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Abstract: We consider a multiagent network model consisting of nodes and edges as cities and their links to neighbors,
respectively. Each network node has an agent and priced goods and the agent can buy or sell goods in the
neighborhood. Though every node may not have an equal price,we can show the prices will reach an equi-
librium by iterating buy and sell operations. We introduce aframework of protocols in which each buying
agent makes a bid to the lowest priced goods in the neighborhood; and each selling agent selects the high-
est bid (if any). So far, we have just considered such a model in a synchronous environment. We, however,
cannot represent the velocity of circulation of money in thesynchronous system. In other words, we cannot
distinguish the different speed of money movement if every operation is synchronized. Thus, we develop an
asynchronous model which enables us to generalize the theory of price stabilization in networks. Finally, we
execute simulation experiments and investigate the influence of network features on the velocity of money.

1 INTRODUCTION

Background. Conventionally, the topic of price de-
termination has been discussed from microeconomics
approach (N.G.Mankiw, 2018). In the presence of ap-
propriate supply and demand curves, if the price is
higher (resp. lower) than an equilibrium, there is ex-
cess supply (resp. excess demand) and thus the price
moves to the equilibrium. At the equilibrium price,
the quantity of goods sought by consumers is equal to
the quantity of goods supplied by producers. Neither
consumers nor producers have incentive to change the
price / quantity at the equilibrium.

In contrast, we considered a multiagent network
model (J.Kiniwa and K.Kikuta, 2011a; J.Kiniwa and
K.Kikuta, 2011b; J.Kiniwa et al., 2017b), in which
each agent repeatedly makes auctions and the price of
goods is eventually determined. Our network model
consists of nodes and edges as cities and their links to
neighbors, respectively. Each node contains an agent
which represents people living in the city. Agents
who want to buy goods make bids to the lowest-priced
neighboring node, if any. Then, agents who want to
sell the goods accept the highest bid. We have shown
the reason of price determination by using the idea
of self-stabilization in distributed systems (S.Dolev,
2000). From any initial state, self-stabilizing algo-
rithms eventually lead to a legitimate state without

any aid of external actions. Such a self-stabilization
resembles the price determination, where the price
reaches an equilibrium without external operations.

Motivation. Our first work was motivated by an
intuition that simulating trades between agents may
stabilize the price instead of the supply-demand the-
ory. We developed a trading model using auctions
in which prices converge to a unique one (J.Kiniwa
and K.Kikuta, 2011a; J.Kiniwa and K.Kikuta, 2011b).
We, however, were not able to explain why such a
unique price is determined. After that, we assumed a
relationpi = mi/qi between the pricepi , goodsqi and
moneymi at each nodei, and each agent exchanges
money and goods. Then, it enables us to estimate an
equilibrium pricePe = M/T, whereM = ∑i mi and
T = ∑i qi (J.Kiniwa et al., 2017b). Further, we de-
veloped a method of expected optimal bidding and
derived the difference between two presenting proto-
cols (J.Kiniwa et al., 2017a). We, however, were not
able to distinguish whether or not the convergence is
fast because the velocity of money is always constant.

Problem. Irving Fisher’s claim,MVm = PeT, has
been accepted as the quantity theory of money, where
Vm is the velocity of money. The correctness of our
synchronous model was guaranteed by Fisher’s quan-
tity equation withVm = 1. However, since the equa-
tion describes an arbitrary velocityVm, there must ex-
ist some method which corresponds to such an exten-
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sion. So, our first issue was how to extend the model
to an arbitrary velocityVm. If it were possible, our
network model could be guaranteed by the Fisher’s
quantity equation in general. Next, our second issue
was how to compute the velocity of money. If it were
possible, the velocity of money could be explicitly de-
rived. Then, we could know whether the velocity of
money is different in several network topologies and
protocols.

Solution. For the first issue, we develop an asyn-
chronous price stabilization model in order to express
an arbitrary velocityVm of money. We can use the
concept ofasynchronous roundor simply round, an
appropriate interval, and define the velocity as the ba-
sis of the slowest agent: In a round, the slowest agent
trades only once, while the others do at least once.
Then, the money payed by the slowest agent moves
only distance 1, while the other money moves farther.
So, the different speed between money gives the con-
cept of velocity.

For the second issue, we consider a variable
flowi of money used at each nodei. The sum of
flowi through the network means the total quantity of
money that was repeatedly used in a round. We con-
sider the velocity of money as the sum offlowi divided
by the amount of money supply. Since the money sup-
ply is constant, the velocity of money becomes large
if the sum offlowi grows.

Related Work. The classical theory of price
determination in microeconomics is introduced in
(N.G.Mankiw, 2018). In contrast to the conven-
tional work, we review the theory from a multiagent
viewpoint. There exist a large body of literature on
social economic networks (J.Benhabib et al., 2010)
containing a network formation game (M.O.Jackson
and A.Wolinsky, 1996) and a buyer-seller net-
work (M.O.Jackson and A.Watts, 2010; R.Kranton
and D.Minehart, 2001). The network formation game
considers the choice of relationships between agents,
and the buyer-seller network considers the competi-
tion and exchange in bipartite networks (E.Even-Dar
et al., 2007; R.Kranton and D.Minehart, 2001). Un-
like their interest in maximizing economic surplus,
our work focuses on price stabilization. Auction the-
ory has been comprehensively studied in (V.Krishna,
2002). Our protocol in Section 2.2 may be consid-
ered as a consensus algorithm. The consensus al-
gorithm is described in (N.A.Lynch, 1996), and its
self-stabilizing version is described in (S.Dolev et al.,
2010). However, their work cannot be categorized
as economics. Asynchronous systems have been ex-
tensively discussed in the area of distributed algo-
rithms (N.A.Lynch, 1996). This is because most of
the distributed algorithms must work in such an envi-

ronment. Thus the multiagent system should be de-
scribed as an asynchronous system.

Our previous work (J.Kiniwa and K.Kikuta,
2011a) considers a naive protocol in which each buyer
makes a bid with an appropriate rate to a seller. Then,
(J.Kiniwa and K.Kikuta, 2011b) and (J.Kiniwa et al.,
2017b) analyze the best bidding price for a con-
stant number of bidders, and (J.Kiniwa et al., 2017b)
assumes the price is determined by the amount of
money and goods.
Contributions. We propose an asynchronous price
stabilization model in this paper. We consider the
asynchronous system is not only as an extension of
the synchronous system but also as a method of mea-
suring the velocity of money. We define the velocity
of money as the total spent money divided by the total
supplied money in a round. To compare the velocity
of money, we execute simulation experiments for two
networks and three protocols. Then we obtain some
reasonable results, that is, the velocity of money is
fast if there is a lot of payment.

We organize the rest of this paper as follows. Sec-
tion 2 states our model and protocols. Section 3 dis-
cusses how we can represent the velocity of money.
Section 4 shows some results of simulation experi-
ments for several networks and protocols. Finally,
Section 5 concludes the paper.

2 MODEL

Here we describe our model consisting of a network
in section 2.1, a protocol design in section 2.2, and
the expected number of bidders in section 2.3.

2.1 Network

Our system can be represented by a connected net-
work G = (V,E), consisting of a set of nodesV and
edgesE, where the nodes represent cities and a pair of
neighboring nodes is linked by an edge. LetNi be a set
of neighboring nodes ofi ∈V, and letN+

i = Ni ∪{i}.
We assume that each nodei ∈ V has a good of one
single type and their initial price may be distinct. Let
pi be the price of the goods at nodei. Each nodei ∈V
has exactly one representative agentai who always
stays ati and can buy goods in the neighborhoodNi .
Each agentai has moneymi and the quantityqi of
goods. The pricepi is determined by the relation be-
tween the quantity of goods and the buying power,
called asupply-demandbalance. So we simply as-
sume two properties at each node. First, the price
is proportional to the amount of money for constant
goods. Second, the price is inversely proportional to
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the amount of goods for constant money. That is,

pi =
mi

qi
. (⋆)

If the total amount of goodsqi are sold at each node
i, then the total trade ati is equal toqi . By summing
up qi for every node, we can verify the correctness
of these assumptions by the Fisher’s quantity equa-
tion (N.G.Mankiw, 2018).

The buy operationis executed as follows. Each
agentai assigns avalue vj

i to the goods of any neigh-
boring nodej ∈ Ni , where the value means the max-
imum amount an agent is willing to pay. Agentai
compares its own goods pricepi with the neighboring
pricep j . If the cheapest price inNi is p j (< pi), agent

ai wants to buy it and makes a bidb j
i to node j. We

considerv j
i = pi for any j ∈ Ni because he can buy it

at pricepi in his node (V.Krishna, 2002).
The sell operationis executed as follows. After

accepting bids, agenta j contractswith ai ∈ Nj , who
made the highest bidb j

i at some appropriate time,
called acontract time. Agenta j passesai goods, and
conversely agentai passesa j money. Such trades are
repeated until the pricep j becomes equal topi caused
by the exchange of goods and money between them.
We do not take the carrying cost of goods into consid-
eration but focus on the change of prices. Each node
i ∈V has a stateΣi represented by a tuple — the goods
and the money(qi,mi).

We assume anasynchronous model, that is, every
agent aperiodically executes operations, exchanges
messages, and knows the states of neighboring agents.
We call the state of all nodes a configuration. A
configuration is legitimate if every node has equally
priced goods. In the asynchronous system, there is no
bound on the rate of step-execution. However, it is
convenient to use the number ofasynchronous rounds
or roundsin order to evaluate the system. The first
round in an executionE is the shortest prefixE′ of
E such that each agent executes at least one step in
E′. Let E′′ be the suffix ofE that followsE′, that is,
E = E′E′′. The second round ofE is the first round
of E′′, and so on. Intuitively, we can regard a round
as the time interval between the two operations of the
slowest agent.

2.2 Protocol Design

In this section, we first consider a protocol model,
called a first-price protocol (FirstPrice). In the pro-
tocol, each agentai asynchronously makes a bidb j

i to
an agenta j ∈Ni with the lowest price in the neighbor-
hood. However, all the bids toa j may not be submit-
ted yet whena j chooses the highest one. The follow-

ing assumption means that once a contract is made, it
is known to neighbors and a new submission of bid is
suppressed until the agents complete the trade.

Assumption 1. Once a buyer and a seller have made
a contract, they complete the trade until their prices
are balanced without interference. ⊓⊔

FirstPrice

1. Each agentai makes a bidb j
i to nodej ∈Ni which

has the lowest-priced goods inNi and less thanpi .

2. At a contract time, the agenta j contracts with
the neighboringah1 who has made the highest bid
maxh1∈Nj b j

h1
at the time. The goods moves from

q j to qh1 and the money moves frommh1 to mj at
h1’s bidding priceb j

h1
as long asph1 > p j . The

new pricesph1 and p j after the exchange are de-
termined by the amount of money/goods.

3. If several agents make bids to nodej with the
same highest price, agenta j makes deals with one
of them at random.

4. (priority rule:) If concurrent buy (bk
j to k ∈ Nj )

and sell (b j
h from h∈Nj ) operations occur at agent

a j , he gives priority to the sell over the buy.

If 2 above is replaced by the following 2′, we call it
a second-price protocol (SecondPrice). Let agentah2

have made the secondly highest bid to nodej, called
a secondly bidder.

2′. At a contract time, the agenta j contracts with
the neighboringah1 who has made the highest bid

maxh1∈Nj b j
h1

at the time. The goods moves from
q j to qh1 and the money moves frommh1 to mj at
the secondly bidderah2’s bidding priceb j

h2
as long

asph1 > p j .

In summary, if buyerai pays his bidding price to
seller a j , we call the protocol a first-price protocol.
In contrast, if buyerai pays the secondly highest (i.e.,
other buyer’s) bidding price to sellera j , we call the
protocol a second-price protocol.

Example 1. Figure 1 shows an example of our net-
work system consisting of 4 nodes V= {1,2,3,4}.
At first, the prices of goods are(p1, p2, p3, p4) =
(50,110,70,100) as shown in Figure 1(a). Each
agent ai wants to buy the lowest-priced goods at
node j∈ Ni if its price is lower than pi , that is,
pi > minj∈Ni p j . Thus, both a2 and a3 make bids to
node 1. The action of a4, however, is too slow to
attend the a1’s contract time (The anticipated oper-
ation is depicted as a dotted arrow). Since agent
a2 beats a3, agent a2 makes a contract with agent
a1. Let x units be the number of a2’s buying goods.
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Figure 1: An illustration of protocolFirstPrice (Intermediate bidding).

Since the prices of nodes 1 and 2 become equal, we
have 1000+80x

20−x = 2200−80x
20+x . This gives x= 3.75 and

hence q1 = 20−x= 16.25, q2 = 20+x= 23.75, m1 =
1000+80x= 1300, and m2 = 2200−80x= 1900.

After the trade as above, the prices become
(p1, p2, p3, p4) = (80,80,70,100) as shown in Fig-
ure 1(b). Here, agents a1 and a2 can make bids to
node 3, and agent a4 can make a bid to node 1. If b1

4
and b3

1 cuncurrently occur at node 1, agent a1 gives
priority to b1

4 and delays b31 because of avoiding con-
fusion (see the “priority rule”). ⊓⊔

We concern about whether the prices of goods
eventually reach an equilibrium price even if they are
initially distinct. The following lemma states an asyn-
chronous issue.

Lemma 1. Even if there is a slow operating agent,
the protocols correctly work.

Proof. Suppose that there is a too slow operating
agenti and other agents operates much faster thani.
We have to consider two cases.

1. The removal of nodei separates the network into
two or more components.

2. The removal of nodei does not separate the net-
work.

Suppose the move ofi, a pair of buy and sell opera-
tions ofi, is slow enough to stabilize the price in each
component.

In the first case, letCj andCk be two components
of them andp j andpk be their prices, wherep j < pi <
pk, respectively. Letdiff h( j,k) the price difference
betweenp j andpk after theh-th move ofi. After the
first move of agenti, some goods move fromCj to i
and then fromi to Ck. Likewise, some money move
from i to Cj and then fromCk to i. Thus,diff 0( j,k)>
diff 1( j,k) holds. This can be inductively proved.

In the second case, only pricepi is different from
others. Thus, the moves ofi eventually stabilize the
price. ⊓⊔

In (J.Kiniwa and K.Kikuta, 2011b), we examined
a sufficient condition for price stabilization inFirst-
Price. Suppose that agentsai and a j make bids to
nodeh∈ Ni ∩Nj . We say thatbids have the same or-
der as valuesif vh

i ≤ vh
j impliesbh

i ≤ bh
j for the goods

of nodeh. The following theorem further shows that
an additional condition leads to the price stabilization.

Theorem 1. (J.Kiniwa and K.Kikuta, 2011b) Sup-
pose bids keep the same order as values. If any
contract price lies between buyer’s price and seller’s
price, price stabilization occurs. ⊓⊔

2.3 Expected Number of Bidders

In our network model, each agent makes a bid to the
minimal priced node in the neighborhood. Since the
prices vary from time to time, the minimal priced
node also changes. So, we consider the expected
number of bidding nodes.

Assumption 2. We assume every agent can know the
maximum / minimum price, and we assume the value
vi is equal to the price pi at node i. The values are
uniformly distributed over(0,1). ⊓⊔

Next, Assumption 3 is necessary for computing
expected number of bidders.

Assumption 3. Agent i knows any node u within dis-
tance 3 from i. ⊓⊔

4

Figure 2: Certain agent (node 3) vs. uncertain agent (node
2) for i with respect toA.
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Figure 2 illustrates an example in which nodeA
sells goods and some nodes inNA make bids toA. Let
vu (= pu) be the value of agentu, and the pricepu
for eachu is not explicitly depicted. Suppose agent
i wants to make a bid toA. Since agenti is not ad-
jacent to agent 2, he does not know agent 2’s value,
however, knows the existence of node 2 andN2 (by
Assumption 3). Since agent 1 is adjacent to agent 2,
agenti does not know agent 1’s behavior. Thus the
uncertain decisions of agent 1 and agent 2 depend on
N+

1 \Ni = {2} andN+
2 \Ni = {2}, respectively. Fur-

ther notice the decision of agent 1 depends on agent
2’s value, that is, agent 1 makes a bid toA if v2 > vA.
We say that such agent 1 isdependent on 2 with re-
spect toA. Agenti surely knows agent 3 makes a bid
to A becausevA < v3. We call such agent 3 acertain
agent for i with respect toA. Let P(ρu) (resp.P(σu))
be the probability that agentu makes (resp. does not
make) a bid toA, and letku be the number of|N+

u \Ni |.
Thus, the probabilities that make bids toA are

(P(ρ1),P(ρ2),P(ρ3)) = ((1− vA)
k1,(1− vA)

k2,1)

= (0.8,0.8,1),

whereP(ρ1ρ2) = P(ρ2) andP(ρ1σ2) = P(σ1ρ2) = 0.
We consider probabilityPi( j) that there arej bidding
nodes toA when agenti makes a bid toA. Then, the
probability that four agents make bids toA is

Pi(4) = P(ρiρ1ρ2ρ3) = P(ρiρ2ρ3) = 1 ·0.8 ·1.

The probability that three agents make bids toA is

Pi(3) = P(ρiρ1σ2ρ3)+P(ρiσ1ρ2ρ3) = 0.

The probability that two agents make bids toA is

Pi(2) = P(ρiσ1σ2ρ3) = P(ρiσ2ρ3) = 1 ·0.2 ·1.

More formally, the probability thatvA is the small-
est value in|N+

u \Ni | is P(ρu) = (1− vA)
ku. Con-

versely, the probability thatvA is not the smallest
value is P(σv) = 1− (1− vA)

kv. For independent
agentsus andut , we can represent

Pi( j) = ∑
P(ρi)=1





 ∏
1≤s≤ j

j+1≤t≤NA

P(ρus)P(σut )






.

If ku = |N+
u \Ni | = 0, agenti knows every neigh-

boring value ofu, and thus understands whether agent
u makes a bid toA. Otherwise, agenti cannot know
some neighboring values ofu, and thus estimates the
possibility of u’s bidding. We call such agentu an
uncertain agent for i with respect toA.

It is known that Bayesian-Nash equilibrium oc-
curs when each agenti makes a bid( j−1)/ j ·vi when
there arej bidders (V.Krishna, 2002). We consider the

expectation of( j −1)/ j, called an expected rate. The
expected bidding rate, denoted byRI

i , of the Bayesian-
Nash equilibrium is

RI
i =

|NA|

∑
j=|CA

i |+1

j −1
j

Pi( j),

whereCA
i be the set of certain bidders fori which

make bids toA. (J.Kiniwa et al., 2017a) has also
shown that the optimal bidding rate of our second-
price protocol is

RII
i = 1.

Thus, the optimal bidding price forFirstPrice and
SecondPrice is bA

i = RI
i vi andbA

i = vi , respectively.

Theorem 2. (J.Kiniwa et al., 2017a) In arbitrary
networks, price stabilization is guaranteed by our
second-price protocol. In contrast, it is not always
guaranteed by our first-price protocol. ⊓⊔

We call the first-price protocol (resp. second-price
protocol) with its optimal bidding rateFirstOptBid
(resp. SecondOptBid). Since the price stabilization
is not always guaranteed by theFirstOptBid in any
network (J.Kiniwa et al., 2017a), we introduce the fol-
lowing alternative protocols instead ofFirstOptBid,

• Intermediate bidding (with first-price) protocol, and

• Pseudo first-price (with optimal bidding) protocol.

In the former protocol, each buyer makes an inter-
mediate bid between the buyer’s price and the seller’s
price, and pays his bidding price, as illustrated in Fig-
ure 1. In the latter protocol, the highest priced agent
makes an optimal bid and always wins his contract
with a seller. Though some agent may not follow the
auction rule, we just consider it from the viewpoint of
circulation of money. The price stabilization is guar-
anteed by both methods.

3 VELOCITY OF MONEY

In the synchronous model (J.Kiniwa et al., 2017b), we
already have the following result.

Theorem 3. (J.Kiniwa et al., 2017b)Let T be the to-
tal volume of transactions, interpreted as the quantity
of goods, and let M be the total amount of money. In
any synchronous system, the equilibrium price Pe in a
connected network G is presented by

Pe =
M
T
.

⊓⊔

Notice that this equality coincides withFisher’s
quantity equation MVm = PeT whenVm = 1.
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To extend this to generalVm, we have to consider
an asynchronous system in which every operation oc-
curs at any time. Thevelocity of moneyis defined as
the mean distance money is passed from one holder
to the next in a round.

Let flowi be a variable which represents cumula-
tively paid money at nodei. The velocity of money is
obtained as in the following theorem.

Theorem 4. Suppose that each node i has paid money
of flowi in a round. Then, the velocity Vm of money is

Vm =
∑i flowi

M
.

Proof. In the Fisher’s equationMVm=PeT, the right-
hand sidePeT means the total amount of selling goods
in the system. It is equal to the total amount of paid
money in the system. Thus, we can measure it by
using the variableflowi for every nodei ∈V. Then we
havePeT = ∑i flowi . Therefore, the theorem follows.

⊓⊔

Figure 3 illustrates the idea of velocity of money.
For simplicity, suppose agent 1 holds moneyM at
time 0. Then, it passes through several nodes and each
agenti records his spent money inflowi . At the end
of the round, suppose all the moneyM reaches nodes
distancek from node 1. Then, the total sum offlowi
consists of the sums of them with respect to distance
0,1, . . . ,k. Thus the distancek during one round, the
velocity of money, is derived as in Theorem4.

Figure 3: Distance of Money Traveling.

4 SIMULATION

In this section, we execute simulation experiments for
the protocols above in path and grid networks. We in-
vestigate the influence of the network topologies and
other aspects on the velocity of money.

Next, we consider the following three issues in
two kinds of networks, a path and a grid. If we ex-
ecute (a) intermediate bidding protocol, (b) pseudo
first-price protocol, and (c)SecondOptBid, we inves-
tigate how

[1] the number of nodes,

[2] the number of money-injection nodes, and

[3] the rate of concurrency

have great influence on the velocity of money. More
precisely, [1] we increase/decrease the number of
nodes, [2] we add much money at some selected
nodes, called money-injection nodes, and change the
number of them, and [3] we change the number of
concurrently trading agents.

Table 1 shows the constants used in our exper-
iments. We repeat the experiment up to 50 trials,
where a trial ends with an equilibrium, and obtain
mean results. Initially, each node has money 100
units, and has goods between 50 and 100 units at ran-
dom. Then, the equation (⋆) determines the price for
each node. The total injection of money is 30,000
units. Table 2 shows the parameters used in our ex-
periments. It has the third column named “standard”
which means a constant value if another parameter is
being varied. For example, the number of nodes is
300 when we vary the number of injection nodes from
1 to 10, or when we vary the rate of concurrency from
0.1 to 0.9, and so on.

Table 1: Constants.

Meaning Value

Number of Trials 50
Iteration 500

Money per Node 100
Goods per Node [50, 100]

Total Injection of Money 30,000

Table 2: Parameters.

Meaning Value Standard
Number of Nodes 50—500 300
Number of Money
-injection Nodes 1—10 1

Rate of Concurrency 0.1—0.9 0.5

4.1 Number of Nodes

Figures 4 and 5 show how the number of nodes has
influence on the velocity of money in two networks.
All the curves increase as the number of nodes grows
because there may be some extremely slow agents in
large population. In the path, since almost all nodes
have two degrees, not so many conflicts of bidding
occur. Thus the payment of two equilibrium bidding
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protocols is low and that of the intermediate bidding
protocol is high. In the grid, the payment of the
second-price protocol is higher than others because
each bidderi makes a bidb j

i = v j
i to j ∈ Ni and pays

the second highest bid.
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Figure 4: Varying Number of Nodes in Path.

0 200 400 600

3

4

5

6

7

8

V
el

oc
it
y 

of
 M

on
ey

Number of Nodes

 Intermediate Bidding
 Pseudo First-Price
 SecondOptBid

Figure 5: Varying Number of Nodes in Grid.

4.2 Money-injection Nodes

Figures 6 and 7 show how the number of money-
injection nodes has influence on the velocity of money
in two networks. In the path, since many number of
money-injection nodes grow the spread of money in
intermediate pseudo first-price protocols, the velocity
of money becomes high. On the other hand, the influ-
ence of the second-price protocol is not outstanding.
This is because the payment from a money-injection
node would be equal to the bidding price of its neigh-
boring nodes. And then, the payment would be low
in the second-price protocol. Thus, the velocity of
money in the second-price protocol is slow. In the
grid, the tendency of the former two protocols looks
alike.

4.3 Concurrently Trading Nodes

Figures 8 and 9 show how the number of concurrently
trading nodes has influence on the velocity of money

0 2 4 6 8 10

5

6

7

8

9

V
el

oc
it
y 

of
 M

on
ey

Number of Money-Injection Nodes

 Intermediate Bidding
 Pseudo First-Price
 SecondOptBid

Figure 6: Varying Money-Injection Nodes in Path.
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Figure 7: Varying Money-Injection Nodes in Grid.
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Figure 8: Varying Concurrently Trading Nodes in Path.
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Figure 9: Varying Concurrently Trading Nodes in Grid.

in two networks.In the path, since the conflicts of bid-
ding do not occur so often, the curves grow according
as the rate of concurrently trading nodes. In the grid,
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since winner’s payment of the second-price protocol
is higher than others, the velocity of money is fast.

5 CONCLUSION

In this paper we extended our synchronous model
for the price stabilization to an asynchronous system.
Then we have obtained the following two advantages:

• we can consider a general model which is close to
an actual system, and

• we can explain the velocity of money in Fisher’s
quantity equation.

First, we described how to express the velocity of
money in Section 3. Then, we executed simulation
experiments and revealed several features of the ve-
locity of money in a path and a grid in Section 4.

The velocity of money for the second-price proto-
col is faster than that for the first-price protocol. Such
a property is remarkable in grid networks rather than
in path networks. This is because the second-price
protocol accepts higher bidding price for many bid-
ders, and then the amount of trade grows at an inter-
val.

Our future work includes developing a practical
stabilization model, for example, on-line shopping,
and other protocols.
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