefi-
nite Belnap–Dunn logic (PBD) as a Gentzen-type se-
quent calculus. This logic is a modified subsystem of
Arieli, Avron and Zamansky’s ideal four-valued pa-
radefinite logic 4CC. We proved the theorems for syn-
tactically and semantically embedding PBD into LK

and vice versa. We then obtained the cut-elimination
and completeness theorems for PBD via these embed-
ding theorems. The theorems presented were proved
using the same methods as shown in (Kamide and
Shramko, 2017; Kamide and Zohar, 2018).

Next, we show some motivations for introducing
PBD from the point of view of computer science.
Combining Belnap–Dunn logic (paradefinite logic)
with classical negation is regarded as an important is-
sue in the field of computer science. Descriptions of
both indefinite (or inconsistent) information, which
is described by the paraconsistent negation connec-
tive∼ in Belnap–Dunn logic (paradefinite logic), and
definite (consistent) information, which is described
by the classical negation connective¬ (which can
be defined as∼− in PBD) in classical logic, are re-
quirements for appropriately handling certain com-
puter science applications. Indeed, both the negations
have been used in many computer science applica-
tions such as logic programming and automated the-
orem proving. Thus, using a combined logic (such
as PBD) with the paraconsistent and classical nega-
tions, we can naturally handle these applications. For
some recent developments of such applications using
paraconsistent negation, see e.g., (Ciucci and Dubois,
2017) wherein a logical framework was proposed for
handling multi-source inconsistent information. For
a recent purely theoretical development of extensions
of Belnap–Dunn logic, see (Albuquerque et al., 2017)
wherein some super-Belnap logics was studied from
an algebraic point of view.

Finally, we show that some additional results can
be obtained for PBD and its first-order extension
FPBD. By using the same embedding-based method
proposed and used in (Kamide, 2015; Kamide and
Shramko, 2017), we can obtain a modified Craig in-
terpolation theorem for PBD, which was also shown
in (Kamide, 2015; Kamide and Shramko, 2017) for
the other logics. As a corollary of this theorem, we
can also obtain the Maksimova principle of variable
separation for PBD.

The expressionV(α) denotes the set of all propo-
sitional variables occurring inα.

Theorem 5.1(Modified Craig interpolation for PBD).
SupposePBD ⊢ α ⇒ β for any formulasα andβ. If
V(α)∩V(β) 6= /0, then there exists a formulaγ such
that

1. PBD⊢ α ⇒ γ andPBD⊢ γ ⇒ β,
2. V(γ)⊆V(α)∩V(β).
If V (α)∩V(β) = /0, then

3. PBD⊢ ⇒∼−α or PBD⊢ ⇒ β.

As a corollary, we can obtain the following Mak-
simova principle of variable separation.
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Theorem 5.2(Maksimova principle for PBD). Sup-
pose V(α1,α2) ∩ V(β1,β2) 6= /0 for any formulas
α1,α2,β1 andβ2. If PBD ⊢ α1∧β1 ⇒ α2∨β2, then
eitherPBD⊢ α1 ⇒ α2 or PBD⊢ β1 ⇒ β2.

We can also introduce a first-order extension,
FPBD, of PBD, as well as its valuation semantics
in a natural way. Thus, we can show the theorems
for syntactically and semantically embedding FPBD
into a Gentzen-type sequent calculus FLK for first-
order classical logic. By using these embedding the-
orems, we can obtain the cut-elimination, complete-
ness, modified Craig interpolation, and Maksimova
separation theorems for FPBD.
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