
Improving Video Object Detection by Seq-Bbox Matching

Hatem Belhassen1,2,3, Heng Zhang1, Virginie Fresse2 and El-Bay Bourennane3

1Beamtek SAS, 145 Rue Gustave Eiffel, 69330 Meyzieu, France
2Hubert Curien Laboratory, Jean Monnet University, Saint Etienne, France

3Univ of Burgundy - Franche-Comte, LE2I laboratory, France

Keywords: Video Understanding, Real-time Video Object Detection, Online Object Detection.

Abstract: Video object detection has drawn more and more attention in recent years. Compared with object detection

from image, object detection in video is more useful in many practical applications, e.g. self-driving cars,

smart video surveillance, etc. It is highly required to build a fast, reliable and low-cost video-based object

detection system for these applications. In this work, we propose a novel, simple and highly effective box-

level post-processing method to improve the accuracy of video object detection. The proposed method is

based on both online and an offline settings. Our experiments on ImageNet object detection from video (VID)

dataset show that our method brings important accuracy gains, especially to more challenging fast-moving

object detection, with quite light computational overhead in both settings. Applied to YOLOv3, our system

achieves so far the best speed/accuracy trade-off for offline video object detection and competitive detection

improvements for online object detection.

1 INTRODUCTION

Despite the great success of object detection from

image, object detection in video is still challenging

due to motion blur, rare pose, camera defocus, etc.

State-of-the-art works focus on utilizing contextual

and temporal information to overcome these effects.

(Zhu and al., 2017) improved video object detection

accuracy on two levels: box level and feature le-

vel. Even though feature-level methods are gene-

rally considered to achieve a higher improvement than

box-level methods in terms of accuracy. But we

have to consider that models optimized by feature le-

vel methods need to be trained on video-based data-

sets, which are more difficult to create, less available,

and usually contain fewer object categories compa-

red with image-based dataset. So, box-level methods

are still important as they can be used as a comple-

mentary to feature-level methods, (e.g., Flow-Guided

Feature Aggregation (Zhu and al., 2017) (FGFA for

short) use box-level methods on the basis of their pro-

posed feature-level method to improve video object

detection accuracy). Moreover, box-level methods

can be implemented on detectors trained on more

common image-based dataset (e.g. Microsoft-COCO,

Pascal VOC, etc), which makes them more universal

and practical for industrial applications.

Existing box-level methods mostly rely on optical

flow, object tracking (Kang and al., 2016) or heavy

bounding box (bbox) across time sorting (Han and al.,

2016). However, optical flow is naturally expensive

in terms of computational complexity and has no di-

rect relation with the main task of object detection.

The use of object tracking adds a heavy computatio-

nal overhead which makes the detection system less

effective. As reported by (Han and al., 2016), bbox

across time sorting (Han and al., 2016) is more ef-

fective than other box-level methods, while it still

adds a heavy computational overhead and can not be

applied to online video object detection.

Our work aims to design a novel, simple and

much more effective box-level post-processing met-

hod. It can be applied to online or offline video ob-

ject detection, to replace existing box-level methods.

The principle is rescoring bboxes and linking tubelets

(which are essentially sequences of associated bboxes

across time) to avoid wrong or missed detections cau-

sed by low-quality frames in videos. Our proposed

method, named Seq-Bbox Matching, is a simple and

effective method to match bboxes across time to ge-

nerate tubelets. The proposed following steps, na-

med Frame-level Bbox Rescoring and Tubelet-level

Bbox Linking, are applied to improve offline object

detection. Then we modified our Frame-level Bbox

Rescoring to adapt it to online object detection.

Experiments on ImageNet (Russakovsky and al.,

2014) VID dataset prove the effectiveness of our met-

hod. It brings important accuracy gains, especially

226
Belhassen, H., Zhang, H., Fresse, V. and Bourennane, E.
Improving Video Object Detection by Seq-Bbox Matching.
DOI: 10.5220/0007260002260233
In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 226-233
ISBN: 978-989-758-354-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



to more challenging fast-moving objects, with quite

light computational overhead in both settings. Ap-

plied to YOLOv3 (Redmon and Farhadi, 2018), our

system achieves so far the best speed/accuracy trade-

off for offline video object detection and competitive

accuracy improvements for online object detection,

e.g., 80.9% of mAP on our offline setting and 78.2%

of mAP on online setting both at 38 fps on a Titan X

GPU or at 51 fps on a GTX 1080Ti GPU.

Key contributions of this paper are:

• Our proposed box-level post-processing method

achieves important accuracy improvements to per-

frame detection baseline for both online and off-

line settings, e.g, applied to YOLOv3, our met-

hod brings 6.9% of mAP gains (from 74% to

80.9%) for offline object detection and 4.2% of

mAP gains (from 74% to 78.2%) for online de-

tection on ImageNet VID validation set;

• Quite light computational overhead in both set-

tings makes our method applicable in most practi-

cal vision applications, i.e., less than 2.5ms/frame

additional computation for both settings;

• Our proposed method could be applied to de-

tectors trained on video-based dataset or image-

based dataset, which makes it more universal and

practical for industrial applications.

This paper is organized as follows. In Section

2, we sum up some representative related works on

image/video object detection. In Section 3, we ex-

plain the theoretical details of our proposed box-level

post-processing method. In Section 4, we present our

experimental results on ImageNet VID dataset and

compare our results with other state-of-art methods.

Section 5 concludes the paper.

2 RELATED WORK

In this section we present related works for both

image and video detection and then position our con-

tribution regarding the state-of-the-art works.

2.1 Object Detection from Image

Object detection from image is one of the most central

study areas in computer vision. Detectors based on

deep neural network greatly exceeds the accuracy of

classic object detectors based on hand-designed fea-

tures, e.g., Viola-Jones (Viola and Jones, 2004), DPM

(Felzenszwalb and al., 2010), etc. Modern convolu-

tional object detectors can be divided into two para-

digms: Two-stage object detectors and Single-stage

object detectors. According to (Huang and al., 2016),

the former are generally more accurate while the latter

are usually faster.

The dominant paradigm is based on a two-stage

approach, which firstly generates a sparse set of re-

gions of interest (RoIs) then classifies these regions

and refines their bboxes. Faster R-CNN (Ren and al.,

2015) introduces the Region Proposal Network (RPN)

that generates RoIs and shares full-image convolutio-

nal features with Fast R-CNN (Girshick, 2015). R-

FCN (Dai and al., 2016) proposes position-sensitive

score maps to share almost all computation on the en-

tire image.

Single-stage detectors perform object classifica-

tion and bounding box regression simultaneously on

feature maps. YOLO (Redmon and al., 2015) divides

the image into regions and predicts bounding boxes

and classification scores for each region. SSD (Liu

and al., 2015) predicts classification scores and bbox

adjustments of each default boxes of different aspect

ratios and scales per feature map location. RetinaNet

(Lin and al., 2017) proposes a novel loss function, Fo-

cal Loss, to address class imbalance problem.

While evaluating CNNs on Microsoft-COCO da-

taset, the recently proposed YOLOv3 (Redmon and

Farhadi, 2018) achieves competitive accuracy (60.6%

of AP50) with state-of-the-art more complicated ob-

ject detectors, e.g., R-FCN (51.9% of AP50) or Reti-

naNet (57.5% of AP50) and it detects at a much faster

detection speed (YOLOv3 at 20 fps, R-FCN at 12 fps

and RetinaNet at 5 fps on a Titan X GPU).

2.2 Object Detection in Video

Object detection in video has drawn more and more

attention in recent years. The introduction of Ima-

geNet (Russakovsky and al., 2014) object detection

from video (VID) challenge made the evaluation of

CNN designed for video easier. Instead of simply

split the video into frames and perform per-frame ob-

ject detection, recent works focus on utilizing contex-

tual and temporal information to accelerate detection

speed or to improve detection accuracy.

In terms of improving accuracy, recent works are

designed on two levels: box level and feature level.

For box-level methods: T-CNN (Kang and

al., 2016) uses pre-computed optical flow and ob-

ject tracking to propagate high-confidence bounding

boxes to nearby frames; Seq-NMS (Han and al.,

2016) uses high-scoring object detections from ne-

arby frames to boost scores of weaker detections

within the same video clip.

Feature-level methods are generally considered to

achieve a more important improvement than box-level

methods. FGFA (Zhu and al., 2017) uses optical flow

Improving Video Object Detection by Seq-Bbox Matching

227



and nearby frame feature maps to reinforce current fe-

ature map and improve object detection performance.

Detect to Track and Track to Detect (Feichtenhofer

and al., 2017) (D&T for short) introduces a Con-

vNet architecture that jointly performs detection and

tracking. Scale-Time Lattice (Chen and al., 2018)

proposes a novel architecture to reallocate the com-

putation over a scale-time space.

2.3 Contribution Positioning Regarding

the State-of-Art Works

We chose YOLOv3 as our base object detector thanks

to its good speed / accuracy trade-off. Our proposed

method is different from all previous works in video:

Firstly, instead of utilizing object tracking (e.g., T-

CNN and D&T) or heavy bbox across time sorting

(e.g., Seq-NMS), we introduce Seq-Bbox Matching,

which matches detected bboxes of the same appea-

red object to generate tubelets. Secondly, apart from

tubelet rescoring (implemented in T-CNN, Seq-NMS,

D&T and Scale-Time Lattice), we added another step,

named Tubelet-level Bbox Linking, to infer missed de-

tections and improve detection recall.

3 IMPROVING VIDEO OBJECT

DETECTION BY SEQ-BBOX

MATCHING

3.1 Overview

So far, object detection from image has achieved great

success while object detection in video is still chal-

lenging. For one thing, motion blur, rare pose, ca-

mera defocus and other effects in videos will lead to

wrong or missed detections. For another, temporal

and contextual information can be helpful to improve

detection accuracy.

In principle, our method can be applied to any

kind of existing object detector (e.g., YOLOv3, SSD,

RetinaNet, R-FCN, Faster-RCNN, etc). It consists of

two main steps: Firstly, the Frame-level Bbox Res-

coring to correct wrong detections and secondly the

Tubelet-level Bbox Linking designed to infer bboxes

of missed detections. These two steps are based on

one basic operation: Seq-Bbox Matching.

Seq-Bbox Matching aims to match detected

bboxes of the same appeared object to generate tube-

lets. To accelerate the detection speed, we implement

object detection sparsely and apply Bbox Bilinear In-

terpolation to intermedia frames.

Section 3.2 explains how Seq-Bbox Matching

works. Section 3.3 and 3.4 describes how we apply

Frame-level Bbox Rescoring and Tubelet-level Bbox

Linking respectively. In section 3.5, we modified our

Frame-level Bbox Rescoring to adapt it to online vi-

deo object detection. Finally, in section 3.6, we intro-

duce the application of Bbox Bilinear Interpolation to

accelerate the detection speed.

3.2 Seq-Bbox Matching

We match current-frame detected bboxes with

previous-frame detected bboxes according to their ge-

ographical closeness and semantic similarity. Mat-

ched bboxes are considered as same objects detected

in different frames. Matching distance of two bboxes

is defined as below:

distance =
1

similarity
=

1

IoU × (Vctri ·Vctr j)
(1)

Where the Intersection over Union (IoU) between

two bboxes describes the geographical closeness, and

the dot product of two classification score vectors

(Vctri for bbox i and Vctr j for bbox j) represents the

semantic similarity of any two bboxes. Obviously, if

IoU or the dot product equals to zero, the returned

distance would be infinity. But this hardly ever hap-

pens in videos since the IoU is greater than 20% for

two successive images in 99.91% of the cases, in Ima-

geNet VID validation dataset.

Algorithm 1: Matching algorithm for detected bboxes in
nearby frames.

Input: I bboxes detected in previous frame and

J bboxes detected in current frame

distance_matrix = create_matrix(I,J)

for i = 1 to I do

for j = 1 to J do

set distance_matrix(i,j) to distance between

i-th bbox of previous frame and j-th bbox of

current frame

end for

end for

set pairs to empty list

repeat

set i,j to line, column of minimum value in

distance_matrix

add (i,j) to pairs

set i-th line of distance_matrix to infinity

set j-th column of distance_matrix to infinity

until minimum value of distance_matrix is infinity

Output: pairs

Algorithm 1 (pseudo code) summarizes our matching

algorithm: For I bboxes detected in the previous

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

228



frame and J bboxes detected in current frame, we ge-

nerate a distance matrix where each element of coor-

donate (i, j) represents the distance between i − th

bbox of previous frame and j − th bbox of current

frame; We simply match the bbox pair with mini-

mal distance then cut out their connections with other

bboxes by setting the line and the column of the se-

lected element in the distance matrix to infinity. We

repeat this step until there exists no more connections

between any two bboxes, i.e., the minimal distance in

the distance matrix becomes infinity.

3.3 Frame-level Bbox Rescoring

Figure 1: Frame-level Bbox Rescoring.

As shown in Figure 1, we adopt a simple rescoring

method, named Frame-level Bbox Rescoring, to avoid

object classification error caused by motion blur, rare

pose or other reasons. As nearby frames are simi-

lar and usually contain a certain number of moving

objects, we consider detection results in multiple ne-

arby frames as multiple detection results of the same

objects. We match detected bboxes in previous and

current frame according to Algorithm 1 to generate

tubelets and then simply rescore all the bboxes of the

same tubelet by averaging their classification scores.

Even if there exists several wrong detections (e.g., on

the central image of Figure 1, the bird is wrongly de-

tected as zebra due to motion blur), after averaging

along the whole tubelet, these errors can be corrected.

3.4 Tubelet-level Bbox Linking

As shown in Figure 2, we add a simple tubelet lin-

king method, named Tubelet-level Bbox Linking, to

infer missed detections and improve recall. Similar as

Algorithm 1, but instead of matching previous-frame

bboxes with current-frame bboxes, we try to match

the last bbox of one tubelet and the first bbox of anot-

her. Note that we mark isolated bboxes, i.e., bboxes

that are never matched after going through the whole

video, as first and last bboxes of tubelets in the same

Figure 2: Tubelet-level Bbox Linking. Zoom for details.

time, because they are considered as tubelets of length

one.

We set a thresh κ to make sure that two tubelets

are not temporally too far. Tubelets with a temporal

interval longer than κ frames are ignored to be mat-

ched.

If the last bbox of one tubelet and the first bbox

of another match, their two tubelets are considered as

detection of a same object and there might be missed

detections between these two tubelets. As shown in

equation (4), we infer the locations of the intermedia

missed bboxes between matched tubelets by bilinear

interpolation of matched bboxes and the classification

scores are calculated as the averaged scores of two

matched tubelets w.r.t the lengths of tubelets.

Vctradd =
Cnt f

Cnt l +Cnt l
Vctr f +

Cnt l

Cnt f +Cnt l
Vctrl

(2)

We use ∗ f for former tubelet and ∗l for later tube-

let.

Along these lines, Tubelet-level Bbox Linking

helps to infer missed detections and improve de-

tection recall, e.g., the missed detections of lizard (be-

cause of rare pose) in the central two images of Figure

2 are refound by our Tubelet-level Bbox Linking. Sup-

pressing bboxes by utilizing contextual information or

tubelet information could eventually further improve

the detection accuracy, but for simplicity, we leave it

for future work.

3.5 Online Frame-level Bbox Rescoring

It is meaningful to propose an online object detection

method as it is a common scenario in many real-time

computer vision applications, e.g., self-driving cars.

Online video object detection asks to perform object

detection in an image flow without access to future

frames or overall contextual information, which is not

the case of the previously presented two steps. So we

modified our Frame-level Bbox Rescoring to adapt it

to online video treatments.

Instead of rescoring bboxes of a tubelet after going

Improving Video Object Detection by Seq-Bbox Matching

229



through all the video, each time one bbox is mat-

ched, we update its classification scores by averaging

all historical classification scores of the same object.

This is realized by applying a dynamic averaging met-

hod: we add a count variable for each bbox, and each

time a bbox is matched, its variable count increases.

The averaged historical classification score vector of

current bbox becomes:

Vctrcur =
Vctrcur

Cnt pre + 1
+

Cnt pre

Cnt pre+ 1
Vctrpre (3)

and then:

Cntcur =Cnt pre + 1 (4)

We use Cnt for Count, ∗cur for current and ∗pre for

previous.

In this way, our Frame-level Bbox Rescoring

could be performed through an online manner and the

last bbox of one tubelet holds the averaged classifica-

tion scores of the whole tubelet.

3.6 Bbox Bilinear Interpolation

If we divide the trajectory of a moving object into

many short pieces, these short pieces could be seen as

short-range nearly uniform movements. In this case,

we only need to perform detection in sparse keyfra-

mes. Object positions of intermedia frames could be

estimated by Bilinear Interpolation of positions of the

two nearby keyframes. We adopt bilinear interpola-

tion of matched bboxes for intermedia positions re-

construction to accelerate the detection. We introduce

a hyperparameter β to control the length of interme-

dia frames for Bilinear Interpolation. β is proporti-

onal to the detection speed (in fps), e.g., β=1 repre-

sents that our detection speed is two times faster. Ho-

wever, if β becomes too large, the movements bet-

ween sparse keyframes are too complicated to be seen

as nearly uniform movements which will lead to de-

tection accuracy drop.

Adaptive Bbox Bilinear Interpolation interval

could obviously further improve the speed/accuracy

trade-off, which is left for future work.

4 EXPERIMENTS

4.1 Experimental Setting

4.1.1 Dataset

All experiments are conducted on the ImageNet (Rus-

sakovsky and al., 2014) object detection from video

(VID) dataset. It is a large scale video-based dataset,

that consists of 3862 video clips for training, 555 for

validation and 937 for testing. Each clip is fully anno-

tated with bounding boxes of 30 different object clas-

ses. Challenges of this dataset include camera defo-

cus, partial occlusion, motion blur, crowded instance,

background confusion, rare pose, etc. Since the an-

notations of the test set are not publicly available, we

evaluate our method on the evaluation set using the

mean Average Precision (mAP) metric. For motion-

specific evaluation, we use the code provided by (Zhu

and al., 2017).

4.1.2 Implementation Details

Similar as (Kang and al., 2016), (Zhu and al., 2017),

(Feichtenhofer and al., 2017) and (Chen and al.,

2018), we combine the Imagenet DET train set and

VID train set to train our base object detection model.

As DET dataset has more object classes than VID da-

taset (200 for DET vs 30 for VID), we suppress ima-

ges without target classes and only preserve annotati-

ons for the 30 target classes in the DET dataset. The

VID set is presented in the form of videos. We do not

use these videos directly because of the redundancy

between nearby frames. We sample the VID train set

by a certain percentage to maintain a ratio of 1:1 bet-

ween DET train set and VID train set in the final train

set (55k images for each set).

Among all state-of-the-art convolutional object

detectors, we choose the recently proposed YOLOv3

(Redmon and Farhadi, 2018) as our per-frame object

detector thanks to its good speed/accuracy trade-off.

Following (Redmon and Farhadi, 2018) and (Redmon

and Farhadi, 2016), we implement k-means to deter-

mine the anchor scales and aspect ratios of each de-

tection layer. Our model is pre-trained on imagenet

classification task, then we fintune it on our training

set with the learning rate 0.001 for the first 80k iterati-

ons and 0.0001 for the last 30k iterations. All training

are performed on two GTX 1080Ti GPUs with batch

size 64. After 110k iterations, the training loss con-

verged. Note that as YOLOv3 has a fully convolu-

tional architecture and uses multi-scale training, our

trained model can be evaluated at different resoluti-

ons. It achieves 74% of mAP at resolution 608× 608

and 71.2% at 416× 416 on VID validation set.

For inference phase, after per-frame dense de-

tection, we first apply non-maximum suppression

(NMS) with a threshold 0.55 to select bboxes to be

matched on each frame. Then we apply respecti-

vely the two settings of our box-level post-processing

method: For offline seting, we perform successively

Frame-level Bbox Rescoring and Tubelet-level Bbox

Linking as presented previously (Section 3.3 and 3.4);

For online setting, we simply apply Online Frame-

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

230



level Bbox Rescoring (Section 3.5). We use different

input image resolutions, different temporal intervals β
for Bbox Bilinear Interpolation and different thresh κ
for Tubelet-level Bbox Linking to explore their impact

on detection speed and accuracy.

4.2 Results

4.2.1 Speed/Accuracy Curve

We summarize the speed/accuracy curve of our met-

hod applied to our trained model at two resolutions

(608×608 and 416×416) on two settings (offline and

online) in Figure 3. Runtimes are evaluated by frame

per second (fps) on a Titan X GPU and accuracy are

evaluated by the conventional metric mean Average

Precision (mAP) on the ImageNet VID evaluation set.

0 20 40 60 80 100 120 140 160 180 200 220
runtime(fps)

73

74

75

76

77

78

79

80

81

82

m
AP

(%
)

β=0 β=2

β=4

β=6

β=8

β=10

β=0 β=2

β=4

β=6

β=8

β=10

Dense detection
Our offline
Our online

Figure 3: Speed/accuracy curves of our proposed method.

As shown in Figure 3, top left and right plots are

for the speed/accuracy trade-off of our offline and on-

line settings; bottom left and right are for the mAP im-

provements of our two settings. The speed/accuracy

trade-off was made under different Bbox Bilinear In-

terpolation intervals β and different input image reso-

lutions (416× 416 and 608× 608).

From Figure 3 we observe that: Firstly, both set-

tings of our method highly improve the accuracy

of our per-frame detection baseline; Secondly, long

Bbox Bilinear Interpolation intervals will lead to tra-

gic accuracy drops, especially when β > 5; Thirdly,

for the choice of input image resolution, on both set-

tings, 608×608 achieves better accuracy when f ps <

175; Fourthly, our method achieves generally higher

accuracy improvements for our model with the input

image resolution 416× 416.

4.2.2 Ablation Study

For simplicity, all experiments were conducted on our

trained model with input image resolution 608× 608

with the bilinear interpolation interval β = 1.

Step Validation. Table 1 compares our proposed met-

hod with the per-frame dense detection baseline and

its variants.

Method (a) is the per-frame dense detection ba-

seline of our trained model. We simply divide each

video in ImageNet VID validation set into frames and

perform per-frame object detection. The only post-

processing is NMS with thresh 0.55. Without bells

and whistles, our base model achieves 74.0% of mAP

for per-frame dense detection with 50ms of runtime

on a Titan X GPU. We find our trained model much

faster in terms of speed and competitive in terms of

accuracy with other trained baseline models in recent

works, e.g., FGFA(Zhu and al., 2017), Scale-Time

Lattice(Chen and al., 2018) and D&T (Feichtenhofer

and al., 2017).

Following FGFA(Zhu and al., 2017), we conti-

nued to evaluate our model on three motion groups:

slow, medium and fast. It turns out that our model is

good at detecting slow-moving objects with mAP of

81.5% but struggling at detecting fast-moving objects,

where the mAP drops directly to 50.5%.

Method (b) is the implementation of Seq-NMS

(Han and al., 2016). Even though it boosts the

mAP from 74.0% to 77.8%, it takes too much time

(71.5ms/frame) for sorting sequences of bboxes.

Method (c) implements our Frame-level Bbox

Rescoring in an offline way (Section 3.3). This met-

hod improves the detection accuracy by 5.4% for

slow-moving object, 7.6% for medium and 11.8% for

fast, which shows that our bbox rescoring methods

can largely boost the detection accuracy for more

challenging fast-moving objects. Compared with (b),

same as offline video object detection, our method

requires less post-processing time (1.7ms/frame for

ours vs 71.5ms/frame for Seq-NMS) while achieves

a higher mAP gains (6.6% for ours vs 3.8% for Seq-

NMS), which proves that ours outperforms Seq-NMS.

Note that up until Method (c), we do not suppress

any detected bboxes or add any extra bboxes. All

mAP gains come from rescoring methods that correct

potential wrong detections. Method (d) is the offline

setting of our method, which adds the Tubelet-level

Bbox Linking (Section 3.4) on the basis of (c). The ob-

jective of Tubelet-level Bbox Linking is to infer mis-

sed detections between nearby tubeletes, and this step

boosts our final mAP to 80.9%. We find the additional

computation overhead for matching tubelets accepta-

ble (0.6ms/frame) and this step more helpful for more

Improving Video Object Detection by Seq-Bbox Matching

231



Table 1: Accuracy and runtime of different methods on ImageNet VID validation. All experiments are conducted at the
input image resolution 608×608, (c), (d) and (e) are results with the bilinear interpolation interval β = 1. The relative gains
compared to the single-frame baseline (a) are listed in the subscript.

method (a) (b) (c) (d) (e)

mAP(%) 74.0 77.8 ↑ 3.8 80.6 ↑ 6.6 80.9 ↑ 6.9 78.2 ↑ 4.2

mAP(%) (slow) 81.5 83.8 ↑ 2.3 86.9 ↑ 5.4 87.1 ↑ 5.6 85.3 ↑ 3.8

mAP(%) (medium) 71.7 76.6 ↑ 4.9 79.3 ↑ 7.6 79.6 ↑ 7.9 76.3 ↑ 4.6

mAP(%) (fast) 50.5 58.0 ↑ 7.5 62.3 ↑ 11.8 62.7 ↑ 12.2 57.2 ↑ 6.7

runtime(ms) (all) 50 121.5 51.7 52.3 51.7

runtime(ms) (post-processing) 0.01 71.5 1.7 2.3 1.7

Table 2: Performance comparison on the ImageNet VID validation set. All experiments are conducted at the input image
resolution 608×608 with the bilinear interpolation interval β = 1. The average precision (in %) for each class is shown.

Methods airplane antelope bear bicycle bird bus car cattle dog d.cat

Baseline 93.3 83.3 71.3 82.3 70.9 67.2 65.6 72.6 56.3 76.1

offline 93.2 86.4 81.5 85.2 75.3 71.2 66.7 82.4 70.1 92.3

Online 93.1 85.6 78.3 83.0 74.0 70.0 66.1 77.5 66.0 85.1

Methods elephant fox g.panda hamster horse lion lizard monkey moto rabbit

Baseline 74.8 89.3 86.4 89.2 76.1 53.0 73.2 48.2 86.8 65.7

offline 79.3 97.0 88.0 95.8 82.7 72.8 83.6 53.7 91.7 80.0

Online 78.3 93.2 86.6 92.4 79.9 65.9 76.4 51.4 89.3 74.8

Methods r.panda sheep snake squirrel tiger train turtle watercraft whale zebra

Baseline 80.9 69.6 64.6 54.7 88.4 85.0 75.6 64.0 65.8 90.6

offline 96.0 78.8 70.7 64.5 90.4 86.5 78.7 67.5 68.4 95.3

Online 94.9 75.7 68.4 62.9 89.3 85.7 76.5 66.8 64.2 93.8

challenging fast-moving object detection.

Method (e) is the online setting of our method.

It is realized by our Online Frame-level Bbox Res-

coring (Section 3.5). We use dynamique averaging

method to rescore the bbox of one object according

to its historical classification scores. Compared with

(b), which is implemented in a offline manner, our on-

line method achieves a higher improvement in terms

of accuracy (4.2% for ours vs 3.8% for Seq-NMS).

Compared with(c), (e) is relatively less effective due

to the lack of future information. Note that the com-

putational overhead of (e) is quite light (1.7ms/frame)

and affordable for most real-world applications.

As to runtime of (c), (d) and (e), only half of the

frames in the validation set are actually detected and

others are estimated by Bbox Bilinear Interpolation.

All mentioned runtimes are for one detected frame

instead of average runtimes of a whole video.

Per-class Analyse on the ImageNet VID Validation

Set. Due to movement blur or other reasons, our

per-frame baseline has a very poor performance for

some classes (e.g., lion with 53% of AP) as a result

of wrong or missed detections. Both our online and

offline settings highly improve the detection accuracy.

Some class-AP scores are improved significantly, e.g.,

for the class lion, 19.8% of gain on offline setting

and 12.8% on online setting; for the class red panda,

15.1% of gain on offline setting and 14.0% on online

setting. These AP gains result from the rise of clas-

sification accuracy and object detection recall, which

are realized by our Frame-level Bbox Rescoring and

Tubelet-level Bbox Linking respectively. For the air-

plane class presenting heavy occlusions and fast mo-

vements, the matching of bboxes became more chal-

lenging which leads to slight accuracy drop.

Thresh κ Analyze. In Figure 4, we show the accuracy

trends with thresh κ varying from 4 to 24.

2 12 22
Thresh κ

80.5

80.7

80.9

m
AP

(%
)

κ = 12, mAP = 80.86%

Figure 4: Accuracy vs thresh κ on ImageNet VID dataset.

The plot shows that the accuracy rises quickly

from 80.6% to 80.9% as thresh κ rises from 4 to 12,

then the accuracy drops slowly. This result can be

interpreted as: with the raise of κ, not only more mis-

sed detections are infered but also more false-positive

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

232



bboxes are ”made”. After exceeding a critical value,

i.e., 12 in our case, the latter becomes dominant, lea-

ding to accuracy drop.

4.3 Comparison with State-of-the-Art

Methods

According to FGFA (Zhu and al., 2017), Seq-NMS

(Han and al., 2016) obtains larger gain than T-CNN

(Kang and al., 2016), so we implement Seq-NMS

on our trained model with input image resolution

608× 608 for comparison. Our method achieves a

higher accuracy in both online and offline settings

and both require at least 30 times less computation

time (71.5ms for Seq-NMS vs 1.7ms and 2.3ms for

our method), which proves that our box-level post-

processing method is more effective. Moreover, Seq-

NMS can only be applied to offline video object de-

tection, while we also propose an online setting. We

further compare our results with several state of the

art video object detection methods. For fair compari-

son, we reported our detection speed on Titan X.

0 20 40 60 80 100 120
runtime(fps)

68

70

72

74

76

78

80

82

m
AP

(%
)

β=0 β=1
β=2

β=3 β=4 β=5

β=0 β=1 β=2
β=3 β=4 β=5

Our off-line
Our online
Scale-Time Lattice
TPN
D&T
FGFA
Seq-nms (YOLOv3)
Seq-nms (R-FCN)
Dense detection (YOLOv3)
Dense detection (R-FCN)

Figure 5: Speed/accuracy comparison of our proposed met-
hod applied to YOLOv3 with other state-of-the-art methods
on the ImageNet VID validation set.

As shown in Figure 5, our offline setting hits the

best speed/accuracy trade-off compared with other

box-level or feature-level methods. In particular, it

achieves 80.9% of mAP at 38 fps and 79.5% of mAP

at 116 fps on a Titan X GPU. Our online setting

gets competitive speed/accuracy trade-off and is more

adaptive for more practical online object detection ap-

plications.

5 CONCLUSION

In this paper, we present a novel, simple and highly

effective box-level post-processing method, named

Seq-Bbox Matching, to improve video object de-

tection. Experiments show that, applied to YOLOv3,

our method is more effective than all existing box-

level methods and hits the best speed/accuracy trade-

off compared with other state-of-the-art methods. The

online setting of our method performs video object

detection without access to future frames and achieves

competitive accuracy improvement. Despite the large

detection accuracy improvement, the most important

advantage of our method is its quite light computatio-

nal overhead which makes it applicable in most real-

world computer vision applications.

REFERENCES

Chen, K. and al. (2018). Optimizing video object detection
via a scale-time lattice. CoRR, abs/1804.05472.

Dai, J. and al. (2016). R-FCN: object detection via re-
gion based fully convolutional networks. CoRR,
abs/1605.06409.

Feichtenhofer, C. and al. (2017). Detect to track and track
to detect. CoRR, abs/1710.03958.

Felzenszwalb, P. F. and al. (2010). Object detection with
discriminatively trained part-based models. IEEE
Trans. Pattern Anal. Mach. Intell., 32(9):1627–1645.

Girshick, R. (2015). Fast R-CNN. CoRR, abs/1504.08083.

Han, W. and al. (2016). Seq-nms for video object detection.
CoRR, abs/1602.08465.

Huang, J. and al. (2016). Speed/accuracy trade-offs
for modern convolutional object detectors. CoRR,
abs/1611.10012.

Kang, K. and al. (2016). T-CNN: tubelets with convolutio-
nal neural networks for object detection from videos.
CoRR, abs/1604.02532.

Lin, T. and al. (2017). Focal loss for dense object detection.
CoRR, abs/1708.02002.

Liu, W. and al. (2015). SSD: single shot multibox detector.
CoRR, abs/1512.02325.

Redmon, J. and al. (2015). You only look once: Unified,
real-time object detection. CoRR, abs/1506.02640.

Redmon, J. and Farhadi, A. (2016). YOLO9000: better,
faster, stronger. CoRR, abs/1612.08242.

Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. CoRR, abs/1804.02767.

Ren, S. and al. (2015). Faster R-CNN: towards real-time ob-
ject detection with region proposal networks. CoRR,
abs/1506.01497.

Russakovsky, O. and al. (2014). Imagenet large scale visual
recognition challenge. CoRR, abs/1409.0575.

Viola, P. and Jones, M. J. (2004). Robust real-time face
detection. Int. J. Comput. Vision, 57(2):137–154.

Zhu, X. and al. (2017). Flow-guided feature aggregation for
video object detection. CoRR, abs/1703.10025.

Improving Video Object Detection by Seq-Bbox Matching

233


