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Abstract: We propose a novel Gaussian Curvature (GC) based criterion to discard false point correspondences within the

RANdom SAmple Matching (RANSAM) framework to improve the 3D registration. The RANSAM method

is used to find a point pair correspondence match between two surfaces and GC is used to verify whether this

point pair is a correct (similar curvatures) or false (dissimilar curvatures) match. The point pairs which pass

the curvature test are used to compute a transformation which aligns the two overlapping surfaces. The results

on shape alignment benchmarks show improved accuracy of the GRANSAM versus RANSAM and six other

registration methods while maintaining efficiency.

1 INTRODUCTION

Three-dimensional (3D) point cloud registration is

used to align CAD or full 3D scans with partial

scan to perform robotic bin picking, 2D and 3D in-

spection or authentication, and full 3D scene recon-

struction. Partial views, clutter, illumination varia-

tion and noise in scan from the 3D sensor present a

significant challenge to any 3D registration approach.

Hence, Random Sample Consensus (RANSAC) (Fis-

chler and Bolles, 1981) model fitting scheme, which

finds a small number of correct point corresponden-

ces to align the scene to the model, is often used as a

standard approach to deal with such challenges. In ad-

dition, extra geometric features or descriptors (invari-

ant under rigid transformation) are used in the RAN-

SAC scheme to prune out mismatched points in a ma-

tching and registration scenario. Such geometric fe-

atures often require computationally expensive accu-

mulation or differientiation of local information, e.g.,

volumetric invariant (Gelfand et al., 2005), mean cur-

vature, Gaussian curvature (GC), etc (Besl and Jain,

1986). Hence, we are motivated to propose a sim-

ple and easy implementation of a Gaussian curvature

check in RANSAM (Winkelbach et al., 2006) frame-

work to prune mismatched points in order to improve

accuracy and maintain efficiency of 3D registration.

We show that an efficiently computed GC descriptor

used for pruning can bring improvement to the exi-

siting RANSAM approach. However, comparison of

different geometric descriptors is not within the scope

of this paper.

The key observation is that Gaussian curvature

provides a simple but powerful descriptor, so that

points with different curvatures are unlikely to contri-

bute to a correct correspondence, and thus can be dis-

carded. We evaluate this idea on a number of shape

alignment benchmarks and show improvement over

several of them. The main contribution of our work is

the inclusion of the discrete Gaussian curvature check

into the RANSAM framework for discarding unlikely

feature point correspondences during the shape align-

ment. The advantages of our approach are: (a) impro-

vement in accuracy, (b) minimal computational cost

and (c) simple and easy integration into existing re-

gistration approaches.

This paper is organised as follows. Section 2

presents literature review. Section 3 presents our

GRANSAM method. Section 4 compares the perfor-

mance of the GRANSAM with RANSAM and six ot-

her global registration methods. Section 5 concludes

the paper.

2 RELATED WORK

Most popular 3D feature descriptors include point fe-

ature histogram (PFH) (Rusu et al., 2008), fast point

feature histogram (FPFH) (Rusu et al., 2009), signa-

ture of histogram of orientations (SHOT) (Tombari

et al., 2010), etc. RANSAC is used to repeatedly es-

Azhar, F., Pollard, S. and Adams, G.
Gaussian Curvature Criterion based Random Sample Matching for Improved 3D Registration.
DOI: 10.5220/0007343403190325
In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 319-325
ISBN: 978-989-758-354-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

319



timate an alignment for a randomly chosen subset of

correspondences which is validated on the entire or

subset point cloud. PCL (Holz et al., 2015; Rusu

et al., 2009) is the sample consensus initial align-

ment algorithm, from the Point Cloud Library, which

uses histogram of point pair features, i.e., FPFH, to

obtain a global registration. CZK (Choi et al., 2015)

is a method which combines geometric registration

of scene fragments with robust global optimization

based on line processes for 3D scene reconstruction.

Noisy data and partially overlapping point clouds cre-

ate a significant problem to these methods because

they require many repetitions to find a good point cor-

respondence set. In contrast, the FGR (Zhou et al.,

2016) method uses a fixed subset of corresponding

points, some correct and some not, which are con-

sidered together. It aims to iterate towards a solution

that selects the correct point matches while discarding

the noise using a German McClure objective function

within a graduated non-convexity framework. The

MFR method in (Faisal Azhar and Adams, 2019)

builds upon FGR method but uses weighted median

in a re-weighted least squares approach with gradua-

ted M-Estimation to rapidly converge to optimal re-

gistration. These methods may totally fail to align en-

gineering parts (with significant planar surfaces) be-

cause of lack of unique local features and do not al-

ways perform well with different views of more gene-

ral (non-planar surfaces) parts because the descriptor

based matching does not always find good point cor-

respondence match suitable for 3D registration. Re-

cently, (Rantoson et al., 2016) introduced registration

which uses Gaussian curvature constraint on the rand-

omly sampled point pair matches to improve registra-

tion. This method uses DARCES algorithm, which is

a computationally expensive procedure, to randomly

compare three scene points to all the points in the mo-

del to find point matches. Also, redundant compari-

sons might produce many bad matches in the initial

step which can not be resolved using Gaussian cur-

vature constraint in a later step. Also, it uses com-

putationally expensive Eigen value decomposition to

compute the Gaussian curvature.

Super4PCS (Mellado et al., 2014) is an optimal

linear time output-sensitive algorithm which uses an

efficient data structure to obtain a global alignment.

OpenCV (Drost et al., 2010) provides a surface regis-

tration algorithm which uses point pair features with

hash table lookup and voting with pose clustering to

obtain a global registration. The RANSAM method

(Winkelbach et al., 2006) uses a point pair feature

with hash tables to compute an initial alignment. We

are motivated by the RANSAM approach but additi-

onally use a surface curvature test to prune early the

Figure 1: Illustration of 4D (αuv,βuv,δuv,duv,) relation fe-
atures for a point pair pu and pv.

(a) (b)

Figure 2: Efficient Gaussian curvature from discrete trian-
gularization of the mesh. ∆i is the angle deficit computed

using the length ai,bi,ci of the sides of the ith triangle. (a)
3D view and (b) planar view.

potential point pair hits in the hash table which im-

proves robustness (see Section 3.1).

3 MATHEMATICAL DETAIL

Let PA = [p1, ..., pk] and NA = [n1, ...,nk] be 3D points

and corresponding surface normals of a surface A re-

spectively. The combination of point with normal is

referred as an oriented point (see 1). Let the set of

oriented points A of surface A and oriented points B
of surface B be

A :=
{

u = [pu,nu] |pu ∈ PA and nu ∈ NA

}

B :=
{

v = [pv,nv] |pv ∈ PB and nv ∈ NB

} (1)

Consider pairs of candidate matching points a,c ∈
A and b,d ∈ B , two pre-defined frames can be used

to determine a homogeneous 4 × 4 transformation
T = [R3×3 t3×1; 01×3 1] that optimally and

robustly aligns the dipoles (a,c) and (b,d) such that

T = F(a,c)−1.F(b,d) (2)

where the function F(u,v) or F represents a coordi-

nate system lying between oriented points u and v

F:=

[ puv×nuv

‖puv×nuv‖ puv
puv×nuv×puv

‖puv×nuv×puv‖
pu+pv

2

0 0 0 1

]

(3)

where puv = (pv−pu)/‖pv−pu‖ and nuv = nu +nu. Singu-

lar frames are avoided by ensuring the length of puv

and nuv is not zero.
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3.1 GRANSAM

Gaussian curvature is an intrinsic surface property,

i.e., isometrically invariant under rigid transformation

(Besl and Jain, 1986). The standard Gaussian cur-

vature computation (with derivatives) over the mesh

requires computationally expensive per vertex local

neighbourhood operations such as Eigen value de-

composition of the covariance matrix (Besl and Jain,

1986; Rantoson et al., 2016). Instead, we use discrete

triangularization of the surface to efficiently compute

Gaussian curvature over the mesh (Besl and Jain,

1986). Consider a point xi (Red circle) on the mesh

which is a vertex for N different triangles as shown

in the Figure 2. The Gaussian curvature for a point xi

can be computed as

K(xi) =
2π−∑N

i=1 ∆i

∑N
i=1 Λi

(4)

where Λi =
√

s(s− ai)(s− bi)(s− ci) is the area of

triangle, with semiperimeter s = ai+bi+ci/2, ∆i is the

angle deficit

∆i = arccos

(

a2
i + b2

i − c2
i

2aibi

)

(5)

and ai,bi,ci are the length of the sides of the ith tri-

angle. In practise, we use an approximated Gaussian

curvature as

K(xi) = 2π−
N

∑
i=1

∆i (6)

Our GRANSAM uses the same 4D relation table

as used in RANSAM (Winkelbach et al., 2006) con-

sisting of the Euclidean distance duv between points,

the angle of inclination αuv and βuv between the nor-

mals nu and nv, the line connecting pu and pv, and

the rotation angle δuv between the normals around the

connection line as shown in Figure 1. The rel(u,v) or

rel is computed as

rel:=







duv

cosαuv

cosβuv

δuv






=









‖pv − pu‖
nu · puv

nv · puv

tan−1( nu·(puv×nv)
(nu×puv)·(puv×nv)

)









(7)

We also use the same match quality metric Ω as

used by RANSAM (Winkelbach et al., 2006) to eva-

luate the transformation T computed using the pair of

matches,

Ω =

∑k
u,v=1

{

1 min‖Tpu − pv‖< ε
0 else

k
+

1.96

2
√

k
(8)

Algorithm 1: Our GRANSAM method.

Input:

Set of oriented points A of surface A and oriented

points B of surface B.

Threshold ξ=0.1.

Output: Transformation matrix T which aligns A to

B .

1. Compute Gaussian curvature K for surface A and

B using Equation 6.
2. Randomly choose oriented point pair a,c ∈ A and

calculate rel(a,c) using Equation 7.
3. Insert it into the relation table for surface A : such

as RA[rel(a,c)] = (a,c).
4. Read the same position in the relation table for

surface B : (b,d) = RB[rel(a,c)].
5. If entry exists, verify if |K(a)−K(b)| < ξ and

|K(c)−K(d)| < ξ then compute T for (a,b,c,d)
using Equation 2 and 3, and estimate match qua-

lity Ω using Equation 8.
6. Randomly choose oriented point pair b,d ∈ B and

calculate rel(b,d) using Equation 7.
7. Insert it into the relation table for surface B : such

as RB[rel(b,d)] = (b,d).
8. Read the same position in the relation table for

surface A : (a,c) = RA[rel(b,d)].
9. If entry exists, verify if |K(a)−K(b)| < ξ and

|K(c)−K(d)| < ξ then compute T for (a,b,c,d)
using Equation 2 and 3, and estimate match qua-

lity using Equation 8.
10. Repeat steps 2-9 until match quality is good

enough or iteration limit is exceeds.

where k is the number of points, subscript u = 1, ...,k
and v = 1, ...,k. (see our Algorithm 1)

4 EXPERIMENTAL RESULTS

We have conducted a series of experiments to com-

pare the performance of our GRANSAM method

against state-of-the-art global registration methods

RANSAM, FGR and MFR on two real world data

sets, i.e., our 3D printed part dataset and the publi-

cly available UWA benchmark dataset (Mian et al.,

2006). Synthetic experiments have not been conside-

red as 3D registration methods operating well on si-

mulated dataset do not necessarily perform well on

real world dataset. Our 3D printed part dataset is

used to test the performance of 3D registration met-

hods to align individual views of a single part to a

reference multi-view model or CAD model. It con-

tains partial views of challenging engineering parts

with planar surfaces. The UWA dataset tests the abi-

lity to deal with multiple objects, clutter, occlusion
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(a) (b) (c)

(d) (e) (f)

Figure 3: RANSAM (Blue points) versus GRANSAM (Red points) registration on model (Green points). (a, b, c) v.s (d, e, f)
for Extruder, Dinosaur and Slide lock respectively. Note misalignment in top versus bottom row (zoom in PDF to see detail).

(a) (b)

(c) (d)

Figure 4: RANSAM (Black line) versus GRANSAM
(Green line) 3D registration on Extruder (top row) and
Bunny (bottom row). (a)-(c) RMS point-to-point error in
mm and (b)-(d) corresponding overlap in percentage.

and low overlap. Our GRANSAM method which

outperforms FGR and MFR can also be considered

to surpass the performance of six other global regis-

tration methods (termed as GoICP, GoICP-Trim, Su-

per4PCS, OpenCV PCL and CZK).

4.1 3D Printed Part Dataset

This dataset consists of six models (Extruder, Dino-

saur, Slide lock, Bunny, Focus housing and Camera

mount) which are captured from 10 different views,

i.e., a total of 60 scans for testing GRANSAM versus

RANSAM registration. The Figure 3 shows the accu-

rate GRANSAM (Red points) registration versus mi-

saligned RANSAM (Blue points) registration on mo-

del (Green points). In our experiments, GRANSAM’s

Gaussian curvature pruning consistently obtained bet-

ter registration than RANSAM.

We applied the GRANSAM and RANSAM met-

hod 100 times on the 3D printed part dataset to

compute the average RMS error, overlap percen-

tage, and computational time score. We use a thres-

hold of 1 mm to compute the RMS error and over-

lap percentage. The Figure 4 shows the reduced

average RMS and increased overlap in percentage of

the GRANSAM versus RANSAM along with 25th

and 75th percentiles of the population (which are

shown as vertical bars) for each view of the Extru-

der and Bunny. GRANSAM’s considerable impro-

vement over RANSAM can be seen in certain views,

for example, view 2, 3, 4 of the Extruder has redu-

ced RMS error with up to 4.5% increase in overlap

and view 1, 2, 8 of the Bunny has reduced RMS

error with up to 12.5% increase in overlap. In our

experiments, the reduction in RMS error and impro-

vement in overlap percentage was observed in many

views of the 3D printed part dataset. Note that as ex-

pected GRANSAM performance was better for ob-

jects with rough surface or crest and trough and was

not improved for objects with planar surface. Ho-

wever, there are numerous real world shapes which

have sufficient surface curvature where GRANSAM’s

Gaussian curvature based pruning will benefit any re-

gistration scheme.

In Table 1, we summarize the average RMS er-

ror in mm and overlap in percentage across all views
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Table 1: Average across all views of the 3D printed part dataset: (1) Extruder, (2) Bunny, (3) Camera mount, (4) Dinosaur,
(5) Focus housing, (6) Slide lock. Bold shows winner per category.

RMS error in mm

1 2 3 4 5 6

RANSAM 0.46 0.42 0.21 0.53 0.26 0.37

GRANSAM 0.45 0.41 0.21 0.52 0.25 0.36

Overlap in percentage

1 2 3 4 5 6

RANSAM 78.8 69.5 96.1 59.2 96.2 82.9
GRANSAM 80.5 69.6 96.3 61.8 96.5 83.1

(a) (b) (c)

(d) (e) (f)

Figure 5: Comparison of the computational time in seconds for 3D registration obtained using RANSAM (Black line) and
GRANSAM (Green line). (a) Extruder, (b) Bunny, (c) Camera mount, (d) Dinosaur, (e) Focus housing and (f) Slide Lock.

of the 3D printed part dataset using RANSAM and

GRANSAM. The Figure 3, 4 and Table 1 show that

our GRANSAM obtains more consistent registration

than RANSAM.

Figure 5 shows that GRANSAM (Green line) has

similar computational time as RANSAM (Black line)

on the 3D printed dataset for a maximum of 5000

iterations per run. GRANSAM introduces minimal

computational cost of up to 0.1 seconds (the cost of

pre-computing the Gaussian curvature is very small,

i.e., 1-10 milliseconds).

4.2 UWA Benchmark Dataset

This dataset consists of four models (Cheff, Chicken,

Parasaurolophus, T-rex) with 50 scenes of multiple

objects, i.e., all four objects are present in most of

the scenes. Similar to (Zhou et al., 2016), a total of

188 model and scene pairs for testing registration. It

is a challenging data set due to clutter, occlusion and

low overlap between model and scene.

The Figure 6 shows the GRANSAM (Red

points) registration versus misaligned RANSAM

(Blue points) on model (Green points). It can be

seen in Figure 6a-6b versus 6d-6e that RANSAM fails

while GRANSAM correctly aligns the scene to the

model.

In Figure 7, we summarize the average RMS er-

ror and overlap percentage across the 188 pairwise

registration of the UWA dataset using FGR, MFR,

RANSAM and GRANSAM method. It can be seen

from Figure 7a that on average our GRANSAM met-

hod obtains a lower RMS error than FGR, MFR and

RANSAM methods while maintaining good overlap

percentage as shown in Figure 7b.

Table 2 summarizes the percentage reduction in

RMS error using GRANSAM versus other methods

on UWA dataset. Note that on average GRANSAM

has a 37.73%, 37.03%, 7.84% reduction in RMS error

versus FGR, MFR and RANSAM method respecti-

vely. Hence, GRANSAM is able to deal with low

overlap, multiple objects and high occlusion UWA da-
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(a) (b) (c)

(d) (e) (f)

Figure 6: RANSAM (Blue points) versus GRANSAM (Red points) registration on model (Green points). Cheff, Chicken and
T-rex left-to-right. Note misalignment in top versus bottom row (zoom in PDF to see detail).

(a)

-4pt]
(b)

Figure 7: GRANSAM versus FGR, MFR, and RANSAM
3D registration on UWA dataset. (a) Mean RMS error and
(b) mean overlap percentage.

taset and also surpasses the performance of six global

registration methods (termed as GoICP, GoICP-Trim,

Super4PCS, OpenCV PCL and CZK).

4.3 Computational Speed

GRANSAM has a low complexity of O(k) (Winkel-

bach et al., 2006). The computational time was me-

asured in the Microsoft Visual Studio 2015 on a HP

Z mobile workstation with an Intel i7 2.66 GHz pro-

cessor with 16 GB RAM. GRANSAM and RANSAM

both take in total about 3-6 seconds to compute the 3D

registration between a scene and model. In contrast,

the descriptor based FGR and MFR methods take in

total about 30 seconds to a few minutes to compute

the 3D registration depending on the number of points

in the scene and model.

5 CONCLUSION

We have presented a discrete Gaussian curva-

ture criterion based RANdom SAmple Matching

(RANSAM) method to remove false matches to im-

prove the accuracy of 3D registration while maintai-

ning efficiency. The main novelty of our work is the

inclusion of Gaussian curvature check to prune out

mismatched point correspondences during shape alig-

nment within the RANSAM framework. We avoid

geometric features requiring computationally expen-

sive accumulation or differentiation of local infor-

mation and show that a simple and efficient discrete

Gaussian curvature feature provides a powerful and

easy to integrate descriptor to improve any 3D regis-

tration approach. The results on a number of shape

alignment benchmark showed the considerable im-

provement in 3D registration by using the Gaussian

curvature criterion.
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Table 2: Percentage reduction in RMS error of GRANSAM
versus other methods on UWA dataset.

FGR MFR RANSAM

GRANSAM 37.73 37.03 7.84
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