
Case Studies in Model-Driven Reverse Engineering

André Pascal
LS2N CNRS UMR 6004 - University of Nantes, France

Keywords: Model-Driven Reverse Engineering, Re-engineering, Legacy Systems, Model, Abstraction, Process.

Abstract: Without abstraction, third party maintenance can hardly make evolve (even documented) software applica-
tions. In this paper we address the problem of re-engineering software applications to add abstraction in order
to improve their continuous evolution. In three different case studies, we make use of Model-Driven Reverse
Engineering for extracting component software architecture, for aligning business and application logic in in-
formation systems and for re-engineering a holonic software manufacturing process. We report lessons learnt
for future developments.

1 INTRODUCTION

The maintenance process of software applications
represents more than 70% of the total of software cost
and this percentage is still growing up when main-
taining old legacy applications (Dehaghani and Ha-
jrahimi, 2013). Abstraction is a key factor to maintain
complex software applications because the concepts
are more resilient than their implementations. With-
out abstraction, third party can hardly make evolve
software applications due to numerous implementa-
tion details, tricky programming, hard-coded param-
eters, deprecated frameworks, etc. The business ap-
plication concepts are merged with implementation
issues to build an intricate software. The reference
manuals are rarely sufficient to get easily into the
source code: implementation details are given but the
design decisions are not easy to trace. Moreover the
specifications are often deprecated against the pro-
grams. Due to lack of information, maintenance de-
velopers may reinvent the wheel or redo errors. Let
call this phenomenon the abstraction debt.

We are convinced that Model-Driven Engineer-
ing (MDE) is a gainful approach to develop long-
term software systems. According to (Selic, 2008),
the different MDE paradigms can be reduced to two
main ideas: raising the level of abstraction and raising
the degree of computer automation. MDE techniques
have proven useful not only for developing new soft-
ware applications but for re-engineering legacy sys-
tems (Cuadrado et al., 2014). This paper deals with
Model-Driven Reverse Engineering as a means to
produce software abstractions.

Reverse engineering is the process of comprehending
software and producing a model of it at a high abstrac-
tion level, suitable for documentation, maintenance,
or re-engineering (Rugaber and Stirewalt, 2004). The
goal is to re-introduce abstractions in the legacy ap-
plications in order to gain advantage later when mak-
ing the software evolve. We need techniques and tools
for reverse engineering (RE) that take into account the
domain specific features. In this paper we relate RE
cases. This is not a systematic study but lessons from
our experience.

This paper highlights the complex use of reverse
engineering in the context of re-engineering. We
experimented different approaches on different case
studies that belong to different application domains:
extracting software component architecture for better
design, software modernisation of information sys-
tems and rethinking a manufacturing control appli-
cation. The lessons learnt from these experimental
works open tracks for future vision and future work.

The paper is structured as follows. Section 2
overviews Model-Driven Reverse Engineering and
open issues. Three case studies are then presented.
Section 3 reports experimentations on software ar-
chitecture extraction. Section 4 reports an experi-
mentation in the information systems domain with
pre-defined target models and large-scale case stud-
ies. Section 5 presents an on-going experimentation
in the manufacturing domain with pre-defined target
models and a medium size case study. Lessons learnt
and related works are discussed in Section 6. Finally,
Section 7 summarises the contribution and draws per-
spectives.

256
Pascal, A.
Case Studies in Model-Driven Reverse Engineering.
DOI: 10.5220/0007312502560263
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 256-263
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 BACKGROUND

Abstraction hides implementation details. During
the development of software systems, high level ab-
straction models refer to system analysis and design
while low level ones refer to implementation and de-
ployment. The Object Management Groupe (OMG)
identified four types of models in the Model-Driven
Approach (MDA): Computation Independent Model
(CIM), Platform Independent Model (PIM), Platform
Specific Model (PSM) and an Implementation Specific
Model (ISM) (Brown, 2004). The relations between
model elements of different layers are refinement or
traceability. Sometimes inheritance is used to mate-
rialize the abstraction between comparable model el-
ements. People also use abstraction layers to repre-
sent the organisation of complex architectures. Typi-
cal examples are the ISO stack of protocols and ser-
vices for telecommunications or the service architec-
ture approach (SOA). In MDA, an engineering pro-
cess can be seen as a sequence of model transforma-
tion where each transformation refines an (abstract)
model to a more concrete one by the means of in-
formation (cf. Figure 1). In this paper, the term In-
formation denotes any piece of knowledge (source
code, documentation artefacts, configuration, proce-
dures, models, etc.) about a software application.

Figure 1: Reverse Model Transformation.

Model-Driven Reverse Engineering aims at pro-
ducing high (abstraction) level models from software
systems. Various objects can lead to use MDRE in
software maintenance:
• Extract information of lost or deprecated design

documentation.
• Understand an existing software solution with

missing documents.
• Re-factor application to improve the quality or

follow new coding standards.
• Align business processes with legacy applica-

tions.
• Upgrade technical framework releases or updat-

ing technical components.
• Extract software components to put on the shelf.

• Improve genericity by replacing hard coded infor-
mation by configuration files.

• Modify the presentation layer or the persistence
layer in n-tier web applications.

• Change the programming languages (e.g. from
Cobol to Java).

Abstraction can raise at different abstraction levels,
from program representation to the application archi-
tectures or business processes. Consequently, differ-
ent kinds of models are expected with various no-
tations like de facto MDE standards such as UML,
OCL, MOF, EMF, SysML, AADL, BPMN or cus-
tomised models defined with domain specific lan-
guages (DSL). The source information also differs
and may include binary code, source code, config-
uration files, tests programs but also textual docu-
mentation or user scenarios. Conversely to engineer-
ing, MDRE can be made of transformations but usu-
ally transformations are not reversible as illustrated
by Figure 1.

In the sections 3 to 5, we overview three dif-
ferent cases of reverse engineering practice for re-
engineering: For each case we present the objectives,
the proposed approach and the results.

3 SOFTWARE ARCHITECTURE
EXTRACTION

The first case focus on reverse-engineering software
architecture to reduce software architecture erosion,
a common problem in legacy applications. Because
they do not know or do not understand the original ar-
chitectural intent, maintainers introduce changes that
may violate the intended architecture and properties.
The objective of this research project1 was to estab-
lish a link between component implementations and
component models in order to statically check prop-
erties such as safety and liveness. In reverse engi-
neering, one cannot expect a “random” application to
follow strict development patterns, for example with
clear separation of communications, data types, com-
ponents types, etc. In this work we suppose that an
application was developed with componentisation in
mind, but not necessarily with the required rigour.
This would be the case for example, when one de-
signs an architectural model, with proper specifica-
tion of components and allowed communications, but
implement the application with typical industrial ap-
proaches such as Corba, .NET, J2EE, or OSGI that
focus on the runtime infrastructure, but provide little

1https://tinyurl.com/y7fjujgh

Case Studies in Model-Driven Reverse Engineering

257

support for automatic verification of properties.
Figure 2 depicts the abstraction processes. Both

processes are different but the Structural Abstraction
(SA) stands first because the Behavioural Abstraction
(BA) takes benefit from the result of SA. We defined a
common component meta-model (CCMM) as a stan-
dard for component based modelling languages such
as Kmelia2 or Sofa3. These languages have tool sup-
port to verify models and check properties.

Figure 2: Component Abstraction Process.

The input data of processes SA and BA is a col-
lection of source code (e.g. plain Java code here). Ad-
ditional user informationcan help to define heuristics.
For example, if the implementation is based on a spe-
cific framework like Corba or Sprint, one can look
for specific patterns to detect components, services or
communication protocols. If there exists a deprecated
abstract model, one can try to match with the current
implementation. The process can also take benefit of
code annotations written manually by users or auto-
matically by some code generator.

The abstraction processes are designed as itérative
transformation processes where each step consists in
applying one transformation of a tool box, as depicted
by Figure 3. Each iteration applies one transformation
(one tool of the toolbox) to the (possibly annotated)
source code and produce the same code with new an-
notations. The idea is to combine transformations in a
customized human driven process. As an example, let
detail the "Model from code" transformation of Fig-
ure 3. We developed the tool, called Javacompext,
for structure abstraction: recovering components and
communications from a plain Java application. The
input is a (possibly annotated) Java source code, and
the output is a set of components with several kind of
relations between them (communications, links, in-
heritance) and a set of data types. Details are given

2https://costo.univ-nantes.fr/
3https://sofa.ow2.org/

Figure 3: Iterative Abstraction Process Toolbox.

in (Anquetil et al., 2009).
We experimented Javacompext on various imple-
mentations of the Common Component Modelling
Example (Rausch et al., 2008). CoCoME is a con-
test to evaluate and compare the practical appliance
of existing component models and the corresponding
specification techniques using a common component-
based system as modelling example. Based on a
UML-based description of CoCoME, a provided sam-
ple implementation, and test cases, the participating
teams had to elaborate their own modeling of Co-
CoME, applying their own component model and de-
scription techniques. The example describes a Trad-
ing System as it can be observed in a supermarket
handling sales. This includes the processes at a sin-
gle Cash Desk like scanning products using a Bar
Code Scanner or paying by credit card or cash as well
as administrative tasks like ordering of running out
products or generating reports. a deployment model,
or test cases. The CoCoME specifications (abstract
model) is relatively detailed with components, se-
quence, or communication diagrams. However it does
not explicitly identify all the services, and only a few
appear in sequence diagrams.

We used three instances of CoCoME, composed
of a meta-model and its implementation. For ex-
ample, the reference sample implementation is writ-
ten in plain Java with some (undocumented) conven-
tions. It includes 5078 LOC, 40 packages, 95 classes,
20 interfaces and 375 methods. The results were
quite encouraging. Although the rules to recognize
component types may seem very strict, in the cho-
sen context (application developed with components
in mind), they worked quite well. We could very
quickly discover mappings between the concrete code
and the abstract model which was one of our goals.
Javacompext also highlighted big mismatches be-
tween the designed application (abstract model) and

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

258

the implemented one.

4 INFORMATION SYSTEM
ALIGNMENT

The second case focus on reverse-engineering soft-
ware architecture of Information System legacy ap-
plications. Maintaining legacy systems, i.e. the cur-
rent state of the IT, besides new architectures or new
business rules, remains an ongoing but costly con-
cern (Clark et al., 2012). The problem is to re-
duce Business-IT misalignment between the Informa-
tion Technology (IT) and Business viewpoints, which
evolve separately. Our motivation is to help deci-
sion makers to capture the alignment of legacy sys-
tems with the related business models in order to un-
derline the cross effects of IT or business evolutions.
In (Pepin et al., 2016) we proposed a method to touch
on the alignment of legacy systems by a pragmatic
way. Different meta-models are defined at different
abstraction levels (application, functional and busi-
ness process). They are inspired by Enterprise Archi-
tecture frameworks (e.g. TOGAF). We defined meta-
model inter-relationships in order to support align-
ment. The method consists in gradually (i) building
models from the business side, (ii) extracting models
from the IT side and (iii) relating the models consis-
tently.

Reverse-engineering contributes to step (ii) in pro-
viding a way to feed the models by mining the exist-
ing information sources (code, models, documents).
We implemented techniques to feed the correspond-
ing models from legacy information (source code,
data and models when they exist). Figure 4 shows
the involved models and transformations performed
during step (ii).

Source Code Java Model Mia-Studio®

Modisco

 JDT
Parsing

Transformation
rules Java to KDM

KDM ModelApp Model

Transformation
rules KDM to App

Mia-Studio®

S1.1 S1.2

S1.3

Figure 4: Transformation steps.

The goal is to retrieve an application model from
the source code. The distance between the program-
ming language level and the application architecture

level is too wide to be processed in a single transfor-
mation step. Therefore the application model is pro-
duced by a stepwise abstraction where three transfor-
mations are necessary as depicted in Figure 4.
1. The Source Code Reverse Engineering (S1.1) con-

sists in analysing the source code files of a set of
programs in order to get a representation of the
code in a model (PSM). This assumes a meta-
model for each target programming language e.g.
Java, C++, etc. We implemented Java Reverse En-
gineering using Modisco (Brunelière et al., 2014).
This tool discovers the Java model with the as-
sistance of the Java Development Tools (JDT)
which parses the source code and computes an
Abstract Syntax Tree (AST) according to a Java
meta-model.

2. The Intermediate Transformation (S1.2) produces
an instance of the Knowledge Discovery Meta-
model (KDM)4 intermediate model (PIM). KDM
includes many layers to save different aspects of
common programming languages and more gen-
erally it defines common concepts for software
assets and their operational environments. We
used only a part of KDM, mainly the code pack-
age which contains all the features of the current
programming language. We faced the problem
of scaling the model size because Modisco is not
dedicated to store much information. So, we had
to write our own transformation using the Mia-
transformation tool.

3. The Transformation to a High-level Abstraction
(S1.3) is to transform the KDM model into our
App model which captures only the architectural
information to be aligned later with the business.
The abstraction distance between input and output
is really larger than those of step S1.1 and S1.2.
The existing tools suffer from limitations here.
Finer algorithms are required such as the trans-
formations exhibited for case 1 in Section 3. As a
matter of fact, we exploited specific information,
related to our case studies (see below) to build an
algorithm and a set of rules to detect the different
concepts from the application meta-model. This
algorithm is more or less complex depending on
the architecture used in the source code. Making
such an abstraction exploits the inter-relationships
described between the models to align. For exam-
ple, we wrote a Mia-transformation to obtain an
application model containing the links between
components, interfaces, services, functions and
data objects. The source code of the cases stud-
ies used a specific file naming based on name pre-

4Used by the modernization community in mining tools.
http://www.omg.org/technology/kdm/

Case Studies in Model-Driven Reverse Engineering

259

fixing. This naming policy identifies the software
architecture role of different Java interfaces and
classes. This unusual feature helps us to create an
convenient transformation in a short time.

The experimentation was led on real case studies pro-
vided by French Mutual Insurance companies. The
inputs include heterogeneous data such as java source
files, enterprise architecture repositories (MEGA),
databases. For example, one case study was a com-
plete source code written in Java. The input source
code was large: 33,400 classes, about 3,400,000 code
lines. A side-effect of the study was to evaluate the
capability to handle large-scale systems. The experi-
ments showed that big mappings are hardly manage-
able by humans and tool assistance is mandatory. The
reader will find more details in (Pepin et al., 2016).

5 MANUFACTURING CONTROL
SYSTEMS RE-ENGINEERING

The third case focus on reverse-engineering a man-
ufacturing application in order to re-engineer it ac-
cording to MDE. The context of this case study is
manufacturing control in Industry 4.0 where software
systems become of prime importance. The starting
point is a double finding, from literature review and
current practice. Related works mention that service
engineering in the context of Cyber-Physical Produc-
tion Systems is still a craft activity, usually at the im-
plementation level (Rodrigues et al., 2015; Morariu
et al., 2013). In practice, we started from the ap-
plication of Gamboa Quintanilla et al. that imple-
ments a Service-oriented Holonic Manufacturing Sys-
tems (SoHMS) (Quintanilla et al., 2016). A HMS is
an agent-based systems that acts as a digital twin of
the real manufacturing workshop ; it enables to con-
trol or simulate the workshop. Gamboa implemented
a manufacturing workshop, called SOFAL. Its cur-
rent implementation is depicted in Figure 5. It con-
sists of two Java applications that exchange informa-
tions through sockets. Both applications are tightly
coupled to the SOFAL workshop and reconfiguring
it implies to compile the software. The programs in-
cludes 160 classes, 1240 methods and 14802 lines of
code. The documentation is a PhD report including
UML diagrams. Products and manufacturing orders
are described with a human-machine interface (HMI).
SoHMS, the running control system, can be bound to
a simulator (Arena tool) or to the real workshop.

The objective is to switch from classical develop-
ment to MDE. Instead of coding, the idea is to in-
troduce automation and generate the code from mod-

Figure 5: SOFAL manufacturing software.

els in order to be more reactive when reconfiguring
the workshop. Moreover, handling models enables to
reason with abstract concepts and to verify expected
properties without taking into account useless imple-
mentation details. The motivations and new organisa-
tion are explained in (Tebib et al., 2019).

The role of reverse-engineering is to mine the
source code to capture model elements that can be
compared with the available UML diagrams. It helps
to discover and understand the application. Behind
discovering we also want to separate the concepts that
are specific to SOFAL from those which are common
to different workshop. Factoring concepts will help
to get higher abstraction and promote reuse. This ab-
stract part of the application constitute the SOHMS
framework, a Java library we will shared by the fu-
ture manufacturing projects. The specific layer in-
cludes those features which depend on one specific
workshop (products, ressources, orders, flows). We
also separate the workshop elements (resources and
flows) from the manufacturing ones (orders and prod-
ucts). The primer are rather static (even for recon-
figurable manufacturing systems) while the latter are
merely dynamic, time dependent and subject to qual-
ity of service constraints.

The reverse-engineering process extracts abstrac-
tions to be sorted in the above categories (com-
mon/specific, workshop/manufacturing). We choose
UML as modelling language due to its widespread use
in the development community but also because var-
ious MDE tools accept UML models (or EMF mod-
els in the Eclipse world). We tried different tools for
reverse-engineering UML models from Java source
code such as Modelio, Papyrus, Modisco, Eclipse
UML, Enterprise Architect or ObjectAid. Few of
them enable visual facilities for exploring the result-
ing diagrams, ObjectAid was helpful for this.

Finally, even if this is not a definitive opinion,
the existing tools mainly propose a static represen-
tation of the code (system structure and system be-
haviour). We already made similar findings in the ex-

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

260

perimentations of Section 3 and Section 4. The auto-
matic extraction of communication scenarios (UML
sequence diagrams) or object life cycles (UML stat-
echarts) from plain Java are, as far as we explored,
almost limited in the tested tools. ObjectAid5 pro-
vides visual representations to be included manually
in class diagrams. Sequences diagrams were available
in the licensed version. Other tools usually provide
internal representation or XMI format files.

In practice, the automatic extraction provided too
much useless details to prevent us to understand
how the two applications were designed. The gap
between code models and design model is really
big. Consequently we adopted a two-way approach,
where reverse-engineering activities interleave and
modelling activities in an iterative process (Figure 6).
1. Reverse engineering (bottom-up) discovers the

implemented structures (for both structural and
behavioural aspects) with code model extraction,
code reading.

2. Model engineering (top-down) writes UML mod-
els (class diagrams, sequence diagrams, activity
diagrams...) from research reports, interviews, as-
sumptions and of course the results of the previous
reverse engineering iterations.

The idea is to iterate and converge until a sufficient
level of agreement is reached.

Figure 6: Two-way reverse engineering.

The result of the two-way reverse engineering is
a collection of UML diagrams that helps to build the
SoHMS framework which contains the core execution
of the holonic system. It serves as documentation of
the SoHMS framework which is currently designed
as a Java library. We are working on a modelling sup-
port (a Domain Specific Language and a visual editor
implemented with Sirius6 and on model transforma-
tions to Java and to FlexSim7, a simulation system.

5http://www.objectaid.com/
6http://www.eclipse.org/sirius/
7https://www.flexsim.com/

This part is still under construction in the process but
details are available in (Tebib et al., 2019).

6 DISCUSSIONS

We present lessons learnt from the above case studies
and related works.

When model-driven reverse engineering legacy
systems, it is a primary requirement to have tech-
niques to build new models. We observed that the
existing tools mainly propose a static representation
of the code (system structure and system behaviour),
similarly as described in the experimentations of Sec-
tion 3 and Section 4. The behavioural abstraction is
more complex to establish because investigating the
computation flows is a kind of evaluation. MDRE
tools provide convenient abstract views of the code
but more intelligent algorithms are required to raise
in abstraction. In the three above presented cases, we
experimented various strategies.
1. In the case presented in Section 3, heuristics en-

able to classify candidate classes into components
or data types.

2. In case studies of Section 4, we use engineering
methods and rules including naming conventions
and package organization.

3. In the case presented in Section 5, we compared
the (manual) top-down models from the bottom-
up abstractions at each iteration step.
During these experiences, we note the following

findings about MDRE.
1. The process is guided by the objectives (what you

look for) and the results will depend on them. It
can be used to prove properties or estimate the
quality (e.g. case 1), to evaluate the impact of
evolution (e.g. case 2) or to re-engineer a new ap-
plication (e.g. case 3). Other scenarios are given
in (Raibulet et al., 2017), including comprehen-
sion, documentation, software quality assessment.

2. Automatic high-level reverse-engineering for gen-
eral purpose object languages such as Java or C++
stay a myth. Efficient generic tools exist, such as
Modisco, which provide an abstract view of the
program but can hardly raise in abstraction to ar-
chitecture levels. Having information or expertise
knowledge is mandatory to compute abstractions,
e.g. heuristics or design choices, naming or struc-
turing conventions, traceability links, best prac-
tices, patterns, etc. In Section 3, we added anno-
tations in the source code to assist the tool in de-
tecting the abstractions. In the best case one may
have an incomplete model designed during the en-

Case Studies in Model-Driven Reverse Engineering

261

gineering process. Also the process must be inter-
active or user guided because the (reverse-)design
decisions depend on experts. Having third party
MDRE is an additional drag. The result would be
better with specific-purpose languages.

3. One step reverse-engineering is impossible to
raise in abstraction. We are convinced that the
intelligence is in the transformation process not
in the individual transformations. Only small
steps can be easily implemented by developers
with simple transformation rule sets. For ex-
ample, coding UML models (including classes,
state-transitions and activity diagrams) directly
into Java is harder and less reusable than trans-
forming (i) to a UML profile without aggregation,
and bidirectional association, (ii) to a UML profile
without multiple inheritance, etc.

4. There are no universal process. Each of our case
study was different in terms of source information
and MDRE objectives. Consequently the reverse
engineering must be able to accept customizations
(or local knowledge) as input parameter. As men-
tioned in (Raibulet et al., 2017), domain specific
approaches provide better results e.g. for web ser-
vices, Cobol programs or relational databases, etc.

5. Similarly to machine learning, a reverse engineer-
ing technique, designed for a given goal (lesson
1) in a given context (lesson 4), will be improved
by applying it in new case studies. In the case of
Section 3, the tool provides different results for
the different implementations we tested. An open
track is to improve the heuristics of the RE trans-
formations by learning.

6. Discovering a model is much harder than compar-
ing a model with an implementation. As experi-
mented in the case of Section 5 and in some ex-
amples of Section 4, it is more easy to find some-
thing expected than something unknown. Having
a reference provides not only potential abstrac-
tions but also the way abstractions were designed.
In a MDE approach, the knowledge of the engi-
neering transformation process impacts the way to
drive the reverse-engineering transformation pro-
cess. In particular, if the transformation process
is made of small steps, it is simpler to write the
reverse-transformations because the semantic dis-
tance is small between an implementation (a set of
elements of the source code) and its abstraction.
However reverse-engineering is never a symmet-
ric transformation of engineering.

7. MDE helps in MDRE. If the engineering process
is made of model transformations, it should be
easier to get back to models. For example one can
set traceability links in the code (e.g. by the means

of code annotation). Model round-trip engineer-
ing goes further and involves synchronizing mod-
els and keeping them consistent. As a means for
round-trip, Bork et al. propose an approach for re-
verse engineering of code generated by a template
based code generator (Bork et al., 2008).
In coherence with MDA and lesson 3, we con-

sider a reverse-engineering process to be a composi-
tion of reverse model transformations as depicted by
Figure 1. The cost to pay is to manage intermediate
meta-models. To avoid the multiplicity of modelling
languages, one can define operators to reduce or to
augment the features of one base language, similarly
to UML profiles. Another problem is to manage meta-
model evolution ; solutions with graph transformation
are provided in (Mantz et al., 2015).
MDRE has been an active research field since a
more than a decade. We already point out compar-
isons with related approaches on component based
reverse-engineering (case 1) in (Anquetil et al., 2009)
and legacy reverse engineering for application models
(case 2) in (Pepin et al., 2016).

Reis and Da Silva propose a MDRE approach to
produce high-level specifications of legacy informa-
tion systems in a human-controlled way taht are re-
injected in forward engineering (Reis and da Silva,
2017). A family of UML-based modelling language,
called XIS*, enable to express the specifications.This
approach could be complementary to ours since it fo-
cus on databases while we work on programs.

Considering MDRE in general, we refer to the
recent synthesis of Raibulet et al. (Raibulet et al.,
2017). Fifteen approaches are referenced and eleven
partial approaches are discussed. The referenced
approaches are classified into general purpose (or
generic) approaches and domain specific ones (e.g.
for cobol, web-services, web applications or rela-
tional databases). These approaches use a wide range
of meta-models (e.g. OMG standards but mùany
DSLs) but merely few tools (the most cited are
MoDisco and ATL). Various case study are used but
no benchmark emerged.

The most advanced approaches for MDRE is the
one of Brunelièere et al. (Brunelière et al., 2014),
based on Modisco, an open source MDRE frame-
work. We are convinced Modisco is very helpful for
model discovery ; we used it in case 2. However com-
plementary approaches are necessary to raise in ab-
straction, as shown in case 2.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

262

7 CONCLUSION

In the context of software maintenance, the well-
known technical debt is almost always accompanied
by an abstraction debt. Even in the good case were
the specifications include software architecture and
design models they are usually not up-to-date and
not consistent with the current implementation and
runtime configurations. Model-Driven Reverse En-
gineering of a legacy system provides means to get
abstract models from the source code (or from the
binary code). However a standard extraction from
code, usually do not reach the goal because the tool
support is more efficient on the static parts than the
behavioural part. Experiments show us that MDRE
is a complex activity that requires expert assistance,
customization to fit the MDRE goals and progres-
sive abstraction raising. MDRE is not symmetric to
MDE ; the traceability links that bind (abstract) de-
sign concepts to (concrete) implementation concepts
are many-to-many. Things can change if MDRE is an-
ticipated during engineering by using small step trans-
formations and by putting explicit traceability infor-
mation in the source code i.e. preparing round-trip.

The next step will provide more assistance to
MDRE user. For example we target the implemen-
tation of heuristics to propose a list of possible model
abstraction mappings to the modeller, she can then
choose the desired ones. These heuristics will de-
pend on the nature and the semantics of the mappings.
For example, when mapping two releases of the same
model, it is usually easier to detect equality mapping.
In specific cases, one can detect patterns or naming
conventions.

REFERENCES

Anquetil, N., Royer, J., Andre, P., Ardourel, G., Hnetynka,
P., Poch, T., Petrascu, D., and Petrascu, V. (2009).
Javacompext: Extracting architectural elements from
java source code. In 2009 16th Working Conference
on Reverse Engineering, pages 317–318.

Bork, M., Geiger, L., Schneider, C., and Zündorf, A. (2008).
Towards roundtrip engineering - a template-based re-
verse engineering approach. In Schieferdecker, I. and
Hartman, A., editors, Model Driven Architecture –
Foundations and Applications, pages 33–47, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Brown, W. A. (2004). Model driven architecture: Princi-
ples and practice. Software and Systems Modeling,
3(4):314–327.

Brunelière, H., Cabot, J., Dupé, G., and Madiot, F.
(2014). Modisco: A model driven reverse engineer-
ing framework. Information and Software Technology,
56(8):1012 – 1032.

Clark, T., Barn, B. S., and Oussena, S. (2012). A method
for enterprise architecture alignment. In Proceedings
of PRET, volume 120, pages 48–76. Springer.

Cuadrado, J. S., Izquierdo, J. L. C., and Molina, J. G.
(2014). Applying model-driven engineering in small
software enterprises. Sci. Comput. Program.

Dehaghani, S. M. H. and Hajrahimi, N. (2013). Which fac-
tors affect software projects maintenance cost more?
Acta Informatica Medica, 21(1):63–66.

Mantz, F., Taentzer, G., Lamo, Y., and Wolter, U. (2015).
Co-evolving meta-models and their instance models:
A formal approach based on graph transformation.
Science of Computer Programming, 104:2 – 43. Spe-
cial Issue on Graph Transformation and Visual Mod-
eling Techniques (GT-VMT 2013).

Morariu, C., Morariu, O., and Borangiu, T. (2013). Cus-
tomer order management in service oriented holonic
manufacturing. Computers in Industry, 64(8):1061 –
1072.

Pepin, J., André, P., Attiogbé, C., and Breton, E. (2016).
An improved model facet method to support EA align-
ment. CSIMQ, 9:1–27.

Quintanilla, F. G., Cardin, O., L’anton, A., and Castagna, P.
(2016). A modeling framework for manufacturing ser-
vices in service-oriented holonic manufacturing sys-
tems. Engineering Applications of Artificial Intelli-
gence, 55:26–36.

Raibulet, C., Fontana, F. A., and Zanoni, M. (2017). Model-
driven reverse engineering approaches: A systematic
literature review. IEEE Access, 5:14516–14542.

Rausch, A., Reussner, R., Mirandola, R., and Plasil, F., ed-
itors (2008). The Common Component Modeling Ex-
ample: Comparing Software Component Models, vol-
ume 5153 of LNCS. Springer, Heidelberg.

Reis, A. and da Silva, A. R. (2017). Xis-reverse: A model-
driven reverse engineering approach for legacy infor-
mation systems. In Proceedings of the 5th Interna-
tional Conference on Model-Driven Engineering and
Software Development,, pages 196–207. INSTICC,
SciTePress.

Rodrigues, N., Leitão, P., and Oliveira, E. C. (2015). Self-
interested service-oriented agents based on trust and
qos for dynamic reconfiguration. In Borangiu, T.,
Thomas, A., and Trentesaux, D., editors, Service Ori-
entation in Holonic and Multi-agent Manufacturing,
volume 594 of Studies in Computational Intelligence,
pages 209–218. Springer.

Rugaber, S. and Stirewalt, K. (2004). Model-driven reverse
engineering. IEEE Software, 21(4):45–53.

Selic, B. (2008). Personal reflections on automa-
tion, programming culture, and model-based soft-
ware engineering. Automated Software Engineering,
15(3):379–391.

Tebib, M. E. A., André, P., and Cardin, O. (2019). A model
driven approach for automated generation of service-
oriented holonic manufacturing systems. In Service
Orientation in Holonic and Multi-Agent Manufactur-
ing - Proceedings of SOHOMA 2018, Bergamo, Italy,
June 11-12, 2018, volume 803 of Studies in Computa-
tional Intelligence, pages –. Springer. To appear.

Case Studies in Model-Driven Reverse Engineering

263

