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Abstract: New malware detection techniques are highly needed due to the increasing threat posed by mobile malware.
Machine learning techniques have provided promising results in this problem domain. However, feature selec-
tion, which is an essential instrument to overcome the curse of dimensionality, presenting higher interpretable
results and optimizing the utilization of computational resources, requires more attention in order to induce
better learning models for mobile malware detection. In this paper, in order to find out the minimum feature
set that provides higher accuracy and analyze the discriminatory powers of different features, we employed
feature selection and ranking methods to datasets characterized by system calls and permissions. These fea-
tures were extracted from malware application samples belonging to two different time-frames (2010-2012
and 2017-2018) and benign applications. We demonstrated that selected feature sets with small sizes, in both
feature categories, are able to provide high accuracy results. However, we identified a decline in the discrim-
inatory power of the selected features in both categories when the dataset is induced by the recent malware
samples instead of old ones, indicating a concept drift. Although we plan to model the concept drift in our
future studies, the feature selection results presented in this study give a valuable insight regarding the change
occurred in the best discriminating features during the evolvement of mobile malware over time.

1 INTRODUCTION

Mobile phone users are increasingly facing the risks
of malware. McAfee stated that “2018 could be the
year of mobile malware” as they detected 16 million
infections in the third quarter of 2017 alone, twice the
figure in 2016 (McAfee, 2018). This enormous in-
crease was also confirmed by Kaspersky who identi-
fied an 80% rise in mobile malware attacks (Unuchek,
2018). In addition to these spikes, malware detection
software has been proved to be inefficient in tackling
this threat (Fedler et al., 2013).

Traditional detection approaches based on signa-
tures fail to detect unknown malware due to the im-
proved obfuscation or stealth techniques employed
by malware creators (Fedler et al., 2013). On the
other side, machine learning techniques have been
perceived as a promising approach for detecting pre-
viously unseen malware samples and many studies
have shown that they could provide high detection ac-
curacy (Sahs and Khan, 2012; Yuan et al., 2014; Arp
et al., 2014). These studies created learning models
using dynamic, static or both (namely hybrid) fea-
tures extracted from legitimate applications and mal-
ware samples. Static features such as permissions,

java codes or intent filters, are extracted directly from
APK files whereas dynamic features, e.g. system calls
or network traffic patterns, are derived from the in-
teraction of programs with OS or network (Feizollah
et al., 2015).

Feature selection, eliminating irrelevant or redun-
dant features that do not improve the classification
performance, is an essential step of machine learning
workflow due to three reasons: (1) Representing the
problem domain with high dimensions requires more
data for learning (commonly known as the curse of
dimensionality) and may disturb the accuracy of the
classifier, (2) Models using higher dimensions cannot
be easily interpreted by the experts, which may create
enormous problems in detecting falsely classified in-
stances or profoundly investigating a cyber incident,
(3) Higher dimensional data requires more computa-
tional resources for constructing and using the learn-
ing model on a mobile device. On the other side,
feature selection could be more complicated in prob-
lem domains where the behaviour of the subjects may
vary in time, i.e., a selected feature set may no longer
have its discriminatory power, which may be one of
the main concerns in malware detection.

In this study, our primary objectives are to iden-
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tify the minimum feature set that provides higher ac-
curacy, compare the discriminatory powers of feature
categories and analyze the results of models induced
by datasets belonging to different time-frames. For
these purposes, we applied a two-step procedure to
the dataset that is composed by system calls (i.e., a
dynamic behaviour) and permissions (i.e., a static be-
haviour), extracted from malware samples and legit-
imate applications. In the first step, we used statis-
tical hypothesis testing methods to identify the fea-
ture set that may have a significant contribution to
the classification. In the second step, we employed
Fisher’s Score and Gini Index which enabled to rank
the selected features according to their discrimina-
tory power. We in turn induced machine learning
models with different combinations of datasets with
varying feature sets. As Android is the most used
mobile operating system worldwide, we focused on
detection of Android malware (Statista, 2018). For
this research, we formed two malware datasets. ”Old
dataset” which consists of randomly selected apps
from Drebin malware dataset, collected between 2010
and 2012 (Arp et al., 2014).”New dataset” formed by
randomly choosing samples, belonging to years 2017
and 2018, from VirusTotal Academic malware dataset
(VirusTotal, 2018). Third one is called ”legitimate
dataset” which is composed by benign applications.
We utilized various combinations of these datasets for
inducing learning models.

This study shows that feature selection and rank-
ing process can significantly reduce the number of
features required in a classifier that provides high ac-
curacy for the detection of mobile malware. We found
that features possessing most discriminatory power in
classification may differ as new malware types evolve
over time, indicating a concept drift. Results suggest
that behaviour of mobile malware in terms of system
calls and permissions has become more similar to le-
gitimate apps over time although there are some vari-
ations among the extent of this evolvement in both
feature categories.

Our main contribution is a detailed analysis and
comparison of feature selection and ranking results
obtained for two types of feature categories. One of
the distinctive properties of the present paper is that,
in addition to the optimization of number of predic-
tors, we analyzed the change in selected features that
has occurred due to the evolvement of malware over
time.

This paper is organized as follows: Section 2
presents a review of related literature. Method em-
ployed in the study is described in Section 3. Re-
sults of our experiments are presented and discussed
in Section 4 whereas Section 5 concludes the study.

2 LITERATURE REVIEW

Feature selection and ranking methods have been
used in various machine learning-based malware de-
tection studies. In Yan et al. (2013) discriminatory
power of malware features such as hexdump of bina-
ries, disassembly codes, PE header and system calls
are measured by three filter methods, i.e., ReliefF,
Chi-squared, F-statistics, and two embedded meth-
ods, i.e., L1 regularized methods, L1-logreg and L1-
SVC. In this study, it is identified that PE header
and system calls are very beneficial to discern mal-
ware from legitimate software, and that L1 regular-
ized methods with 100 features provided higher de-
tection rates (Yan et al., 2013). In Ahmadi et al.
(2016) discriminatory powers of various static feature
categories are measured and compared by using mean
decrease impurity notion and random forest classifier
in a multi-class malware family classification.

Utilization of feature ranking methods is consid-
erably less common in those studies which provide
classifiers specifically for mobile malware detection
(Feizollah et al., 2015). Lindorfer et al. (2015) ap-
plied Fisher’s Score to evaluate the discriminatory
power of dynamic and static feature categories. This
study found out that required permissions and some
dynamic features related to SMS sending and dy-
namic loading of code have higher discriminatory
powers (Lindorfer et al., 2015). Cen et al. (2015),
created a classifier using Regularized Logistic Re-
gression with Lasso Norm for source code features
(java package, class and function levels). Information
Gain, Chi-Square and an embedded method of logis-
tic regression were utilized for feature selection. It
was found that 10% of the features selected by Infor-
mation Gain or Chi-Square are sufficient for high de-
tection rates (Cen et al., 2015). Similarly, in Shabtai et
al. (2012) filter methods such as Chi-Square, Fisher’s
Score and Information Gain were applied to some
system metric features (e.g., CPU consumption, num-
ber of running processes, battery level) in the early
times of Android.

Pehlivan et al. (2014) applied feature selection
methods such as Information Gain, ReliefF, Correla-
tion Feature Selection (CFS) and consistency-based
selection to permissions with different classification
models. Random forest classifier that selected 25 per-
mission features with CFS provided the best accuracy.
In a similar study by Nezhadkamali et al. (2017),
three feature selection methods, L1-based feature se-
lection, Information Gain and Gini Impurity, were
used with permissions. All three methods were tested
using different machine learning algorithms, such as
decision tree, SVM and Random forest. Best results
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were obtained using Random Forest as classification
algorithm and Information Gain as feature selection
method (Nezhadkamali et al., 2017).

Sing and Hofmann (2017) used three feature se-
lection methods (Chi-Square, Information gain, and
correlation analysis) to select variables and form sys-
tem calls vector. In Ferrante et al. (2016), an embed-
ded feature selection method was used for classifying
the dataset that consisted of features such as system
calls, memory usage and CPU usage. Kim and Choi
(2014) used Linux kernel features related to mem-
ory, CPU and network (summing up to 59 features)
to perform malware detection. This study used an
embedded model to perform feature selection, ending
up eliminating 23 features and using 36 features for
their detection system (Kim and Choi, 2014). In Qiao
et al. (2016) combined API calls and permissions
were processed by two feature selection methods,
one-way analysis of variance (ANOVA) (i.e., a fil-
ter method) and Support Vector Machine—Recursive
Feature Elimination (i.e., a wrapper method). They
ended up with top 300 features from API set and 80
from permissions set (Qiao et al., 2016).

Although previously mentioned studies applied
feature selection methods and some of them provided
considerably detailed analysis about discriminatory
powers of used features, none of them analyses the
character change and its impact on feature selection.

In Hu et al. (2017) concept drift of mobile mal-
ware was modelled with an ensemble learning model
in which the feature selection is based on Information
Gain. In Jordaney et al. (2017) a concept drift detec-
tion method that was based on conformal evaluator is
applied to two cases, a binary classification for mobile
malware and a multi-class classification for malware.
These studies focus on enhancing the detection per-
formance of classifiers with concept drift. However,
they do not provide an in-depth analysis of discrimi-
natory powers of feature categories and their impact
on concept drift.

3 METHOD

We formulated mobile malware detection as a binary
classification problem that requires the discrimination
of benign mobile applications from mobile malware
samples. As we were able to obtain labelled data,
supervised machine learning methods were applied.
We followed machine learning workflow, that mainly
involves five steps: (1) Data Acquisition, (2) Data
Cleaning and Preparation, (3) Feature Selection, (4)
Classifier training and Evaluation, (5) Interpretation
(Robert, 2014). Sometimes tuning could be applied to

the trained classifier, but within the framework of the
present study, this step was omitted as it was deemed
as unnecessary.

We tested k-nearest neighbours (kNN), logistic re-
gression, decision tree, and support vector machines
(SVM) for building the classifiers, and used Python
programming language and Sci-kit learn library in
our implementation. Data acquisition and feature se-
lection stages are detailed in Sections 3.1 and 3.2.
We covered two types of feature categories in our
datasets: absolute frequency of system calls (numeri-
cal features) encountered during the execution of the
applications and requested Android standard permis-
sions (categorical features).

3.1 Data Acquisition

In this study, we collected 3000 Android x86 architec-
ture compatible applications as the details are given
below:

• 1000 benign applications which were randomly
downloaded by the authors from APKMirror
repository. They were verified as malware free ap-
plications with VirusTotal AntiVirus engine. Le-
gitimate applications date between April 2017 and
February 2018. Named as ”legitimate dataset” in
this research.

• 1000 malware applications which were randomly
selected from Drebin malware dataset. These
samples date between August 2010 and October
2012 (Arp et al., 2014). We named this dataset as
”old malware dataset”, and refer to each element
in the set as ”old malware”.

• 1000 malware applications which were ran-
domly selected from VirusTotal Academic mal-
ware dataset. This dataset, shared by VirusTo-
tal, dates between the end of 2016 and beginning
2018 (VirusTotal, 2018). We named this dataset
as ”new malware dataset”, and refer to each ele-
ment in the set as ”new malware”.

Android requested permissions were directly ex-
tracted from AndroidManifest.xml file, included in
every application APK file, using Android Asset
Packaging Tool (aapt). The recent Android distribu-
tion, Android 8.0, defines 147 Android standard per-
missions. A permission profile vector that is com-
posed of the data regarding the presence/absence of
each Android standard permission was created for
each application.

As the collection of system calls requires to run
the application itself, we used an Android emulation
environment and Android Debug Bridge (ADB) to in-
stall, execute, monitor, log and uninstall each applica-
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tion. During the execution, strace tool was attached to
the main process to obtain the first 2000 system calls.
212 distinct system calls are defined in Bionic x86
library. A frequency vector that included the num-
ber of each system call made by the application was
formed from the logged data. Prior research have
demonstrated that malware could be effectively dis-
criminated with a reduced amount of system calls ac-
quired during the application’s boot up and that acqui-
sition of the first 2000 system calls provided the best
detection results (Vidal et al., 2017).

Although we selected malware samples from two
different time-frames, composing two different mal-
ware datasets, we used only one benign dataset com-
prised of recent applications. In this study, we fo-
cused on the analysis of change in selected features
according to the evolvement of malware with respect
to recent benign applications. This approach is in
line with malware detection practices happening in
the field as mobile phones are usually not compat-
ible with older applications due to frequent operat-
ing system and hardware changes and also changes
in applications’ installation requirements but the de-
tection systems usually include signatures of all mal-
ware samples including the old ones. The impact of
the evolvement in benign applications will also be an-
alyzed in the context of concept drift within our future
studies.

3.2 Feature Selection and Ranking

We employed a two-step procedure that consists of
conducting statistical hypothesis testing for feature
selection and applying feature ranking method. The
former one chooses the features which significantly
differ between the two classes (i.e., legitimate and
malware), and the latter one orders the features ac-
cording to their discriminatory power. Order provided
in this step is necessary to optimize the number of
features used as predictors and describe behavioural
evolvement of malware belonging to different time-
frames.

There are three feature selection techniques that
can be widely utilized in identifying the features (Ag-
garwal, 2015). Filter techniques evaluate the suit-
ability of a feature by using a statistical criterion
which can be applied irrespective of the classification
method used. Wrapper techniques iteratively extend
the feature set and evaluate the accuracy of each iden-
tified set in a classification model. Embedded tech-
niques also evaluate suitability of the feature set with
respect to a particular classification model, but unlike
the wrapper one, they attempt to prune the features
within the classification process itself. Since wrapper

and embedded techniques have higher computational
complexity, we utilized filter techniques in the second
step.

It is important to emphasize that feature categories
used in this study, system calls and permissions, do
not have the same data type. System calls are nu-
meric values (i.e., amount of calls issued for each sys-
tem call) and permissions are categorical (i.e., permis-
sion request was present/absent for each standard per-
mission). In both steps, we employed different tech-
niques that are more appropriate for each feature cat-
egory and its data type. The procedure was performed
as follows:

• Step 1: Feature selection by statistical hypothesis
testing

– System Calls. System calls which differ be-
tween malicious and legitimate applications in
terms of mean values were selected. To per-
form statistical hypothesis testing Welch’s Test
was used. This test provides more reliable re-
sults for the cases of unequal variances (Welch,
1947). The statement of the null (base) hypoth-
esis Ho is that mean values of for the number
of system calls among first 2000 calls are the
same for legitimate µL and malicious µM appli-
cations, and the statement of the alternative hy-
pothesis H1 is that mean values are different.

H0 : µL = µM

H1 : µL 6= µM

– Permissions. As these features are categor-
ical, we employed χ2 (chi-squared indepen-
dence test) which can answer the question if
two categorical variables are related or not. The
statement of the null hypothesis is that there is
no relation between the particular permission
and class of the application. The statement of
the alternative hypothesis is that there is a rela-
tion between particular permission and class.

• Step 2. Feature ranking by Fisher’s Score and
Gini Index

– System Calls. Fisher’s Scores of system calls
with mean values that differ significantly be-
tween malicious and legitimate applications
were computed (i.e., higher Fisher’s score val-
ues indicate higher discriminatory power).

– Permissions. As permissions are categorical,
Gini Index suited better for ordering these fea-
tures (i.e., lower values of the Gini Index indi-
cate higher discriminatory power).

At first glance, a two step procedure may seem un-
necessary. One may suggest ordering features with re-

In-depth Feature Selection and Ranking for Automated Detection of Mobile Malware

277



spect to only their p-values, computed during the hy-
pothesis testing step. It should be noted here that lin-
ear relationship between the values of Fisher’s Score
and p-values is not strong enough to lead exactly to
the same feature orderings. Simulations performed
by the authors demonstrated that for numeric values
Fisher’s Score based selection led to better orderings
with respect to classifier accuracy. This fact justi-
fies a two-step feature selection procedure for system
calls. Regarding permissions, p-values and Gini In-
dex based selection procedures did not lead to suffi-
cient difference in detection accuracy. Nevertheless,
a two-step selection procedure was used for the sake
of method coherence.

In relation to classifier training, one has to choose
desired number of predictors either on the basis of
Fisher’s Score values or Gini Index values. Note
that there are no universal or generic valid thresh-
olds for Fisher’s Score and Gini Index values indicat-
ing suitability or unsuitability of a particular feature.
Based on the outcomes of the feature selection pro-
cess, we provided our expert judgement to determine
the thresholds, selected the sets and verified their pre-
diction performance by creating and testing the learn-
ing model.

4 RESULTS & DISCUSSION

4.1 Results of Feature Selection and
Ranking

We applied feature selection and classification meth-
ods to two different compound datasets: First one
(namely L/O) includes 1000 legitimate and 1000 old
malware samples, and second one (namely L/N) is
composed by 1000 legitimate and 1000 new malware
samples. Let us remind that each particular system
call was treated as a numeric feature which results
in 212 numeric features. Each particular permission
was treated as a categorical feature (set or unset),
which leads to 147 categorical features. Following
the feature selection procedure described in Section
3.2, Welch’s test demonstrated that for L/O dataset,
38 numeric features differed significantly between the
legitimate and malicious applications for level of sig-
nificance α = 0.05, whereas this number was 43 for
L/N dataset. In a similar manner, for the same level
of significance, χ2 filtered out 85 permissions for L/O
dataset and 79 permissions for L/N dataset.

In the feature ranking step, Fisher’s Score and
Gini Index values were computed for numeric and
categorical features respectively. This allowed or-

Figure 1: Scatter plot munmap vs clock gettime.

Figure 2: Scatter plot prctl vs mmap2.

Figure 3: Scatter plot futex vs mprotect.

dering the features with respect to their discrimina-
tory power. As mentioned before, there is no specific
threshold on any of the methods performed to select
or discard any particular feature, only data knowl-
edge and expertise helps in this selection step. As all
Fisher’s Score (F) values were relatively low, we se-
lected those system calls having F > 0.15. Regarding
permissions, all Gini Index (G) values were relatively
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Table 1: System Calls and Fisher’s Score Values.

System Call L/O L/N
clock gettime 0.84 1.11
munmap 0.75 0.57
readlinkat 0.69 0.59
connect 0.67 0.52
mmap2 0.63 0.47
prctl 0.61 0.53
madvise 0.54 0.48
ppoll 0.31 0.25
sigaction 0.29 0.30
sigaltstack 0.23 0.21
openat 0.22 0.16
mprotect 0.15< 0.19
futex 0.30 0.15<
rt sigprocmask 0.24 0.15<
epoll create1 0.23 0.15<
eventfd2 0.22 0.15<
getppid 0.22 0.15<
clone 0.21 0.15<
sendto 0.19 0.15<
recvfrom 0.18 0.15<
close 0.17 0.15<
getdents64 0.15 0.15<

Table 2: Permissions and Gini Index Values.

Permission L/O L/N
access network state 0.46 0.41
wake lock 0.45 0.39
install packages 0.42 0.41
read phone state 0.32 0.45
get accounts >0.47 0.47
system alert window >0.47 0.46
get tasks >0.47 0.45
mount unmount file systems >0.47 0.44
vibrate >0.47 0.44
access fine location 0.47 >0.47
bind remoteviews 0.47 >0.47
use fingerprint 0.47 >0.47
camera 0.47 >0.47
bluetooth 0.46 >0.47
read logs 0.44 >0.47
send sms 0.43 >0.47
read contacts 0.43 >0.47
read external storage 0.33 >0.47

high so we selected those with G < 0.47. System calls
possessing higher discriminatory power are listed, to-
gether with their Fisher’s Score values, in Table 1.
Similarly, Table 2 gives the selected permissions with
their Gini Index values.

As a result of the second step, 21 features were se-
lected for L/O dataset and 12 for L/N dataset among

the system calls (11 of them were common in both
datasets). All common system calls in L/N except
clock_gettime have lower Fisher’s Score values.
Furthermore, there is only one additional discrimi-
natory system call, mprotect, which has a relatively
low score, that has been developed in the course of
time (appears as potentially discriminatory feature in
L/N dataset but not in L/O dataset). Based on that,
it can be argued that separability between legitimate
and new malware is less obvious, meaning that system
call behaviour of malware has become more similar
to legitimate as time has passed. Additionally, it can
also be argued that beyond this separability fact, new
malware has not developed a robust novel character.

Scatter plot graph given in Figure 1 shows an eas-
ily recognizable well-defined decision boundary that
is formed by two of the most discriminatory system
calls, clock_gettime and munmap2. As shown, old
malware is gathered in a cluster which is located be-
tween legitimate and new malware regions. On the
other side, decreased separability formed by system
calls with relatively less Fisher’s Score values, such
as prctl and mmap2, is demonstrated in Figure 2. Al-
though most of legitimate and new malware samples
form their own clusters which can be separable from
each other, boundaries are not so clear when com-
pared to the graph given in Figure 1. Figure 3 shows
the graph for two system calls having lower scores
such as futex and mprotect. It is observed that de-
spite some condensed regions occupied by one class,
boundaries between old malware, new malware and
legitimate apps mostly disappear.

According to Fisher’s Score values, it can be de-
rived that system calls that possess best discrimina-
tory power are related to socket connection, process
management or file operations. However, best pre-
dictor is the one which is related with clock time,
showing the most different behaviour between mal-
ware and legitimate applications.

Based on Gini Index values (see Table 2)
and the established threshold value, we identi-
fied that 13 permissions in L/O possess greater
discriminatory power whereas 9 permissions have
greater power in L/N (among the 147 permis-
sions in total). New malware gained more
separability from legitimate applications in fea-
tures such as wake_lock, access_network_state,
install_packages. They exceeded the threshold
value in an additional five features which were below
that value in old malware. On the other side, it has
become closer to legitimate apps in 10 features (for
instance, read_phone_state, camera, send_sms, or
read_contacts). It can be argued that total discrimi-
natory power of new malware has diminished to some
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extent due to a reduction in the number of selected
features, but in contrast to system calls, it gained new
character.

Android OS has mainly three protection levels that
determine policies for granting permissions to mobile
apps: (1) Normal permissions which are automati-
cally given to applications without explicit consent of
the user, (2) Dangerous permissions that require ex-
plicit consent of the users to be granted, (3) Signa-
ture permissions which require that the app that uses
the permission must have the same certificate as the
app that defines the permission (Google, 2018). Fea-
tures with greater discriminatory capabilities, which
are identified by Gini Index in our study, do not be-
long to a single level. Among the 18 listed features
in Table 2, only 7 of them belong to the dangerous
level. This result indicates that malware and legiti-
mate apps can also differ in permissions which do not
seem risky.

It is important to note that, in our context, gain-
ing character or having more discriminatory power
means that the referenced dataset can better discrimi-
nate malware from legitimate apps by using the corre-
sponding feature. It does not show that, for instance,
malware uses that specific system call or permission
more (or less) frequently than a legitimate app. How-
ever, as we utilized the same legitimate dataset, it is
evident that the change in discrimination capabilities
relies on the change of malware behaviour over time.

Table 3: Classification with System Calls.

# of features L/O L/N
accuracy accuracy

Single Best Feature 1 0.87 0.89
3 Best Common Features 2 0.90 0.88
6 Best Common Features 3 0.91 0.89
All 11 Common Features
selected in both datasets 4 0.93 0.89
All 22 Selected Features 0.97 0.91
All 212 Features 0.97 0.93

4.2 Verification of Selected Features
with Classifiers

In order to verify the results obtained in Section 4.1,
we built and tested classifiers with selected feature

1clock gettime
2clock gettime, readlinkat, and munmap
3clock gettime, readlinkat, munmap, connect, prctl and

mmap2
4clock gettime, readlinkat, munmap, connect, prctl,

mmap2, madvise, ppoll, sigaction, sigaltstack, openat

sets, grouping them in varied sizes. Recall that the fil-
ter methods that we use in this study treat each feature
separately while measuring its discriminatory power,
meaning that these sets do not guarantee higher accu-
racy due to, for instance, possible correlations among
the selected features. This verification study is needed
to show the validity of our findings.

We trained and tested k- Nearest Neighbours
(kNN), Logistic Regression, Decision Tree, and Sup-
port Vector Machines (SVM) machine learning algo-
rithms to the datasets. Among these methods, deci-
sion tree model demonstrated best accuracy results,
therefore, this method was chosen for further analy-
sis. Then decision tree model was applied to L/O and
L/N datasets. As shown in Table 3, we computed ac-
curacy value for different decision tree classifiers as
a performance metric (i.e., accuracy is computed as
the ratio of correctly classified samples to the total
samples), using 5-fold cross-validation with varying
feature set sizes for system calls. Corresponding con-
fusion matrix of each classifier is given summarized
in Table 4.

Table 4: Confusion Matrices for the Classification of Sys-
tem Calls.

# of features Actual(L)/ Actual(M)/ Actual(L)/ Actual(M)/
Pred(L) Pred(M) Pred(M) Pred(L)

Single Best L/O 265 265 29 41
3 Best L/O 261 279 31 29
6 Best L/O 293 259 25 23
11 Common L/O 299 262 24 15
22 Selected L/O 303 276 10 11
All (212) L/O 295 290 8 7
Single Best L/N 300 234 27 39
3 Best L/N 263 266 39 32
6 Best L/N 259 269 37 35
11 Common L/N 282 254 32 32
22 Selected L/N 272 268 36 24
All (212) L/N 279 281 19 21

Results of decision tree classifier model regard-
ing system calls show that just a single feature,
clock_gettime (highest Fisher’s score value), was
capable of discriminating malware from legitimate
apps (in both L/O and L/N datasets) with an accu-
racy over 87 %. However, this feature provided better
classification in L/N, which is in line with the higher
Fisher’s Score value of this feature in this dataset. In
all other classifier models built, selected features pro-
vided better outcomes in L/O dataset, justifying that
similarity of system calls behaviour between a legit-
imate app and malware is getting less obvious over
time.

Accuracy results of classifiers increase as bigger
feature set is covered in both datasets. Just the 22 se-
lected features are enough to give the same accuracy
performance than using all system calls (212) in L/O
dataset. However, a similar point is not achieved in
L/N dataset, indicating a decrease in the discrimina-
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tory power of the selected features. It can be derived
from the confusion matrices given in Table 4 that clas-
sifiers are, in general, well-balanced in terms of false
positive and false negative results, which are repre-
sented in the table as ”Actual(L)/Predicted(M)” and
”Actual(M)/Predicted(L)” respectively. Note that L
refers to legitimate whereas M means malware. How-
ever, results of the best feature in L/O and L/N are
slightly more skewed to false negatives whereas the
classifiers with all 11 common features in L/O and all
22 selected features in L/N are more inclined to false
positives.

Results regarding the application of decision tree
classifier model to permissions are given in Table 5.
Best feature provided accuracy values, 0.79 and 0.73,
in L/O and L/N datasets respectively. These values
are lower compared to the detection performance of
best system call predictor. As shown, accuracy value
in L/O was greater than in L/N. This fact was ex-
pected as the Gini Index score of the best feature in
L/O dataset has a lower value than in L/N dataset,
i.e. that it has more discriminatory power. Accu-
racy of the classifier that uses all selected features, in
both datasets, reaches almost the same value obtained
when all permissions are used, showing the effective-
ness of feature selection in permissions.

Table 5: Classification with Permissions.

# of features L/O L/N
accuracy accuracy

Single Best Feature 5 0.79 0.73
4 Common Selected
Features in both datasets 6 0.86 0.85
All 18 Selected Features 0.94 0.92
All 147 features 0.95 0.92

Accuracy values of L/N were slightly lower than
values of L/O when common or all selected permis-
sions were used. This result suggests that as time has
passed, separability between malware and legitimate
applications has partly decreased regarding permis-
sions.

Confusion matrices of classifiers built for permis-
sions are summarized in Table 6. It can be extracted
that most of classifiers are not well-balanced com-
pared to the ones built on the basis of system calls.
Results of the best and four common features in L/O
are skewed to false negatives, but remaining ones are
more balanced. L/N dataset provided unbalanced out-
comes in each classifier. Best feature in L/N gave
more false positives and remaining ones were inclined

5read phone state for L/O and wake lock for L/N
6access network state, wake lock, install packages and

read phone state for L/O and L/N

to false negatives.

Table 6: Confusion Matrices for the Classification of Per-
missions.

# of features Actual(L)/ Actual(M)/ Actual(L)/ Actual(M)/
Pred(L) Pred(M) Pred(M) Pred(L)

Single Best L/O 271 201 30 98
4 Common L/O 262 248 23 67
18 Selected L/O 284 280 19 17
All (147) L/O 281 290 14 15
Single Best L/N 186 253 117 44
4 Common L/N 281 227 29 63
18 Selected L/N 274 274 19 33
All (147) L/N 284 268 20 28

When outcomes of system calls and permissions
are compared, it can be argued that their amount of
loss regarding discriminatory power in L/N is differ-
ent. All selected system calls in L/N gave an accuracy
value of 0.91, showing a decline from 0.97 which was
obtained in L/O. This value, 0.91, is below the accu-
racy result, 0.93, which was obtained in L/N when all
system calls were used for the classification. On the
other side, accuracy value declines from 0.94 to 0.92
for all selected permissions, which indicates a lower
amount of loss than selected system calls. Accuracy
value of 0.92, is equal to the result obtained by all
permissions in L/N. Recall that, in Section 4.1, we
identified a decrease from 21 to 12 in the number of
system calls which exceeded the selection threshold
in L/O and L/N datasets. Out of 12 system calls, just
only two of them have higher Fisher’s score in L/N.
Contrarily, decline in permissions goes from 13 to 9,
and more features, 5 of them, have higher discrim-
ination capability in L/N. These findings support the
results obtained in Section 4.1 so that system calls and
permissions lost part of their discriminatory power in
L/N, being the loss in system calls greater than the
loss in permissions.

It is important to highlight here that our results re-
garding the change in selected feature sets indicate a
concept drift. Comparison between system calls and
permissions given above provides initial insights into
the extent of this phenomenon. However, more com-
plete derivations can be drawn with modelling the
drift in the classifier. As we focus on feature selec-
tion and ranking in this paper, we postponed this mod-
elling effort to our future work.

Table 7 demonstrates detection performance of a
mixture of system calls and permissions (hybrid de-
tection approach). Classifier was constructed using
decision tree model within a 5-fold cross-validation
setting. As can be seen, in both datasets, detection
rates were higher compared to their previously built
respective single type classifiers, using only static or
only dynamic features.

7clock gettime and read phone state for L/O and
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Table 7: Classification with System Calls and Permissions
(Hybrid).

# of features L/O L/N
accuracy accuracy

Best Two Features 7 0.90 0.89
4+11 Common Selected
Features in both datasets 0.95 0.92
18+22 Selected Features 0.97 0.94
All Features (212+147) 0.98 0.94

5 CONCLUSION & FUTURE
WORK

Detection of mobile malware remains a significant
challenge due to the rapidly evolving nature of the
threat. Machine learning techniques have provided
solutions to handle this problem. Although they have
provided promising results, there is a room for im-
provement of the classifiers by the utilization of fea-
ture selection to obtain better classification accuracy,
present the results in a more interpretable way and re-
duce required computational resources.

In this paper, we applied a feature selection and
ranking procedure that consists of two consecutive
steps, statistical hypothesis testing and filter feature
selection method. The former enables us to select the
features while the latter ranks them according to their
discriminatory power. We used system calls and per-
missions as the feature categories due to their proven
success in various research studies. Detection perfor-
mance of selected features was evaluated in decision
tree based classifiers. In order to analyze the impact of
the changing behaviour on feature selection process,
we induced classifiers with malware samples belong-
ing to different time frames.

This study shows that a small number of selected
features, such as 3-6 features, provide relatively high
accuracy results. Even a single system call, the
one possessing best Fisher’s Score value in our fea-
ture domain, clock_gettime, provided accuracy val-
ues over 87%. We identified that 10-12% of the
features are able to provide a discriminatory power
which is very close to the power of using all features
in both feature categories (system calls and permis-
sions). Moreover, we identified that system calls and
permissions of new malware samples are more sim-
ilar to legitimate apps than the old ones. This result
suggests a concept drift in these features. Addition-
ally, feature rankings and classifier outputs indicate
that system calls have lost more discriminatory power

clock gettime and wake lock for L/N

over time compared to permissions.
In this paper, we concentrated on feature selection

and its implications on accuracy of machine learn-
ing classifiers. Findings regarding concept drift can
be better explored and enhanced by precisely mod-
elling this learning aspect in the classifier itself. Fea-
ture sets used in the classifiers could be enhanced by
adding other static or dynamic categories. Also, re-
quired length of collection’s time period for dynamic
attributes such as system calls could be further inves-
tigated.
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