
Multitree-like Graph Layering Crossing Optimization

Radek Mařı́k
Faculty of Electrical Engineering, Czech Technical University, Technicka 2, Prague, Czech Republic

Keywords: Crossing Optimization, Layered Graph, Multitree, Spanning Tree, Phylogenetic Network, Genealogical
Network.

Abstract: We improve a method of multitree-like graph visualization using a spanning tree-driven layout technique
with constraints specified by layers and the ordering of groups of nodes within layers. We propose a new
method of how the order of subtrees selected by the driving spanning tree can be derived from the actual
edge crossings. Such a subtree order leads to additional decreasing of total edge crossings from 1% to 50%.
This depends on the shape of the processed graph, ranging from a pure tree to a general acyclic graph. Our
achievements are demonstrated using several datasets containing up to millions of people, species, or services.
The proposed subtree ordering method of layered graphs that are similar to acyclic multitrees retains the
generating of acceptable layouts in almost linear time.

1 INTRODUCTION

Some applications lead to causality driven networks
represented as acyclic graphs. If a kind of inheri-
tance is involved, then we often deal with so-called
multitrees. We use a genealogical graph as an ex-
ample of general multitree-like networks. However,
similar results can be demonstrated in other domains,
such as telecommunications services and phyloge-
netic graphs. In this paper, we focus on methods that
are capable of visualizing whole societies with mil-
lions of nodes in which the layouts enable an assess-
ment of general global trends and related features.

Graph visualization technique research remains a
highly popular field, having attracted much attention
for decades (Tutte, 1963; Gibson et al., 2013). Tree
based drawing methods of phylogenetic/genealogical
graphs have been among the standard techniques for
centuries. Present software implementations often
layer nodes as proposed by various authors 20 years
ago (Sugiyama et al., 1981; Gansner et al., 1993;
Gansner and North, 2000; Graphviz, 2016). In some
cases, it is necessary to assess top-level structures of
the entire network in order to select the appropriate
subsequent processing steps. These cases lead to a re-
quirement to display the entire network of families, or
at least a significant part, in one layout. However, a
majority of algorithms contain processing steps with
an asymptotic complexity higher than the linear one.
Such implementations are often not capable of cop-

ing with graphs over 100,000 nodes. We also face
other issues with challenges linked with edge cross-
ing and preferences on node clustering (Warfield,
1977; Sugiyama et al., 1981; Sugiyama and Misue,
1991). Therefore, the standard techniques for pla-
nar graph layouts (an ideal layout example with no
edge crossings) (Lempel et al., 1967; Hopcroft and
Tarjan, 1974; Booth and Lueker, 1976; Shih and Hsu,
1999; Hsu and McConnell, 2004; Reingold and Til-
ford, 1981) including planarization techniques (Re-
sende and Ribeiro, 2001; Chimani et al., 2008; Chi-
mani et al., 2011; Mathews and Frey, 2012) are not
suitable in all instances.

As we adopt multitree-like networks, we stress the
significance of layers, so we consider a layout de-
sign targeting layered drawing (Healy and Nikolov,
2013). The majority of algorithms that compute lay-
ers are derived from topological order computation,
O(|V |+ |E|) time complexity (Cormen et al., 2009).
The algorithms choose one of many possible solutions
that satisfy layer intervals of node placements. In this
paper, we also focus on techniques with linear asymp-
totic complexity. Furthermore, our approach enables
the possibility to group nodes assigned to the same
layer while keeping edge crossing minimized. The
underlying assumption relies on the proximity of the
processed graph to the multi-tree form.

Our approach follows the general frame-
work consisting of four steps proposed by
Sugiyama (Sugiyama et al., 1981). However,

Mařík, R.
Multitree-like Graph Layering Crossing Optimization.
DOI: 10.5220/0007345302330240
In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 233-240
ISBN: 978-989-758-354-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

233

each step could be accomplished using different
techniques. In (Marik, 2016) and (Marik, 2017a), a
new method targeting multitree-like networks that
allows the determination of node order constraints
within layers using an undirected spanning tree-
driven layout of subtrees is proposed. The spanning
tree controls a selection of subtrees and their ordering
during the layout process. In (Marik, 2017a), the
order is determined based on subtree order (the
number of nodes) that could be a too rough estimate
of real edge crossings.

In this paper, we focus on the optimization of sub-
tree selection to further reduce edge crossings. The
rest of the steps, e.g. spanning tree selection, node or-
dering and node positioning, follow the methods pro-
posed in (Marik, 2017a; Marik, 2017b; Marik, 2018).

In summary, we improve the fourth step of the
method proposed in (Marik, 2017a), Section 3, node
ordering within layers using a different subtree selec-
tion criterion. Thus, we treat the most critical aspect
discussed in (Sugiyama et al., 1981), and particularly
address the second step of the main algorithm pro-
posed in (Gansner et al., 1993):
1. determination of generations (layers),
2. enforcing node orders within the layers,
3. setting the actual layout coordinates of nodes,
4. design of edges.

The remainder of the paper is organized as fol-
lows: Section 2 provides an overview of methods re-
lated to the layering step. To create the appropriate
context for the proposed algorithms, we also summa-
rize the steps of approaches described in several other
papers (Marik, 2017a; Marik, 2017b; Marik, 2018).
All steps can be accomplished using an almost linear
algorithm within the framework that relies on multi-
tree properties. In Section 3, we provide two algo-
rithms that achieve improved total edge crossings us-
ing actual edge crossings computed for every subtree
of the driving spanning tree. Finally in Section 4, we
discuss achieved results tested on datasets with up to
106 nodes.

2 RELATED METHODS

In this section, we provide a brief overview of the
methods related to those proposed in this article. In
fact, we provide a brief overview of the steps of
Sugiyama’s framework. We describe related methods
for each step and also the technique we currently use
in the approach focused on multitree-like networks.

We follow the usual graph theory terminol-
ogy (Diestel, 2005; Bondy and Murty, 2008; Wilson,

1998). In the case of family trees, we assume that
children are not linked directly to their parents, but
through so-called marriage nodes (VM). Each mar-
riage node represents a marriage in which children
were born. Further, we aim for a layout in which chil-
dren linked to the same marriage node are assigned to
the same layer and grouped.

We use the following terms. A layering L =
(L1,L2, . . . ,Lh) of a graph, G = (V,E) is an ordered
partition of V into non-empty layers Li such that ad-
jacent nodes are in different layers, i.e. if (u,v) ∈ E,
where u∈ Li and v∈ L j, then i 6= j (Brandes and Köpf,
2002; Healy and Nikolov, 2003; Nikolov et al., 2005;
Lutteropp, 2014). Let L(v) = i if v ∈ Li. The index
i is called node layer (rank). Regardless whether G
is directed or undirected, an edge incident to u,v ∈V
is denoted by (u,v) if L(u) < L(v). An edge (u,v) is
short if L(v)−L(u)= 1, otherwise it is long and spans
layers LL(u)+1, . . . ,LL(v)−1. Let N−v = {u : (u,v) ∈ E}
(N+

v = {w : (v,w) ∈ E}) denote the upper (lower)
neighbors and d−v = |N−v | (d+

v = |N+
v |) the upper

(lower) degree of v ∈ V . The height h is the num-
ber of layers, and the width is the number of nodes in
the largest layer. The span of an edge is the difference
between the layers of the nodes to which it is incident.
A digraph is proper if no edge has a span greater than
1. A layered graph G= (V,E;L) is a graph G together
with a layering L.

The ordering of a layered graph is a partial order
≺ of V such that either u ≺ v or v ≺ u if and only if
L(u) = L(v) (Brandes and Köpf, 2002). We denote
v(i)j ∈ Li where Li = {v

(i)
1 , . . . ,v(i)|Li|} with v(i)1 ≺ ·· · ≺

v(i)|Li|. The position pos[v(i)j] = j and the predecessor of

v(i)j with j > 1 is pred[v(i)j] = v(i)j−1. An edge segment
(u,v) is said to cross an edge segment (u′,v′), if u,u′ ∈
Li, v,v′ ∈ Li+1, and either u≺ u′ and v′ ≺ v, or u′ ≺ u
and v≺ v′.

2.1 Network Components

The majority of real-life datasets consist of several or
many disjoint connected components. It depends on
the given task whether one requires the processing of
all components or a specific one. For the purposes of
this paper, we always selected a connected component
that has a maximum number of nodes.

2.2 Treatment of Strongly Connected
Components

An input dataset might capture a network with cycles.
A number of efficient algorithms are based on proper-
ties of DFS. If a processed graph contains cycles, then

IVAPP 2019 - 10th International Conference on Information Visualization Theory and Applications

234

some algorithms might fail, such as a topological or-
der computation, or they might generate unnaturally
long paths. Therefore we need to break the cycles in
each strongly connected component (SCC).

In this paper, we only confirm that the network
is acyclic and we perform a simple non-optimal al-
gorithm to remove cycles in the unlikely event that
some are found. We remove all loops and back edges
of a randomly selected DFS-tree from the given SCC
in the dataset experiments performed in this paper if
such an SCC was detected. For the remainder of the
paper, we assume that the processed network is an
acyclic graph.

2.3 Node Layering

Assuming that the processed network is acyclic, the
layout design continues with node layering in the next
step as proposed in (Sugiyama et al., 1981; Gansner
et al., 1993; Gansner and North, 2000). In this pa-
per, we utilized a solution to the layering problem
that guarantees additional domain layer constraints,
such as the layering of siblings in family trees, as pro-
posed in (Marik, 2017a; Marik, 2017b). The solu-
tion relies on a driving spanning tree that controls the
node ordering design (Marik, 2017a), i.e. the nodes
are processed in the order resulting from the search-
ing of the spanning tree when the next node is chosen
based on an edge crossings estimation criterion. The
spanning tree selection using a graph block analysis
in which cases of non-trivial blocks are resolved us-
ing integer linear programming (ILP) was presented
in (Marik, 2017b). It identifies a spanning tree that
minimizes the span over all layers of the given block.
The blocks can be identified in linear time (Paton,
1971; Hopcroft and Tarjan, 1973). A proper mini-
mum spanning tree for each block consists only of its
short edges. As blocks with a structure more complex
than a single undirected cycle are very rare in real net-
works or they are very small, the time complexity of
the driving spanning tree selection still remains prac-
tically linear.

2.4 Design of Node Order within Layers

Node ordering on each layer is often designed as per-
mutations of the vertices within a given layer, leading
to the minimum number of edge crossings (Warfield,
1977; Sugiyama et al., 1981; Gansner et al., 1993).
However, these traditional methods do not treat apri-
ori node order constraints such as node grouping.
When dealing with genealogical graphs, the order of
node subgroups needs to be satisfied. For example,
the order of siblings is often defined by their birth

dates and the sibling sequences should not be inter-
rupted by other nodes. Then, we deal with a con-
strained crossing reduction problem. Early formu-
las for the computation of the number of crossings
can be tracked to (Warfield, 1977). The problem is
known to be NP-hard (Eades et al., 1986). There are
many heuristics for edge crossings reduction. A sim-
ple heuristic for the one-sided two-level crossing re-
duction can be based on barycenter values (Forster,
2005), but the algorithm implementing the crossing
reduction problem given constraints on nodes still
runs in quadratic time.

Having a driving spanning tree, node layering can
be performed as proposed in (Marik, 2017a). In fact,
we use the same algorithm in this paper, but the crite-
rion sorting the subtrees of a current given root node
based on edge crossings is evaluated differently.

Let us outline the critical steps of the algorithm.
Starting from the node with the lowest layer we assign
nodes of subtrees into layer arrays (initially empty for
each layer), see Fig. 1 for more details. First, sub-
trees with a minimum layer higher than the layer of
the current node vi are processed because their edges
do not cross any other edges in the rest of the graph.
Then the remaining subtrees are processed according
to their increasing edge crossings of edges between
nodes at the current node layer and the successor node
layer. This processing order can be justified as fol-
lows (Marik, 2017a). Let us assume we process the
current node vi where some children’s nodes link K
subtrees with a minimum layer lower than the current
node layer. A sequence [cr1, . . .crK] is obtained if the
subtrees are sorted according to their edge crossing
counts cr` between the children’s node and its sub-
tree. If these subtrees are layered side by side and
each child is linked with them, then the total number
of injected edge crossings is CRvi = ∑

K
j=2 ∑

j−1
k=1 crk =

∑
K−1
`=1 (K− `)cr` that is the minimum if the sequence

[cr1, . . .crK] is not decreasing.
In (Marik, 2017a) the edge crossings for each sub-

tree was estimated using subtree orders (the number
of nodes) because they can be computed in linear time
for all subtrees of the spanning tree.

Indeed, we focus on this step of node ordering
within layers in this paper. We show that the number
of edge crossings itself for each subtree does not need
to be estimated because it can be determined directly
and in a still efficient, almost linear way.

2.5 Node Positioning

Node positioning is completed in the final step of the
entire layout process. Node ordering within layers,
which we cover in this paper, does not depend on this

Multitree-like Graph Layering Crossing Optimization

235

Figure 1: A symbolical snapshot of the layout method proposed in (Marik, 2017a). The current node is identified by its thick
red border. Blue nodes represent men, orange nodes represent women, gray nodes represent marriages. The greenish zone is
an already processed part of the graph with all nodes registered in the layer arrays that keep their order of registration. The
blue zone contains just one subtree with the minimum layer higher than the layer of the current node. Two yellow zones
represent two other subtrees layered in the order based on the used criterion estimating the number of edge crossings.

step. In (Marik, 2018) the node positioning method
based on the force-driven approach with barrier-like
repulsive forces that keeps the order of nodes within
layers and avoids the quadratic complexity of tra-
ditional methods was proposed. The force-directed
based method positions the ordered nodes in layers in
almost linear time. This method was also used in the
experiments discussed in this paper.

3 SUBTREE EDGE CROSSINGS

In this section, we propose a new method that can be
used to calculate the number of edge crossings of any
subtree at its root layer given an acyclic layered graph
and its undirected driving spanning tree minimizing
the number of graph layers. As we mentioned in Sec-
tion 2.3, such numbers of edge crossings should be
used in the subtree ordering criterion that influences
the total edge crossings in the resulting graph layout.

Let us summarize some constraints dealing with
the driving spanning tree and its subtrees in the pro-
cess of node ordering within layers. In this usage
we assume that the inputed acyclic layered graph is
proper, i.e. long edges are replaced by a simple se-
quence of short edges spanning the same layers. The
spanning tree is searched through from its leaf node.
At every step r, an edge er ∈ {er

i}K
i=1 from all edges

er
i incident with the current node is selected and the

subtree determined by the edge is recursively added.
Thus, nodes of subtrees are added one by one to
the layer arrays representing the sequences of nodes
within layers. Although we refer to a subtree Ti, the
algorithm operates only with its root node nr

i .
To ensure a low number of edge crossings an edge

er
j incident with the subtree Tj having the least num-

ber of edge crossings K j is selected. See Fig. 1, where
the edge er is highlighted as the red edge e incident
with the subtree B while another edge incident with
the subtree A generates three edge crossings inside
the subtree B. The number of edge crossings cri is
computed as the number of all edges of the subtree Ti
spanning the same layers as the edge er

i , i.e. this num-
ber of edges must be crossed by edges leading to other
subtrees if the subtree Ti is processed before than the
other subtrees.

The basic variant of an algorithm that computes
edge crossing cri for all possible subtrees of the se-
lected driving undirected spanning tree is rather sim-
ple. Initially, one notices that any such subtree is de-
termined by its root node and one of the edges inci-
dent with the root. In other words, each edge of the
spanning tree determines two subtrees of the spanning
tree with the edge end nodes as their root nodes. Then,
the number of edge crossings cri can be counted in the
following way:

1. for all edges ei of the spanning tree

(a) remove the edge ei from the spanning tree

IVAPP 2019 - 10th International Conference on Information Visualization Theory and Applications

236

(b) for both the resulting subtrees Tj

i. count the number cr j of edges of the subtree
spanning the same layers as the edge ei.

The algorithm repeats the inner tree search for
each edge of the spanning tree, i.e. with the com-
plexity O(N), where N is the number of nodes. The
inner tree search can also be performed in linear time
O(N). Therefore, the resulting asymptotic complexity
is O(N2). As this is the only step in the proposed lay-
out design with the quadratic asymptotic complexity,
it significantly constrains volumes of networks that
might be processed up to 105 nodes using the current
experimental Python implementation.

However, assuming a number of layers signifi-
cantly lower than the number of network nodes, e.g.
102 layers for networks with 106 nodes, it is possible
to use the following almost linear algorithm. Its idea
is based on two facts. Initially, the sum of counts of
edges spanning any pair of layers of two subtrees inci-
dent to any given edge including the edge itself is con-
stant and equal to the edge count spanning the same
pairs of layers calculated for the entire graph. Sec-
ondly, a similar property is held for any node. That
means the sum of counts of edges spanning any pair
of layers of all subtrees incident to edges incident with
the given node including also these edges is constant
and equal to the edge count spanning the same pairs
of layers calculated for the entire graph. Thus, if sub-
trees (i.e. their root nodes) are processed in a pos-
torder sequence, the edge counts for all layers can be
propagated from leaves of the driving spanning tree.
If a node is not a leaf then counts of edges spanning
two layers of its already processed subtrees can be
combined and edge counts related to the only uncov-
ered edge calculated. Thus, this algorithm uses only
a single DFS scan through the driving spanning tree
with linear complexity O(N).

A linear array storing edges spanning any two
consecutive layers is needed to preserve active edges
in the scanning stack. The size of the array is lim-
ited by the height h of layers. Although in the worst
case for the driving spanning tree with the shape of
a linear sequence the number of arrays might reach
the number of nodes in the entire network, practical
cases operate with about b · h arrays, where b is the
maximum branching factor (degree) of nodes and h is
the height of layers. In real cases, both the branching
factor and the height of layers are often limited. The
processing of each node consists of the summation of
at most b arrays. Therefore, if the order of the net-
work is independent of the branching factor and the
number of layers, then the number of possible edge
crossings for each subtree can be computed in linear
time O(N).

4 IMPLEMENTATION,
EXPERIMENTS, AND
DISCUSSION

The algorithm was implemented as an experimen-
tal non-optimized Python script with some additional
procedures evaluating the design process. It was used
on an ultrabook DELL XPS 13 with 16GB of RAM
using an Intel i7 2.7GHz processor. The layout and
ordering are very fast, taking from seconds to hours
for networks with a million nodes if all steps of the
layout algorithms are performed in linear time. If
the variant for the number of edge crossings with
the quadratic asymptotic complexity is used, then the
script can only be used for networks with up to 105

nodes. The linear variant for the number of edge
crossings lasts roughly the same amount of time as the
other steps of the layout algorithm. The processing
of a large number of blocks, if the network contains
blocks, during the undirected spanning tree selection
remains the most difficult part of the processing chain.

We selected 20 datasets to evaluate the proposed
methods (Pruitt, 2017; Leskovec and Krevl, 2017;
GoogleFFT, 2017). Example datasets and their net-
work statistics are shown in Table 1. Some datasets
represent genealogical networks; the ITIS dataset is
a snapshot of the Catalog of Life in the GEDCOM
format (ITIS, 2017).

We provide additional dataset network properties
related to edge crossings computation in Table 2.
There were only two cases in which the processing
needed to address strongly connected components.
Stobie’s dataset is the only one that contains 2 small
strongly connected components. A deviation of a
given network from a tree-like graph is characterized
by the number of blocks with an order higher than
2. Also, the simplex based method of edge selection
in blocks was rarely used (the column |BS|) because
blocks often only form a single undirected cycle that
can be solved directly without the ILP.

The improvement produced by the different crite-
rion of subtree ordering based on the actual number
of edge crossings can be observed in Table 2. The
columns cro

T and cre
T represent the total numbers of

edge crossings based on the original criterion using
the graph order as the edge crossings estimate and the
newly proposed criterion using the actual edge cross-
ings spanning two consecutive layers, respectively.
The improvement can be from 1% to 50% depending
on the data form. If a given network is close to a tree,
such as the ITIS network representing an overview of
taxonomic information on plants, animals, fungi, and
microbes as developed in the Integrated Taxonomic
Information System (ITIS), then the improvement is

Multitree-like Graph Layering Crossing Optimization

237

Table 1: Sample datasets and their statistics: a node number |V | of the complete network , people number |VP| of the complete
network, marriage number |VM | of the complete network, node number |Vmax| of the maximum component, edge number
|Emax| of the maximum component, number of layers |L|, number of source nodes |Vsrc|.

Dataset |V | |VP| |VM| |Vmax| |Emax| |L| |Vsrc|
Mykiska’s network 2952 2192 765 2913 2917 27 609
USA presidents 3186 2145 1042 1589 1602 73 480
WeMightBeKin 52783 38486 14297 52672 54210 46 12716
ITIS 945352 472676 65799 615342 615341 36 1
Stobie’s network 996055 706794 289268 995522 1038192 225 218593
FamiLinx 96693037 86124644 10568393 2276199 2480988 293 269637

Table 2: Layout processing statistics: number of strongly connected components |SCC| of a size larger than 1, number of
blocks |B|, number of blocks with more than 2 nodes ||Bi| > 2|, number of blocks processed by the simplex method |BS|,
number of back edges |Eback|, number of nodes |Lmax| in the maximum layer, total number of edge crossings cro

T if subtree
order is used, total number of edge crossings cre

T if subtree edges spanning pairs of layers are used.

Dataset |SCC| |B| ||Bi|> 2| |BS| |Eback| |Lmax| |cro
T | |cre

T |
Mykiska’s network 0 2848 4 1 5 317 760 658
USA presidents 0 1132 3 1 14 97 223 110
WeMightBeKin 0 43848 19 2 1539 3374 16665 16283
ITIS 0 615341 0 0 0 58407 72 72
Stobie’s network 2 768708 733 12 42671 42695 367278 355152
FamiLinx 0 884240 2125 188 204790 88299 2375287459 1584691327

Figure 2: Thomas Stobie’s network with almost one mil-
lion nodes (people and their marriages). Each node is repre-
sented by a small dot. Ancestors are on the left, descendants
on the right. Family clans (larger multitrees) are colored.

almost negligible. However, if the network has a mul-
titree form with a minimum number of blocks with a
size higher than 2, i.e. with minimum objects inherit-
ing from other objects multiple times, then the num-
ber of edge crossings can be reduced significantly.

The volume performance of the method can
also be demonstrated using the Stobie family net-
work (Stobie, 2017) consisting of 995,522 nodes that
is depicted in Fig. 2. Larger subtrees were highlighted
using different colors. A node joining two such sub-
trees inherits the color of the larger subtree. Thus,
one can observe flows of inheritance clans as colored
lines. One such clan flow starts in the top left part of

the diagram, it continues downward to the right bot-
tom corner and then it creates a contemporary gener-
ation of people on the right side. Thus, from Fig. 2 it
is easy to recognize that the network can be divided
into two tree-like halves separated by this flow, one
multitree covers the upper-right part with some col-
ored lines visible, while the other multitree covers the
bottom-left segment. A similar case study was ap-
plied to a society of the Old Kingdom of Egypt and
an influence of spreading nepotism (inheritance of ad-
ministration offices) was evaluated.

Figure 3: A fragment of the largest known family multi-
tree (FamiLinx, 2018). The edges are colored according to
the known locations (longitude) of people. If the location of
a person is not available, then the color of the closest node
is used.

We applied the layout method to a fragment of the
largest known family multi-tree with over 13,588,042

IVAPP 2019 - 10th International Conference on Information Visualization Theory and Applications

238

nodes. This is the largest connected component in
the dataset with 86,124,644 people and 51,807,142
edges (FamiLinx, 2018). A fragment with only
2,276,199 nodes was selected because it is currently
the largest network that can be processed with the
Python script in 16 GB of RAM. We removed all
nodes with a degree 1 and selected branches of
the largest component. The dataset was parsed in
123 minutes, the selection of the fragment ran for
108 minutes, strongly connected components were
checked in 19 seconds, the driving spanning tree
defining the node layers was computed in 208 sec-
onds (including the processing of 2,125 blocks hav-
ing more than 2 nodes and with one block having the
order 1,364,449), the node order within layers was de-
signed in 5 minutes, the position of nodes were calcu-
lated in 14 minutes and the picture was rendered in 3
hours. The nodes and edges are colored according to
the locations of different people. Thus, one can ob-
serve how generations of people migrated across the
Earth.

We do not compare our results to other methods as
they use different layout criteria and different types
of much smaller networks, often up to only 10,000
nodes. In fact, it would be unfair to compare methods
that do impose node ordering or node grouping (e.g.
siblings) with those which do not set such constraints,
or methods that can process general acyclic graphs us-
ing higher complexity techniques with our restricted
approach only focused on multitree structures. We are
not aware of any implementation that tries to solve a
problem similar to ours.

5 CONCLUSION

In this work, we proposed the modification of crite-
rion controlling subtree ordering during multitree-like
network layout design using driving spanning tree.
The proposed criterion is based on the actual number
of edge crossings injected by a given subtree order-
ing. It was shown that the possible number of edge
crossing injected by any subtree of the driving span-
ning tree can be computed efficiently in linear time
for practical cases. Thus, the complete layout design
could be performed in almost linear time. The opti-
mum spanning subtree selections based on the pro-
cessing of blocks, although they are very rare, re-
mains the most critical step in spanning tree selec-
tion. The new proposed feasible criterion decreases
the number of edge crossings from 1% to 50% as
the network departs from the pure tree form towards
multitree-like forms.

The method is very efficient for layered multitree-

like network layouts with constraints on node order
concering their layers and their order in layers. The
produced graph layouts are more acceptable for the
user if they deal with large networks combining many
trees into a single acyclic graph. As the driving span-
ning tree and all other processing steps can be com-
puted very efficiently for multitree-like networks, it is
possible to process networks with millions of nodes.
The current memory based unoptimized implementa-
tion written in Python limits the use of the proposed
method to networks with up to 4 million nodes on a
computer with 16GB of RAM. Such network layouts
contribute significantly to the comprehension of vast
networks and their basic structural top-level patterns,
e.g. this enables making decisions on their process-
ing. The implementation of a special tool allowing
panning and zooming above such layouts is beyond
the scope of this paper.

ACKNOWLEDGEMENTS

Sponsored by the project for GAČR, No. 16-072105:
Complex network methods applied to ancient Egyp-
tian data in the Old Kingdom (2700–2180 BC).

REFERENCES

Bondy, J. and Murty, U. (2008). Graph Theory. Springer.
Booth, K. S. and Lueker, G. S. (1976). Testing for the con-

secutive ones property, interval graphs and graph pla-
narity using PQ-tree algorithms. Journal of Computer
and System Sciences, 13(3):335–379.

Brandes, U. and Köpf, B. (2002). Graph Drawing: 9th
International Symposium, GD 2001 Vienna, Austria,
September 23–26, 2001 Revised Papers, chapter Fast
and Simple Horizontal Coordinate Assignment, pages
31–44. Springer Berlin Heidelberg, Berlin, Heidel-
berg.

Chimani, M., Gutwenger, C., Mutzel, P., and Wong, H.-
M. (2011). Upward planarization layout. Journal of
Graph Algorithms and Applications, 15(1):127–155.

Chimani, M., Junger, M., and Schulz, M. (2008). Crossing
minimization meets simultaneous drawing. In 2008
IEEE Pacific Visualization Symposium, pages 33–40.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. (2009). Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition.

Diestel, R. (2005). Graph Theory. Springer.
Eades, P., McKay, B. D., and Wormald, N. C. (1986). On an

edge crossing problem. In Proc. ACSC’86, Australian
National University, pages 327–334.

FamiLinx (2018). Familinx dataset, accessed 2018-12-01.
http://familinx.org/data.html.

Multitree-like Graph Layering Crossing Optimization

239

Forster, M. (2005). A fast and simple heuristic for con-
strained two-level crossing reduction. In Graph Draw-
ing. GD 2004. Lecture Notes in Computer Science, vol
3383. Springer, Berlin, Heidelberg, pages 206–216.

Gansner, E. R., Koutsofios, E., North, S. C., and Vo,
K. P. (1993). A technique for drawing directed
graphs. IEEE Transactions nn Software Engineering,
19(3):214–230.

Gansner, E. R. and North, S. C. (2000). An open graph
visualization system and its applications to software
engineering. Softw. Pract. Exper., 30(11):1203–1233.

Gibson, H., Faith, J., and Vickers, P. (2013). A survey
of two-dimensional graph layout techniques for infor-
mation visualisation. Information Visualization, 12(3-
4):324–357.

GoogleFFT (2017). Google: Famous family trees.
https://groups.google.com/forum/#forum/famous-
family-trees.

Graphviz (2016). Graphviz - graph visualization software.
www.graphviz.org. Accessed: 5.6.2016.

Healy, P. and Nikolov, N. S. (2003). Characterization of
layered graphs with the minimum number of dummy
vertices. Technical Report UL-CSIS-03-4, CSIS De-
partment, University of Limerick, Limerick, Republic
of Ireland.

Healy, P. and Nikolov, N. S. (2013). Handbook of
Graph Drawing and Visualization, chapter Hierarchi-
cal Drawing Algorithms, pages 409–453. CRC Press.

Hopcroft, J. and Tarjan, R. (1973). Algorithm 447: Efficient
algorithms for graph manipulation. Commun. ACM,
16(6):372–378.

Hopcroft, J. and Tarjan, R. (1974). Efficient planarity test-
ing. Journal of the ACM, 21(4):549–568.

Hsu, W.-L. and McConnell, R. (2004). Handbook of Data
Structures and Applications, chapter PQ Trees, PC
Trees, and Planar Graphs, pages 32–1–32–27. CRC
Press.

ITIS (2017). ITIS - Integrated Taxonomic Information
System. https://www.itis.gov/downloads/index.html.
Retrieved February, 10, 2017, from the Integrated
Taxonomic Information System on-line database,
http://www.itis.gov.

Lempel, A., Even, S., and Cederbaum, I. (1967). An algo-
rithm for planarity testing of graphs. In Rosenstiehl,
P., Gordon, and Breach, editors, Theory of Graphs,
pages 215–232, New York.

Leskovec, J. and Krevl, A. (2017). SNAP Datasets:
Stanford large network dataset collection.
http://snap.stanford.edu/data.

Lutteropp, S. (2014). On layered drawings of planar graphs.
Master’s thesis, Karlruhe Institute of Technology.

Marik, R. (2016). Tree-based genealogical graph layout. In
Hu, Y. and Nöllenburg, M., editors, Graph Drawing
and Network Visualization, 24th International Sym-
posium, GD 2016, Athens, Greece, September 19-21,
volume ISBN: 978-3-319-50105-5 (Print) 978-3-319-
50106-2 (Online).

Marik, R. (2017a). Efficient Genealogical Graph Layout,
pages 567–578. Springer International Publishing,
Cham.

Marik, R. (2017b). On Multitree-Like Graph Layering,
pages 595–606. Springer International Publishing,
Cham.

Marik, R. (2018). Layered graph force-driven vertex
positioning. In Proceedings of the 13th Interna-
tional In Proceedings of the 13th International Joint
Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications (VISIGRAPP
2018) Funchal, Madeira, Portugal, 27-29 January,
IVAPP 2018, volume 3: IVAPP, pages 301–308.

Mathews, E. and Frey, H. (2012). Distributed Comput-
ing and Networking: 13th International Conference,
ICDCN 2012, Hong Kong, China, January 3-6, 2012.
Proceedings, chapter A Localized Link Removal and
Addition Based Planarization Algorithm, pages 337–
350. Springer Berlin Heidelberg, Berlin, Heidelberg.

Nikolov, N. S., Tarassov, A., and Branke, J. (2005).
In search for efficient heuristics for minimum-width
graph layering with consideration of dummy nodes. J.
Exp. Algorithmics, 10.

Paton, K. (1971). An algorithm for the blocks and cutnodes
of a graph. Commun. ACM, 14(7):468–475.

Pruitt, P. D. (2017). Great sites for links to genealogy soft-
ware. http://famousfamilytrees.blogspot.cz/2011/12/.
Accessed: February 2017.

Reingold, E. M. and Tilford, J. S. (1981). Tidier drawings
of trees. IEEE Transactions on Software Engineering,
SE-7(2):223–228.

Resende, M. G. C. and Ribeiro, C. C. (2001). Encyclopedia
of Optimization, chapter Graph planarization, pages
908–913. Springer US, Boston, MA.

Shih, W.-K. and Hsu, W.-L. (1999). A new planarity test.
Theoretical Computer Science, 223(1-2):179–191.

Stobie, T. (2017). Thomas stobie’s genealogy pages.
http://freepages.genealogy.rootsweb.ancestry.com/ sto-
bie/. Accessed: February 2017.

Sugiyama, K. and Misue, K. (1991). Visualization of struc-
tural information: automatic drawing of compound di-
graphs. IEEE Transactions on Systems, Man, and Cy-
bernetics, 21(4):876–892.

Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods
for visual understanding of hierarchical system struc-
tures. IEEE Transactions on Systems, Man, and Cy-
bernetics, 11(2):109–125.

Tutte, W. T. (1963). How to draw a graph. Proceed-
ings of the London Mathematical Society, Third Se-
ries, 3(13):743–768.

Warfield, J. N. (1977). Crossing theory and hierarchy map-
ping. IEEE Transactions on Systems, Man, and Cy-
bernetics, 7(7):505–523.

Wilson, R. J. (1998). Introduction to Graph Theory. Long-
man, fourth edition.

IVAPP 2019 - 10th International Conference on Information Visualization Theory and Applications

240

