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Abstract: Game playing provides the medium for a variety of algorithms to formulate play decisions that surpass human
expert. However, the reasons that distinguish the winning and losing positions remain actively researched
which leads to the utilization of the search “indicator”. Conspiracy number search (CNS) and proof number
search (PNS) had been popularly adopted as the search indicators in MIN/MAX and AND/OR tree, respec-
tively. However, their limitations had encouraged the need for an alternative search indicator. The single
conspiracy number (SCN) is a search indicator inspired by CNS and PNS which measure the difficulty of
getting MIN/MAX value over a threshold point for a current root node. Recently, SCN had been successfully
applied in Chinese chess to analyze both the progress pattern and long-term position. In this paper, analysis of
the SCN within the game of checkers is conducted where different SCN threshold values and varying depth of
the search tree were considered. Checkers was chosen due to its smaller search space and contain a rule that
affects the shape of the search tree. The experimental results show that the SCN values stabilize as the depth
of the search tree increases whether the player is in winning, drawing or losing position.

1 INTRODUCTION

When playing games, human players use analytic
skill and intuition that built up from their experience.
When expert players play the game, they tend to play
faster, better and have more stability than beginner
players. Recently, the AlphaZero algorithm achieved
better performance by a large margin in the game
of chess, shogi and Go without any domain knowl-
edge except the rules of the game (Silver et al., 2017).
Although the algorithm succeeded in selecting better
play decisions, the reasons or properties that distin-
guish those plays from best and worse are still actively
researched. This paper explores the properties that
distinguish an algorithm’s performance in the check-
ers game.

The similarity of chess, shogi, Go and checkers
games are the information of their states which are
always available for both players (called perfect in-
formation games). This information can be analyzed
and evaluated to distinguish the winning and losing
positions based on the game progress. The mechanics
of board games involve using a tree searching algo-
rithm to evaluate and decide the possible moves to
take (Khalid et al., 2015b). However, even in the

best-known search algorithms, the search space may
grow exponentially complex with the growing depth
of the tree. In addition, there is no point of continuing
the game when the “indication” of the final outcome
can be estimated (Al-Khateeb and Kendall, 2012). As
such, identifying the properties that distinguish win-
ning and losing positions is highly dependent on the
quantifying capabilities of the adopted indicator.

Single Conspiracy Number (SCN) is a variation
of a well-known search indicator called conspiracy
number search (CNS) (McAllester, 1988) and its suc-
cessive search indicator called proof number search
(PNS) (Allis et al., 1994). SCN tries to evaluate the
difficulty of the current state of the game by get-
ting the MIN/MAX value over the specified thresh-
old point. SCN is calculated during the decision pro-
cess of the game progress where the difficulty of the
current state is measured. If the game states can be
search completely, SCN will show the possibility of
the current state getting a score higher than a specified
threshold value in a MIN/MAX search tree. However,
most games like Chess or Go have enormous search
space for all of its possible states. As such, the search
algorithms in the games employ heuristic evaluation
functions and pruning techniques to reduce the search
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space to a manageable level. Since the SCN is cal-
culated based on an explored search tree, it also gets
affected by the shape of the search tree and the nodes
explored.

This paper focuses on SCN in the checkers game
which is calculated in multiple situations and their
effect in each situation is determined. The experi-
ment was conducted in an open-source checker en-
vironment named Samuel. The SCNs of winning,
drawing and losing position was discussed separately
to observe the differences property of SCN in each
situation. The remainder of the paper is organized
as follows. First, Section 2 reviews of the previous
works and Section 3 provide details of the method.
In Section 4 the results of an experiment conducted
with two competing homogenous Samuels are col-
lected and analyzed. Lastly, Section 5 concludes this
study.

2 LITERATURE REVIEW

The MIN/MAX search algorithm has been applied
to various problems which include decision mak-
ing and game theory for two-player perfect informa-
tion games such as Tic-Tac-Toe, Chess, etc. The
MIN/MAX search algorithm is also a tree searching
algorithm and a backtracking algorithm that is typi-
cally used to generate the possible game states. This
algorithm finds the optimal move for a player, assum-
ing that the opponent also plays optimally (Nasa et al.,
2018). The technique that can be used to optimize the
MIN/MAX algorithm is the application of αβ prun-
ing. When MIN/MAX with αβ pruning is used in-
stead of a simple MIN/MAX algorithm, less number
of possible nodes is evaluated in the game tree.

The αβ pruning is not altogether a different algo-
rithm than MIN/MAX; rather it is an optimized ver-
sion of the algorithm that applies evaluation function
to each leaf node in the game tree and selects the node
with the highest evaluation based on the MIN/MAX
principle (Kato et al., 2015; Nasa et al., 2018). An-
other perspective of the algorithm can be directed to-
wards the strategy of the MIN/MAX tree search prun-
ing which is best-first αβ pruning and depth-first αβ

pruning (Plaat et al., 2015). This study highlights one
important question; the possibility of formulating the
best-first search procedures using depth-first proce-
dures. This concept had been formalized in a search
indicator algorithm such as conspiracy number search
(CNS) and its variants such as proof number search
(PNS) and single conspiracy number (SCN) search.

Conspiracy Number Search (CNS) is a
MIN/MAX search tree algorithm that tries to

measure the possibility of a root node changing its
value in the MIN/MAX search tree (McAllester,
1988; Schaeffer, 1990; Plaat et al., 1995). The
algorithm does not guarantee that the correct solution
will be found when it terminates, but the most likely
one instead by employing a probabilistic search
(Khalid et al., 2015b). The conceptual framework
behind the CNS is to measure the search trees growth
with the conspiracy numbers (CN) to have the highest
confidence. The search is guided in a best first
manner, where the tree searched so far is kept in
memory. A recent formalism of the CNS can be
found in (Vu et al., 2016).

Another well-known search indicator is the proof
number search (PNS). The PNS is best-first tree
search algorithm in the AND/OR searches tree (Al-
lis et al., 1994). PNS focuses on an AND/OR tree and
tries to establish the game-theoretical value in an ef-
ficient, greedy least-work-first manner (Ishitobi et al.,
2013). The AND/OR tree is a type of game tree where
the nodes have only three possible values: true, false
and unknown. The main idea is to assign a proof num-
ber (PN) and a disproof number (DN) to each node
of the partially searched AND/OR tree. A PN shows
the number of nodes required to prove the node while
a DN shows the opposite. The PNS algorithm will
choose the most-proving node to guide node expan-
sion where it can effectively exploit narrow and deep
branches that seem to be promising. They are particu-
larly effective in games where the branching factor is
non-uniform (Gao et al., 2017). A recent formalism
of the PNS can be found in (Ishitobi et al., 2013).

Nevertheless, CNS requires significant computing
power and memory. Although PNS reduces the mem-
ory footprint required by CN into two factors (PN and
DN), the PNS application is limited to the framework
of the AND/OR tree search. In recent years, CNS
is gaining new grounds where it had been utilized to
identify critical positions in a speculative play (Khalid
et al., 2015b; Khalid et al., 2015a) and improve move
selection (Vu et al., 2016). While PNS had been in-
dependently adopted and improved (such as the work
in (Ishitobi et al., 2013) and (Ishitobi et al., 2015)),
a new concept emerged from both CNS and PNS,
called single conspiracy number (SCN), had been in-
troduced in the recent years.

Single conspiracy number (SCN) involves using
an indicator that trying to estimate the difficulty of
the current game state to get a value more than a
predefined threshold in the MIN/MAX tree search
(Song and Iida, 2017). SCN was defined as an in-
termediate of conspiracy number and proof number,
which indicates the difficulty of a root node changing
its MIN/MAX value to a certain score decided by a
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threshold. SCN was recently proposed to analyze the
game progress patterns (Song and Iida, 2017) which
was applied to the Chinese Chess. In this paper, SCN
is applied to another two-players perfect-information
game called Checkers where the SCN is calculated in
multiple situations and their effect in each situation is
determined. Although Checkers had been solved pre-
viously by Schaeffer in 2007 (Schaeffer et al., 2007),
its considerably large search space provides a good
ground for SCN.

3 SINGLE CONSPIRACY
NUMBER IN CHECKERS

Checkers is a two players perfect information board
game played on square checkers board consists of
64 light and dark squares. Each player has 12 play-
ing disk-shaped pieces (Singh and Deep, 2014). The
game starts by having 12 pieces (red and white) ar-
ranged on the board for each player (Figure 1). Red
moves first and players take their turn by advanc-
ing a piece diagonally forward to an adjoining vacant
square. If an opponent’s piece is in an adjoining di-
agonally vacant square, with a vacant space beyond,
it must be captured and removed by diagonally jump-
ing over it to the empty square. If this square presents
the same opportunity, successive jumps forward in a
straight or zigzag direction must be taken; so-called
“forced-jump” (Al-Khateeb and Kendall, 2012). If
multiple forced jumps are available, the player may
choose which one to make. If a piece reaches the
king row (last row) then it can move backward also.
A player will win when all the opponent’s pieces are
captured or blocked. A game is declared a draw when
neither side can force a victory nor the trend of play
becomes repetitive.

In the following subsections, the application of
SCN concepts to the checkers is briefly described in
Section 3.1. Then, the experimental design and setup
is discussed with respect to the SCN concepts applied
to the open checkers source software called “Samuel”
(Section 3.2).

3.1 Application of Single Conspiracy
Number

The positive MIN/MAX value shows the advantage of
the WHITE player while the negative number shows
the advantage of the RED player. Let n.scn be the
SCN of a node n and m be the MIN/MAX value of
node n. T is a threshold of the legal MIN/MAX val-
ues. The formalism of the single conspiracy number

Figure 1: Checker board (adapted from (Singh and Deep,
2014)).

is given as follows.

• When n is a terminal node

1. If m≥ T, n.scn = 0
2. If m < T, n.scn = ∞

• When n is a leaf node (not terminal)

1. If m≥ T, n.scn = 0
2. If m < T, n.scn = 1

• When n is an internal node

1. If n is a MAX node: min
nc∈child ofn

nc.scn

2. If n is a MIN node: ∑
nc∈child ofn

nc.scn

The measurement of the result was conducted
by recording the value of SCN based on the search
depths d of the game state. The result was observed
using the sliding window that calculates the SCN
values with different consecutive d where the initial
d = 2. The variation of SCN was also observed as the
game progresses to determine its stability from the be-
ginning to the end.

3.2 Experiment Design and Setup

To conduct the experiment, a popular open source
checkers project called “Samuel” was used as the base
software where the SCN was implemented on top
of the original search engine of Samuel. The orig-
inal search engine of Samuel implements αβ search
and various techniques such as transposition table and
quiescence search to speed up the search process.
The experiment was also conducted by making two
Samuel’s search engine compete in different matches
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against each other. In the leaf nodes, a node value
from the heuristic function, which is the quiescent
search, was preserved within Samuel and directly ap-
plied to the SCN calculation. Meanwhile, the transpo-
sition table within Samuel is switched in and out dur-
ing the experiment to observe its effect on the SCN
values.

The SCN threshold was set to 150, 300 and 1900
from the range of [0,2000]. These values were set
differently in the experiment to observe changes in
the SCN values when the threshold changed. Win-
ning, drawing and losing positions were considered
and discussed separately to analyze the resulting SCN
changes in each situation. The SCN value was cal-
culated on each node in the αβ search tree. A sin-
gle conspiracy number measures the difficulty of the
current node (current player) getting a heuristic value
over a specified threshold. Only even d value was
considered as a complete block of MIN/MAX search
tree. This experiment was conducted on a search tree
with d ∈ [2,16]. As such, based on the three afore-
mentioned threshold with eight different search tree
depths, a total of 24 matches were simulated.

In some cases, Samuel’s AI returns a specific
value to show pruning status like “timeout” or “bad
nodes” in the αβ search. The value of those nodes
with special meaning values was reevaluated with the
original board evaluation function within Samuel’s
implementation. The heuristic function implemented
in Samuel will be positive if the WHITE player is hav-
ing an advantage and will be negative if the game is
in a favor of the RED player side.

Iterative deepening was originally deployed with
the αβ search to get next play properly, even if some
branches within a search tree got cut out when the
time is up. Since the experiment’s goal to observe the
differences of SCN values in a search tree with dif-
ferent d, the SCN were calculated separately for each
d during the processing of the iterative deepening al-
gorithm. In rounds that some high d value (d ≥ 17),
that d are neglected and the SCN for the uncalculated
d will be set as “UNINITIALIZED”.

4 RESULTS AND DISCUSSION

At the beginning of the game, the SCN values in each
d were varied since the board at the beginning posi-
tion does not show any advantages for each side of the
players. So, each player is likely to get a score lower
than a threshold T = 150. For d that are not deep
enough to reach a state in which the computed heuris-
tic score is not more than T , SCN values will be very
scattered depending on the number of nodes explored
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Figure 2: The variation of SCN values for WHITE player
(drawing) for variation of search depth (d).

by the algorithm. As the game progresses, moves that
obtained heuristic score over the threshold T will be
found which affect the SCNs. Thus, the SCN values
are different in winning, drawing and losing position
for each player.

In a draw game, the SCN values switched back
and forth depicting looping scenario where no player
can have too large advantage over the other. As shown
in Figure 2, the interval of higher d started becoming
less varied and at d = 8 to d = 16, the SCNs become
very similar. Also, it can be seen clearly that SCNs of
the search d = 2 and d = 4 are different to the others.
Figure 3 and Figure 4 shows that the SCNs in higher
d interval are likely to be more stable in both win-
ning (WHITE player) and losing (RED player) situ-
ations as the values in those interval are less varied.
The SCNs from each interval were nearly constant
in the late game because the game was struck in a
“loop” play. The SCN values from the loop cycle
were slightly varied due to the different plays found
during the search. However, as the search got deeper,
the SCN values were converging to the same value.

The SCN values normally become near 0 in the
winning positions and become ∞ in a losing posi-
tion. However, this value sometimes may not retains
its stability. Even in the case that the evaluation was
0 where the position indicates the player has a very
large advantage over its enemy, there were still some
moves that may lead to worse positions that were ne-
glected in the previous search tree. Similarly, there
was also a move that was evaluated as ∞ (the player is
in the losing position) that still found moves that may
lead to a position with a value over the threshold.

From the perspective of the entire gameplay with
various d values (Figure 5), the SCN values of both
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Figure 3: The variation of SCN values for WHITE player
(winning) for variation of search depth (d).
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Figure 4: The variation of SCN of red player (losing) for
variation of search depth (d).

players will get very unstable in the middle stage of
the game where the WHITE player is getting an ad-
vantage against the RED player over the threshold
T = 150. The SCN values will then become stable
again and the advantage of one player does not easily
changed (WHITE player obtained the heuristic score
more than the threshold). Compared to the early stage
of the game, none of the players get advantage over
one another since their heuristic score is no larger than
the threshold T = 150.

When the endgame is a draw (Figure 6), the SCN
values for most of the time after the 42nd moves stabi-
lizes all the value of 3. This means d ∈ [6,16] gets the
same SCN values in a draw game while each player
gets their own advantage back and forth over a few
moves before the 42nd . Based on this, it can be hy-
pothesized that there is a move that can “dominate”
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Figure 5: Player’s moves number against different values of
SCNs calculated for d ∈ [2,16] (8 different even d).
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Figure 6: SCN variation of the WHITE player during the
game progress for a draw game.

other moves in the search tree and this move has been
found. It is worth to mentions that the SCN values
for the search with d > 6 of that dominating move
are all the same. In addition, the experiment calcu-
lated the SCN values in the αβ tree search process, but
the decision was not made based on the SCN values.
Although the dominating moves could not be found
when the d = 2 and d = 4, it could have existed within
those d at some point as the game progress.

Another similar experiment was conducted with
the transposition table removed. The number of nodes
explored by the tree search algorithm will expand
enormously since checkers is a game that has only
two playable pieces for each player. As such, in
this experiment, the threshold of the SCN was set to
T = 300 where the focus of the experiment was on the
states of one player gets a major advantage by a large
margin. Since the search process is slower without a
transposition table, the experiment was observed for
d ≤ 14.

As shown in Figure 7, the SCNs of the winning
RED player were grouped by three value of d. It
can be observed that the variation of SCN values for
higher d is likely to be less than those of lower d
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Figure 7: Red SCN (winning player) with the SCN thresh-
old of T = 300.

throughout the progress of the game. This means the
computed SCN will be more stable in higher d value
even when the transposition table was removed and
the number of explored nodes were expanded. Subse-
quently, the SCN threshold was changed to T = 1900
which is very close to the maximum available heuris-
tic value of 2000 in the Samuel’s checkers’ heuris-
tic function. That means the only nodes leading to a
win within a few moves will get SCN of 0 while the
others will be counted as 1. As such, observing Fig-
ures 8, the result remain the same as every previous
experiment. The SCN values for higher d are more
stable with compared to the lower d even when the
SCN threshold is getting very close to the maximum
limit of the heuristic function.

The observation of the d ∈ [2,14] in a winning
RED player with an SCN threshold of T = 1900 was
shown in the Figure 9. In the middle stage of the
game, the SCN values become unstable when a win-
ning player (RED player) is going to get an advantage
over the other player. On the other hand, when the
SCN threshold is lower, the SCN values gain stability
when d is high or when a game is going to end. This
reinforces the observation made previously where d
affects SCN values especially when the advantage of a
player is over the threshold of T . Most of the time, the
search technique like αβ search is not implemented
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Figure 8: Red SCN (winning player) with the SCN thresh-
old of T = 1900.
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Figure 9: SCN with d ∈ [2,14] of the RED player during the
game progress for a winning game with threshold T = 1900.

alone. As in Samuel, transposition table and quiescent
search are also implemented with a number of mi-
nor optimization technique. SCN value got affected
greatly when the search tree is pruned too much and
the search algorithm explored only a few nodes. This
can result in all SCNs in an entire game become 0 or
1.

This situation can be fixed by increasing the value
of d (search depth). Figure 10 shows SCN values cal-
culated for d ∈ [2,16] where the original implemen-
tation of Samuel is used. The SCN values for d = 2
unable to indicate the progress of the game since only
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Figure 10: SCN of WHITE player for d ∈ [2,16] with threshold of T = 300 for move 21st to 31st.

one MIN/MAX level was calculated and the root node
will get the SCN value directly from one of its chil-
dren. For d = 4, the SCN values are still all 1 because
only few nodes per d level were explored. Mean-
while, the SCN value of the root node has a wider
range of values when the value of d increased. This
is because, even if the tree is very unbalanced, more
nodes will be evaluated at the bottom of the tree and
the range of possible values for SCN in each tree level
increases.

The SCN works very well when the search tree is
balanced since each node will have the same possible
SCN values. However, in an ideal case that an evalua-
tion function has very high accuracy, the tree is likely
to be unbalanced where only few child nodes were
explored at each node. In checkers, there is a “forced-
jump” rule which forced a player to capture the op-
ponent’s piece when it is possible. This makes some
nodes in the search tree has only one child node and
those nodes will have a very narrow range of SCN val-
ues (0 or 1). A forced-jump rule in checkers forms the
basis of all tactics in checkers, thus causing the search
tree in checkers to be unbalanced in every game.

5 CONCLUSION

In this paper, the single conspiracy number (SCN)
were calculated for each move made for the entire
game progresses considering various search depth
(d). Comparison of different SCN values was cal-
culated from a different d values which measure the
frequency of SCN values of the root node changing
its own value. This paper found that SCN value for
a winning position is low (approaching 0) while the
SCN value of a losing position is high (or approach-
ing ∞) if there is no way to win the game from that

position.
In an ideal case that the heuristic evaluation is ac-

curate, the shape of the tree is likely to be unbalanced
and the calculated SCN values might not be usable.
This is because of the rule called “forced-jump” in
checkers where many nodes in the search tree were
compressed into a single child and make the SCN
value of every state in the game become only 0 or
1. Since the SCN is usually calculated online with
the search algorithm, its value may also be affected
by the shape of the search tree. In a very unbalanced
tree where the number of the child node is varied, the
SCN values will become unstable.

For low value of d, the SCN could get affected
greatly by the shape of the tree and become unsta-
ble since every node reachable from the current state
were evaluated with the score lower than that of the
threshold T . As the search gets deeper, the likeliness
of getting the reachable state with the score more than
the threshold T also increases, thus enabling the SCN
value to classify good and bad states of the game.

However, the SCN only focuses on measuring the
difficulty of a node getting an evaluated score over
the threshold of T . In addition, the potential areas of
SCN as a measure of difficulty in a decision-making
process had not been studied. Further works that com-
bine the SCN with other heuristic evaluation function
in order to get a better search performance provide
grounds for future work.
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