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Abstract: This study proposes a new method of fitting a glottal model to the glottal flow estimate using system 
identification (SI) algorithms. Each period of the glottal estimate is split into open and closed phases and each 
phase is modelled as the output of a linear filter. This approach allows the parametric model fitting task to be 
cast as a system identification problem and sidesteps issues encountered with standard glottal parametrisation 
algorithms. The study compares the performance of two SI methods: Steiglitz-McBride and Prony. The tests 
were performed on synthetic glottal signals (n=121) and real speech (n=50 healthy, n=23 pathological). The 
effectiveness of the techniques is quantified by calculating the Normalised Root Mean Squared Error 
(NRMSE) between the estimated glottal fit and the glottal estimate. Tests on synthetic glottal signals show 
that the average performance of the Steiglitz-McBride method (97.25%) was better than the Prony method 
(70.41%). Real speech tests produced results of 64.29% and 51.57% for healthy and pathological speech 
respectively. The results show that system identification techniques can produce robust parametric model 
estimates of the glottal waveform and that the Steiglitz-McBride method is superior to the Prony method for 
this task. 

1 INTRODUCTION 

The glottal waveform represents the activity of the 
vocal folds and can provide vital information about 
the vocal folds and their behaviour. The glottal 
waveform can be estimated from the speech signal 
and is utilised in many speech processing 
applications, including speech coding, synthesis and 
speech disorder diagnosis (Klatt, 1990). Parametric 
models of the glottal waveform are often employed 
and despite the success of the glottal signal in 
applications, challenges remain in accurately and 
robustly estimating the parameters of these models. 
This is the case for healthy speech but is particularly 
notable for pathological speech. This study aims to 
present a new model of the glottal waveform and test 
methods to estimate the parameters of this model. 
This is partly motivated by the need to develop a 
method that can accurately and robustly estimate the 
glottal parameters of pathological speech. 

Parameterisation of the glottal signal consists of 
two steps: (1) glottal waveform estimation and (2) 
fitting a parametric model to the estimated glottal 
waveform. Glottal waveform estimation is achieved 
by removing the effect of the vocal tract from the 
speech waveform, often by estimating a vocal tract 

filter and inverse filtering the speech signal with this 
filter to remove the vocal tract component. The 
resulting glottal estimate will have the parametric 
model fitted by applying an appropriate optimisation 
procedure. This is typically a nonlinear optimisation 
problem, depending on the particular glottal model 
and how the problem is cast. This is the case for the 
Liljencrants-Fant (LF) model, which is currently the 
most widely adopted glottal waveform model. Both 
of these steps have a number of known difficulties as 
reported in (Li et al, 2011, 2012) (Fu, Murphy, 2006). 

It is often impossible to fully remove the vocal 
tract component from the speech waveform. This can 
result in distortion of the glottal waveform often 
presenting as ripples in the glottal waveform (Fant, 
Lin 1987). This can also cause problems with correct 
estimation of glottal opening and closing instants 
(GOI and GCI respectively) and in turn, inaccurate 
glottal parameter estimation. In fitting the parametric 
model to the estimated glottal waveform, due to the 
necessity to employ nonlinear optimisation methods, 
the accuracy of the final glottal parameters depends 
critically on the initial estimates used to initialise the 
optimisation procedure (Strik, 1993). Bad initial 
estimates will result in suboptimal estimation of the 
parameters (Li et al, 2012). This problem becomes 
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particularly challenging for pathological speech, 
when the glottal parameters may be outside the 
typical range expected for healthy speech. 

This paper proposes a new way to model the 
glottal waveform, which in turn allows the 
application of new algorithms to estimate the glottal 
parameters. The model being proposed considers the 
open and closed phase of the glottal signal 
individually and models the glottal signal within each 
phase as the impulse response of a linear filter. This 
allows fitting of the parametric model to the glottal 
estimate to be cast as a system identification problem. 
In this case the input is modelled as an impulse, the 
output is either the open or closed phase of the glottal 
estimate and the problem is to estimate the filter that 
can best approximate the output for the given input 
signal. Many system identification algorithms exist 
that could be used for this task (Ljung, 1999), 
including algorithms that have been developed to be 
robust to noise in the output signal. This is 
particularly beneficial for glottal signals with high 
levels of aspiration noise, which is often the case for 
pathological speech. 

The remainder of this paper is arranged as 
follows. Section 2 presents some background on 
existing glottal models before presenting the details 
of the new approach being proposed in this paper. 
Section 3 describes how the model and associated 
algorithms are tested. Section 4 presents the results 
with discussion and Section 5 presents the 
conclusions. 

2 MODELING THE GLOTTAL 
WAVEFORM 

Many signal models of the glottal waveform have 
been proposed in the literature. These include the 
Rosenberg model (Rosenberg, 1971), the 
KLGLOTT88 (Klatt, 1990), the R++ model 
(Veldhuis,1998), the CALM model (Doval et al, 
2003) and the LF model, among others. Signal 
models of the glottal flow generally focus on the 
differentiated glottal flow. Typically, a separate 
mathematical function is used to model the open and 
return phases of the differentiated glottal signal, such 
that they join at the GCI and the glottal pulse is 
differentiable at the GCI. An example model signal of 
the differentiated glottal flow waveform generated 
with the LF model is depicted in Figure 1.Most 
models have a similar approach, in that they have a 
separate mathematical function for modelling the  

 

Figure 1: LF model diagram of a differentiated glottal pulse. 

open and return phases of the signal. The primary 
difference between many of these models is the 
functions employed to model each phase. 

Currently the most widely adopted glottal model 
is the LF model, equation 1. The model consists of 
two parts, representing the open and return phases of 
the glottal signal. The LF model is a five-parameter 
model. The entire model can be defined using the 
timing parameters Ta, Tp and Te, the pitch period T and 
the amplitude of the glottal closure instant (GCI) Ee. 
Ta and Tp are times relative to the start of the pitch 
period as depicted in Figure 1. Ta is the time constant 
of the exponential in the return phase. The time 
parameter Te marks the instant of the glottal closure 
and Ee is the corresponding amplitude. Despite 
having several more parameters, the LF model is 
constrained by the five primary parameters and the 
remaining parameters can be estimated from the 
primary parameters. 
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Fu and Murphy (2006) proposed a new glottal 
source estimation method based on a joint source-
filter separation technique using the LF model. Their 
proposed technique estimates the parameters based 
on the Rosenberg model and then converts them to 
the LF parameters. They perform tests on synthetic 
speech covering six phonation types and real healthy 
speech files to verify the performance of their method 
on ‘real-world’ data. They report a high accuracy of 
the synthetic speech results and robustness against 
additive glottal noise, stating that this allows their 
new method to be applied to a wide range of voice 
types. Tests on real speech report performance 
comparable with that of the synthetic speech and state 
that their model provides rather reliable estimation in 
the case of natural utterances. 

Li et al. (2011) proposed a new approach for LF 
model based glottal source parameter estimation by 
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extended Kalman filtering and use synthetic speech to 
conduct tests. They quantify the results by calculating 
the error rates of the estimated shape controlling 
parameters and report the method to be effective for 
a wide range of LF parameters and overall, perform 
better than the standard time-domain LF-model 
fitting algorithm when tested on synthetic speech. 

Work of Muthukumar et al. (2013) proposes 
estimating the LF model parameters using a gradient 
descent optimization algorithm. The accuracy of their 
approach inherently depends on the accuracy of the 
initial parameters. They iteratively fit a LF model to 
the inverse filtered glottal signal and then optimise it 
to minimize the RMS error. As a way of quantifying 
the performance of their approach, they conducted a 
listening test, comparing their model with a baseline 
system described in (Yoshimura et al, 2001). The 
majority of the listeners chose the proposed system as 
more natural sounding and the results were deemed 
statistically significant. 

Previous studies on glottal fitting report 
difficulties with the standard model fitting approach 
and aim to overcome them in different ways. A major 
problem is with estimating the vocal tract filter 
without the glottal flow having an effect on the output 
speech. This issue was already reported by Fant and 
Lin back in (1987).  

The glottal waveform estimation step can be 
impacted by source-tract interaction and the 
performance limitations inherent in some inverse 
filtering algorithms (Quatieri, 2006). In the IAIF 
method (Alku, 1991), the vocal tract filter is 
estimated using an adaptive filter algorithm and 
subsequently applied to estimate the glottal signal. A 
more recent Quasi Closed Phase (QCP) method 
described in (Airaksinen et al, 2014) eliminates the 
source effect using weighted linear prediction (WLP) 
and focuses on the samples located in the closed 
phase. Recent work of Sahoo and Routray (2016) 
implements system identification methods in a novel 
glottal inverse filtering method. They report that 
when compared to the most widely used IAIF and the 
more recent QCP methods, their model using system 
identification techniques produced results indicating 
their model outperforms IAIF and QCP, however, at 
the cost of computational speed. 

2.1 Proposed Glottal Model 

This study proposes modelling the open and return 
phases of the glottal signal as the impulse response of 
two linear filters. The input impulse occurs at the GCI 
and the resulting filter outputs produce the open and 
return phases of the glottal signal. For practical 

purposes in processing the glottal signal the open 
phase will be reversed in time and treated as a causal, 
stable impulse response. 

In the method proposed by Doval et al (2003), the 
differentiated glottal flow signal is modelled as the 
response of a linear filter. The model is referred to as 
the causal-anticausal linear model (CALM), as the 
glottal signal is modelled as having both causal and 
anticausal components. The return phase corresponds 
with the causal component and the open phase 
corresponds with the anticausal component. The 
method proposed in this study adopts a similar 
approach, by modelling the glottal signal as the output 
of linear filters. However, our approach treats the two 
phases as outputs of two independent linear filters as 
opposed to one a causal-anticausal linear filter model 
considered by CALM, and models those filters using 
SI methods. 

The transfer functions requirements for the glottal 
modelling filters are determined by matching them to 
the LF model. The LF equation for the return phase is 
a decaying exponential which corresponds with the 
impulse response of a continuous time first order 
filter. The open phase, when time reversed, 
corresponds with a damped sinusoid or equivalently 
the impulse response of a continuous time stable 
second order filter. The corresponding transfer 
functions in the Z transform domain are given in 
equation 2 for the open phase transfer function, 
 and equation 3 for the return phase transfer ,(ݖ)ܱܲܩ
function, (ݖ)ܲܥܩ. The meeting point of the open and 
return phases represents the GCI, Te, with amplitude 
value of Ee. The input impulse for each filter is set to 
an amplitude of 1. For the open phase the input 
impulse is applied at the sample corresponding with 
the GCI. For the closed phased the impulse is applied 
at the sample adjacent to the GCI within the closed 
phase. 
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This model establishes the framework for 
estimating the parameters of the glottal waveform as 
a system identification problem allowing us to bypass 
the problems posed by the issues encountered with 
standard glottal parametrisation algorithms. The input 
and output signals for open and closed phases are 
known and a method to estimate the system that can 
produce the corresponding response is required to 
estimate the glottal parameters. 
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2.2 Parameter Estimation 

Numerous algorithms exist that could be used to solve 
the system identification problem to estimate the 
glottal parameters for the proposed models (Ljung, 
1999). For this study Prony’s method (Hayes, 2009) 
and the Steiglitz McBride method (Steiglitz, 
McBride, 1965) where selected to estimate the 
parameters of the transfer function models of the open 
and return phases of the glottal signal. 

Prony’s method was selected as it has a relatively 
low computational complexity only requiring the 
solution of a set of linear equations, to provide the 
parameters of a given model. A disadvantage of 
Prony’s method is that it is known to have poor 
performance when presented with a noisy output 
signal (Kumaresan et al, 1984). 

The Steiglitz-McBride algorithm is an iterative 
technique of linear system identification. It works by 
minimising the mean-square error between the output 
of the system and the estimated model output and 
improving the estimate at each iteration. The first 
iteration of the Steiglitz-McBride algorithm requires 
a means to make an initial estimate of the model 
parameters to initialise the algorithm. This is often 
achieved by applying Prony’s method. The Steiglitz-
McBride algorithm was selected for this study as it is 
known to be robust to noise in the output signal and 
can provide optimal estimates in the case of white 
noise in the output signal (Steiglitz, McBride, 1965 
and Stoica, Soderstrom, 1981). This study employs 
Prony’s method to initialise the Steiglitz-McBride 
algorithm. 

3 THE EXPERIMENT 

The aim of this study is to test a new model of the 
glottal waveform that utilises SI algorithms to 
parametrise the glottal signal. Two SI algorithms are 
considered, the Prony method and the Steiglitz Mc 
Bride algorithm, as described in section 2.2. The 
experiment is designed to (1) quantify the 
performance of the SI algorithm in terms of the 
accuracy of the glottal fit, (2) to determine their 
robustness to noise in the glottal estimate and (3) to 
identify the performance of the algorithms in real 
speech and identify differences in performance of 
each algorithm between healthy and pathological 
speech. 

Tests are performed to fit the proposed glottal 
model to glottal waveform estimates using each of the 
two SI algorithms considered. These tests are 
performed on both synthetic glottal pulses and on 

glottal estimates from real speech, including 
pathological speech. To quantify the quality of the 
glottal fit to a glottal pulse the Normalised Root Mean 
Square Error (NRMSE) is employed. The NRMSE 
will be displayed in the form of a percentage in which 
an NRMSE of 100% represents a perfect fit of the 
model to the glottal estimate and 0% represents a 
performance level corresponding with that of a best 
line fit to the glottal waveform estimate. Testing is 
performed on both synthetic glottal signals and glottal 
estimates from real speech. 

3.1 Synthetic Glottal Waveforms 

The first part of this study tests the algorithms on 
synthetic glottal signals. Synthetic glottal signals 
allow the comparison between the glottal fit with the 
true glottal signal, unlike for real speech in which the 
true glottal signal is not known and only an estimate 
is available. Glottal signal estimates from real speech  
are likely to have unquantifiable sources of variation 
introduced by errors in the inverse filtering algorithm 
used to estimate the glottal signal. This typically 
introduces features into the glottal signal that are not 
accounted for by the glottal model and can impact the 
results. Using synthetic glottal signals bypasses these 
issues and allows the test set to cover a broad range 
of glottal parameters and noise levels in a controlled 
manner. 

The tests with synthetic glottal signals consist of 
3 parts: 

 
 Test 1 - The first part consists of testing 100 
synthetic glottal pulses with no noise over a range of 
voice types. This test determines the accuracy of the 
proposed model and accompanying SI algorithms 
across a range of voice types with no noise present. 
 Test 2 - The second part of the test is similar to 
test 1, but with noise added. This test determines the 
accuracy of the proposed model and accompanying 
SI algorithms across a range of voice types when 
noise is present in the glottal signal. 
 Test 3 - The third part of the test is to determine 
the accuracy of the fit as the noise level is varied. The 
parameters of the glottal pulse are held constant. This 
test indicates the robustness of the methods to noise 
in the glottal signal. 
 

All synthetic glottal pulses were created using the 
LF model equations as given in equation (1). The 
parameters were varied to simulate the variations in 
real human speech. 

For test 1 the 100 pulses are split into 2 groups of 
50 pulses, representative of male and female speech.  
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Table 1: Artificial speech timing parameters. 

 

The 50 pulses representing male speech contain 
100 samples per pitch period, this corresponds with a 
pitch of 100 Hz and sampling frequency of 10000 Hz.  
The 50 pulses representing female speech contain 41 
samples per pitch period, this corresponds with a 
pitch of 244 Hz and sampling frequency of 10000 Hz. 
Within each set of 50 pulses the glottal parameters are 
selected to have 10 pulses each of the voice types;  
modal, fry, breathy, falsetto and harsh. The timing 
parameters used to create these voice types are given 
in Table 1 (Ghosh, Narayanan, 2011). To create 10 
samples of each voice type, the timing parameters 
were randomly varied in the range of 5% about the 
values in Table 1. 

For test 2, the signal to noise ratio (SNR) of the 
glottal signals was set to 40 dB. This was achieved by 
adding white noise to each of the glottal pulses in the 
test set for test 1. The value of 40dB was chosen as it 
is the typical SNR value reported for modal speech 
(Ghosh, Narayanan, 2011). For test 3, 21 glottal 
pulses were generated with SNR levels varying 
between 0 and 100 dB, increasing in 5 dB increments. 
The glottal pulses each contained 100 samples per 
pitch period and had the timing parameters of modal 
speech. Only the SNR value varied between the 21 
glottal pulses.  

3.2 Real Speech 

Tests on synthetic glottal signals provide insight on 
the effectiveness of the methods, but does not present 
as challenging a task as real speech. The real speech 
tests show how the method performs on samples with 
levels of signal complexity not represented in the 
synthetic glottal signals. It also indicates how the 
performance is impacted when the methods being 
tested are combined with non-ideal glottal estimation 
algorithms. The real speech tests consist of two parts, 
the first part investigates real healthy speech and the 
second part investigates real pathological speech. The 
real speech files have been accessed from the Speech 
Synthesis book by D.G. Childers (Childers, 1999). 
The study uses healthy and pathological speech 
samples from patients 20 to 80 years old consisting of 
/a/ and /i/ vowel utterances. The signals were sampled 
at 10 kHz and recorded using a Bruel & Kjaer 

microphone. The speech database assembled for this 
study is as follows: 

 
 Healthy speech – 50 utterances of the vowel /a/, 
25 male and 25 female. 
 Pathological speech - 23 utterances of the vowel 
/i/, 8 male and 15 female. 

 
The files were inverse filtered to extract the glottal 

flow derivatives using the IAIF method described in 
(Alku, 1991). The GCI locations were determined 
using the SEDREAMS algorithm reported in 
(Drugman, 2012). Using the GCI locations of the 
inverse filtered signals, each glottal estimate signal 
was divided into sections of individual pitch periods. 
The glottal model fitting algorithms were then applied 
to each pitch period. The NRMSE values were 
calculated between each glottal signal and its glottal 
model fit and the average NRMSE value for each 
speech file was recorded. 

4 RESULTS AND DISCUSSION 

The following section presents the test results in two 
subsections, first section documents the synthetic 
glottal signal results and the second presents the 
results from real speech tests. 

4.1 Tests Using Synthetic Glottal 
Signals 

The performance of the algorithms is compared by 
investigating the NRMSE values between the 
estimated fit and the original glottal signal. The 
results for synthetic glottal signals are presented in 
Table 2. 
 
 Test 1 – For the 50 pulses simulating a 100 Hz 
male speech, the NRMSE values for Steiglitz-
McBride and Prony methods are 97.99% and 97.93% 
respectively. Tests on the set of 50 pulses created to 
simulate a 240 Hz speech signal sampled at 10000 Hz 
produced the following results: The mean NRMSE 
value for the Prony algorithm was 98.24% and 
98.86% for the Steiglitz-McBride method. These 
result shows that the performance of the two methods 
was approximately equal for these tests. 
 Test 2 – The NRMSE values for the Prony and 
Steiglitz-McBride algorithms tested on the 50 pulses 
with added noise for male samples are 29.20% and 
96.23% respectively. For female samples, the results 
are 55.66 % and 96.55% for Prony and Steiglitz-
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McBride algorithms respectively. A notable drop in 
performance occurs in the results for the Prony 
method when noise is introduced, consistent with 
reports that the Prony algorithm does not perform 
well in noisy environments (Kumaresan et al, 1984). 
The Steiglitz McBride results are comparable with the 
results recorded when no noise was present in the 
glottal signal. 
 Test 3 – The results of this test are illustrated in 
Figure 2. The NRMSE values are plotted against the 
corresponding SNR values. This indicates the decline 
in performance as noise levels increase for each 
algorithm. It can be noted from Figure 2 that between 
SNR of 100 and 70 dB, both algorithms perform 
similarly. As the noise level increases, the 
performance of the Prony method begins to 
deteriorate noticeably more than the performance of 
the Steiglitz-McBride algorithm. Taking the 90% 
NRMSE value as a reference point, it can be seen that 
the performance of the Prony method drops below 
this level at SNR at approximately 60 dB while the 
Steiglitz-McBride algorithm provides a 90%+ fit to 
approximately 30 dB SNR level. This indicates that 
the Steiglitz-McBride method performs more 
robustly than the Prony method for noisy glottal 
signals.  

A statistical analysis test was carried out to verify 
whether the results provide any statistical 
significance. The results of  Steiglitz-McBride and 
Prony algorithms were compared using the student t-
test. The null hypothesis states that the samples from 
the two datasets have the same mean at the 5% 
significance level. In all cases, the null hypothesis is 
rejected indicating the difference in the means is 
statistically significant. 

 

Figure 2: Graph comparing NRMSE values with their 
respective SNR values for Prony and Steiglitz-McBride 
methods. 

 
 
 
 

4.2 Tests Using Real Speech  

The second part of the study consisted of performing 
tests on real speech, including both healthy and 
pathological speech. The results are presented in 
Table 3. For healthy speech the mean NRMSE value 
for the Prony method was 29.23% and for the 
Steiglitz-McBride method was 64.29%. For the 
pathological speech results, the Prony methods mean 
NRMSE value was 25.66% while the mean NRMSE  

Table 2: Artificial speech test results. 

 

Table 3: Real speech test results. 

 

value of the Steiglitz-McBride method is 51.57%. 
The Steiglitz-McBride method demonstrated better 
accuracy at fitting the glottal model to the estimated 
glottal waveform for both healthy and pathological 
speech. The results for real speech are notably lower 
than those reported for synthetic glottal signals.  

To verify the statistical significance of the results 
for real speech, we again used the student t-test, with 
the same null hypothesis and levels of significance. 
For both, healthy and pathological results, the test 
rejected the null hypothesis indicating the difference 
in the means is statistically significant, when 
comparing Steiglitz-McBride and Prony algorithms.  

4.3 Sample Fits  

This section presents sample fits of the glottal model 
to the inverse filtered estimate for both healthy and 
pathological speech using the Steiglitz-McBride 
algorithm. The example glottal fit in Figure 3 is for a 
healthy glottal pulse and has a match of 75.57%. The 
fit in Figure 4 illustrates the Steiglitz-McBride 
method applied to the glottal waveform of a 
pathological speech sample and has an NRMSE of 
54.17%. 
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Figure 3: 75.57% NRMSE glottal fit. 

 

Figure 4: 54.17% NRMSE glottal fit. 

Many factors can influence the quality of the 
glottal fit and the NRMSE value, including the 
complexity of the signal, the presence of noise in the 
glottal signal, the number of samples available for 
parameter estimation in each pitch period and the 
accuracy of the GCI locations. The presence of noise 
in the glottal signal causes the NRMSE values to 
decrease, even when a good fit is achieved. The fit in 
Figure 3 is a representative example of this.  

Pathological speech typically contains more 
aspiration noise than healthy speech and may have 
features not modelled by existing glottal models. The 
accuracy of the glottal fitting depends on the accuracy 
of the glottal estimation algorithms. If the inverse 
filtering method is not accurate, it can lead to artefacts 
in the glottal estimate. All these factors can affect the 
performance of the model fitting algorithms and in 
turn the accuracy of the fit. This is notably evident in 
Figure 4, in which the glottal pulse contains features 
that cannot be captured by the model, which is 
reflected in the NRMSE value. 

5 CONCLUSION 

Accurate glottal model parametrisation for real 
speech proves to be challenging problem, most 
notably for pathological speech. The purpose of this 
study was to investigate if this challenge can be 
overcome by using a different approach.  

The results of this study show that it is possible to 
reliably fit and parametrise the glottal model of the 

speech signal using system identification algorithms 
applied through the newly proposed approach. The 
method created accurate fits for artificial speech 
samples and fit the glottal models with the average 
accuracy of 64.29% for healthy and 51.57% for 
pathological speech using the Steiglitz-McBride 
method. The method demonstrates the effectiveness 
of the proposed approach for a wide range of voice 
qualities and different levels of noise in the glottal 
signal. 

The study also found that out of the two methods 
used, the Steiglitz-McBride algorithm performs the 
operation more robustly in both, synthetic and real 
speech. The synthetic speech test results for samples 
without additive noise show that both algorithms have 
similar performance, however, results from samples 
containing noise show superior performance of the 
Steiglitz-McBride method. The Prony method was 
found to perform poorly in noisy environments. 
Results from real speech tests show that the Steiglitz-
McBride method outperforms the Prony method in all 
cases. 

This study shows promising results of the 
proposed approach and indicate that it could be an 
effective tool in estimating glottal models for healthy 
speech and for the more challenging case of 
pathological speech. Further research is required to 
more comprehensively evaluate the method, on larger 
real speech datasets and with a broader range of 
performance metrics, to identify the strengths and 
weaknesses of the method and compare it with 
existing glottal model fitting methods.  
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