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Abstract: Recognizing the phases of a laparoscopic surgery (LS) operation form its video constitutes a fundamental 
step for efficient content representation, indexing and retrieval in surgical video databases. In the literature, 
most techniques focus on phase segmentation of the entire LS video using hand-crafted visual features, 
instrument usage signals, and recently convolutional neural networks (CNNs). In this paper we address the 
problem of phase recognition of short video shots (10s) of the operation, without utilizing information about 
the preceding/forthcoming video frames, their phase labels or the instruments used. We investigate four 
state-of-the-art CNN architectures (Alexnet, VGG19, GoogleNet, and ResNet101), for feature extraction via 
transfer learning. Visual saliency was employed for selecting the most informative region of the image as 
input to the CNN. Video shot representation was based on two temporal pooling mechanisms. Most 
importantly, we investigate the role of ‘elapsed time’ (from the beginning of the operation), and we show 
that inclusion of this feature can increase performance dramatically (69% vs. 75% mean accuracy). Finally, 
a long short-term memory (LSTM) network was trained for video shot classification, based on the fusion of 
CNN features and ‘elapsed time’, increasing the accuracy to 86%. Our results highlight the prominent role 
of visual saliency, long-range temporal recursion and ‘elapsed time’ (a feature ignored so far), for surgical 
phase recognition. 

1 INTRODUCTION 

Laparoscopic surgery (LS), a common type of 
minimally invasive surgery (MIS), provides not only 
substantial therapeutic benefits for the patient, but 
also the opportunity to record the video of the 
operation for reasons such as documentation, 
technique evaluation, skills assessment, and 
cognitive training of junior surgeons (Loukas et al. 
2011),(Lahanas et al. 2011). However, a major 
technological challenge is the effective content 
management of the recorded videos, given that an 
operation may last for more than an hour, whereas 
the duration of yearly operations per surgeon may 
exceed 1000 hours (Petscharnig and Schöffmann 
2018). 

The traditional way of classifying/retrieving 
videos relevant to a particular feature of the 
operation is via text mining from manual 
annotations. Apart from the operation type, the 
annotation may include keywords such as a special 
technique performed, anatomic characteristics, or 

instruments utilized. However, this type of labelling 
has some limitations, preventing the effective 
management, representation and indexing of the 
recorded videos. First, manual annotation is tedious 
and time-consuming. Second, semantic 
characteristics that are discovered to be of the 
surgeon’s interest at a later stage, are excluded from 
future searches. Third, global annotation of terms 
provides limited information about their time-stamp, 
unless this is manually inserted. In most cases, the 
surgeon performs manual skimming of the video to 
locate the object/event of interest, which is 
inefficient. In order to provide surgeons with 
additional tools for video content management, an 
effective way for video content representation is 
essential. 

Automated surgical phase recognition from the 
LS video is an important topic of research, usually 
defined as ‘surgical workflow analysis’ (SWA). The 
phases of a surgical operation constitute its 
fundamental temporal units, where the surgeon 
attempts to complete an overall task before 
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Figure 1: An overview of the 8 surgical phases (P1-P8). The frames were extracted from the annotations of a single LC 
operation. 

advancing to the next phase. During the phase, the 
surgeon manipulates certain anatomic tissues with 
the surgical instruments, some of which may be 
specific to its label. Surgical phases are of crucial 
importance for the structure of the operation as they 
correspond to the top hierarchy level according to 
the ‘operation decomposition’ model: phases, steps, 
tasks/events, and gestures, as described in a recent 
review (Loukas 2018). Hence, a method able to 
recognize the phase of a surgical operation would 
offer solutions to various challenges encountered in 
surgical video content management systems. Other 
applications include phase-based skills assessment, 
automatic selection of didactic content, and 
improved OR scheduling (if phase recognition is 
performed online). 

Initial SWA works employed tool usage signals 
from RFID and electromagnetic (EM) sensors as 
well as manual annotations, based on the hypothesis 
that a surgical phase is characterized by a certain 
hand gesture or/and tool usage pattern (Loukas and 
Georgiou 2013),(Bouarfa et al. 2011),(Padoy et al. 
2012). However, employment of additional sensors 
may interfere with the operational workflow and 
there are concerns whether these data can be 
automatically acquired in the operating room. 

Visual features extracted from the recorded video 
of the operation seem a more straightforward option 
due to the endoscopic camera employed. Compared 
to endoscopic examinations, surgical videos present 
significant challenges such as presence of smoke 
(coagulation), heavy interaction with the operated 
organs (dissection/clipping/cutting), and frequent 
camera motion as well as tool insertion/removal. 
Prior works on vision-based phase recognition 
included hand-engineered features based on color, 
texture, intensity gradients, or combinations of them 
(Lalys et al. 2012). In (Blum et al. 2010), gradient 

magnitudes, histograms and color values were 
employed. After dimensionality reduction based on 
tool usage signal data, laparoscopic cholecystectomy 
(LC) operations were segmented into 14 phases with 
accuracy close to 77%. The combination of visual 
features with tool usage signals was also employed 
in (Dergachyova et al. 2016). In another study, 
phase border detection of LC videos was performed 
via image-based instrument recognition (Primus et 
al. 2016). 

The aforementioned works employ handcrafted 
features, which are specifically designed to capture 
certain type of information ignoring other image 
characteristics. Recently, deep learning approaches 
(e.g. Convolutional Neural networks-CNNs) have 
shown promising results for phase recognition. For 
example, Twinanda et al. proposed the EndoNet 
architecture, a CNN based on the AlexNet 
architecture, which was fine-tuned on a dataset of 40 
LC operations for the task of tool and phase 
recognition (Twinanda et al. 2017). The precision of 
offline and online phase recognition was close to 
85% and 74% respectively. In the recent M2CAI 
2016 challenge for online phase recognition of LC 
operations, Jin et al. achieved a mean jaccard score 
of 78.2% (the challenge allowed a 10s margin in the 
predictions). Their method combined feature vectors 
extracted from a fine-tuned ResNet50 CNN 
architecture combined with a long-short term 
memory (LSTM) network to encode temporal 
information (Jin et al. 2018). These works focus on 
the online segmentation of the entire operation based 
on fully supervised training and using visual 
information from the preceding video frames as well 
as their inferred phase labels. Recently, a CNN-
based method for video shot classification of 
laparoscopic gynecologic actions was proposed in 
(Petscharnig and Schöffmann 2017). Video shots of 
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the entire course of each surgical action were 
employed for training and testing. 

 

Figure 2: Graphical overview of the number of 
simultaneously occurring phases (top) and the temporal 
span of each phase (bottom), across the dataset of 27 
surgical operations. 

Table 1: Statistical overview of the phases. 

Phase 
ID 

mean ± std 
(minutes) 

min 
(minutes) 

max 
(minutes) 

P1 3.04 ± 1.70 1.42 7.08 
P2 1.71 ± 2.06 0.35 11.03 
P3 10.53 ± 7.97 1.95 26.82 
P4 4.70 ± 2.87 0.94 12.39 
P5 10.40 ± 6.30 1.68 24.11 
P6 1.14 ± 0.59 0.28 3.03 
P7 5.68 ± 2.80 1.01 15.97 
P8 4.93 ± 5.61 0.66 22.26 
 
In this paper we present a method for phase 

recognition from short video shots (10s) of surgical 
operations, without any prior knowledge about the 
preceding/forthcoming video frames, phase labels or 
instruments used. We concentrated on LC which is a 
fundamental operation for junior surgeons. Each 
video shot essentially represented only a small 
fraction of the entire phase. Prompted by the 
advances in image classification based on deep 
learning approaches, we investigated four state-of-
the-art CNN architectures (Alexnet, VGG19, 
GoogleNet, and ResNet101), for feature extraction 
via transfer learning. Features were extracted from 
two different types of receptive fields: one based on 
traditional frame resize to match the CNN’s input 
size and another one based on the most salient 
region of the input image. Video shot representation 
was performed via two temporal pooling 
mechanisms. Initially, video shot classification was 

based on the 1st nearest-neighbour (NN) using two 
different distance metrics. Most importantly, we 
investigated the role of absolute ‘elapsed time’ (from 
the beginning of the operation), in video shot 
classification and we present results that show that 
the inclusion of this feature can increase 
performance dramatically. Finally, we fused the 
CNN features with ‘elapsed time’ and applied long-
range temporal recursion to estimate the probability 
of each surgical phase for a video shot, which 
improved even further the classification 
performance. 

2 METHODOLOGY 

2.1 Video Shot Dataset 

In this work we employed surgical videos from the 
M2CAI 2016 Challenge Dataset, which includes 
video recordings of complete LC operations 
(Twinanda et al. 2017),(Stauder et al. 2016). In 
particular, we analyzed 27 video recordings (about 
19 hours total duration), from the ‘workflow-train’ 
sub-dataset. The videos are recorded at 25 frames 
per second (25 fps), with full HD resolution 
1920×1080. Each video includes frame-by-frame 
annotations of the 8 surgical phases of LC: P1) 
Trocar Placement, P2) Preparation, P3) Calot 
Triangle Dissection, P4) Clipping & Cutting, P5) 
Gallbladder Dissection, P6) Gallbladder Packaging, 
P7) Cleaning & Coagulation, and P8) Gallbladder 
Retraction. Sample frames of the surgical phases are 
presented in Figure 1. It may be seen that some 
phases may present distinct image characteristics 
(e.g. P1, P8), whereas others (e.g. P5-P7) are quite 
challenging for visual recognition due to their 
similarity or/and presence of smoke (e.g. see P5, P6, 
P7). 

It should be emphasized that not all operational 
phases are sequential and they are governed by some 
temporal constraints: P6, P7, P8 are not always 
sequential (P6 may occur after P7, or/and P7 after 
P8), P7 may occur 2 times, and P7 may not be 
present at all. However, phases P1-P5 are always 
present in an operation and occur sequentially. A 
statistical overview of the phases is presented in 
Table 1. It may be seen that P2 and P6 have the 
shortest duration whereas P3 and P5 have the 
longest one. 

Figure 2 shows the number of simultaneously 
occurring phases as well as the timings of each 
phase, across all 27 video recordings, in the same 
diagram. From the top diagram it may be seen that 
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up to the first 10 minutes, about 1-3 phases may 
occur (from P1-P4), and the same is valid after the 
50th min (from P5-P8). From the bottom diagram it 
may be seen that the order of the phases is relatively 
fixed and their duration is limited (e.g. P1-P5). 
Furthermore, some phases present almost no 
temporal overlap (e.g. P1 vs. P4-P8 and P2 vs. P6-
P8), whereas some others present moderate overlap 
(e.g. P1 vs. P3 and P2 vs. P5). From this analysis it 
is evident that the absolute temporal position of a 
video frame (with regard to the beginning of the 
operation), is a crucial factor that should be 
considered in phase recognition. 

Based on the aforementioned dataset, we 
extracted the video shot dataset which was employed 
for classification. In particular, for each video and 
for each of the 8 phases, we extracted 2 non-
overlapping shots of 10s duration (i.e. 250 frames). 
The video shots were extracted from random 
temporal positions of each phase, ensuring that the 
first/last frame of each shot was within the temporal 
limits of each phase. In two videos, P7 was absent so 
in order to have an equal number of shots per phase, 
we randomly selected 50 (out of 54) shots for each 
of the P1-P6 and P8 phases, leading to a total 
number of 400 video shots, equally distributed 
across the 8 phases. 

2.2 CNN Feature Extraction 

Feature extraction was based on transfer learning 
using ‘off-the-shelf’ features extracted from four 
state-of-the-art CNNs: Alexnet, VGG19, GoogleNet, 
and Resnet101. These network architectures were 
chosen as they are known to perform well on 
surgical endoscopy images (Petscharnig and 
Schöffmann 2018). Transfer learning implies that 
the CNNs were pretrained, in this case on the 
Imagenet database which contains millions of 
natural images distributed in 1000 classes. Although 
surgical images are substantially different, given the 
powerful architecture of the CNNs and the huge 
volume of Imagenet, transfer learning has been 
proved a simple, yet good-working approach for 
content-based description of surgical images 
(Petscharnig and Schöffmann 2017). Moreover, our 
dataset is considerably small to train these CNNs 
from scratch. However, as will be discussed later, 
we perform training to model the temporal variation 
of the extracted CNN features. 

Alexnet consists of eight layers: 5 convolutional 
layers followed by 3 fully-connected (FC) layers. 
For each frame in a video shot, we extracted features 
from layer fc7, which is the before-final-fc (BFFC) 

layer with length n1=4096. VGG19 is much deeper, 
consisting of 16 convolutional layers followed by 3 
fully connected layers. We again extracted features 
from the BFFC layer (fc7, n2=4096). GoogleNet is 
different to Alexnet and VGG19, including various 
Inception modules with dimensionality reduction 
and only one fully connected layer combined with a 
softmax layer (22 layers in total). For each frame we 
used the features extracted from the BFFC layer: 
pool5-7x7_s1 (n3=1024). Finally, the Resnet101 
model is the deepest of the four (101 layers); it 
stacks several residual blocks in-between the 
convolutional blocks aiming to alleviate the 
vanishing gradient problem, usually encountered 
when stacking several convolutional layers together. 
For the ResNet101 model we used the bottleneck 
features extracted from the BFFC layer: pool5 
(n4=2048). 

Based on the aforementioned approach we 
extracted feature descriptors from each video frame. 
In order to achieve a compact feature representation 
of the video shot, we concatenate the descriptors 
along the temporal dimension and apply two 
temporal pooling mechanisms: max-pooling and 
average-pooling. The former extracts the maximum 
value from each dimension of the BFFC layer, 
whereas the second one outputs the average from 
each dimension of the BFFC layer. For each CNN 
architecture employed, both approaches result in a 
single feature descriptor for each shot, equal to the 
size of the corresponding BFFC layer. 

2.3 CNN Input and Saliency Maps 

The size of the input layer of the aforementioned 
CNNs is: 227×227 (Alexnet) and 224×224 (VGG19, 
GoogleNet, and ResNet101). In previous works, the 
original image is resized either to match the CNN’s 
input, or so that the smaller side matches one side of 
the CNN input layer and then the center crop is used 
as input to the CNN (Petscharnig and Schöffmann 
2017),(Varytimidis et al. 2016). However, both 
approaches have some limitations. Considering that 
the original video resolution is 16/9, the former case 
leads to a spatial degradation of the original image, 
as the aspect ratio is forced to be 1 (see Figure 3). In 
the latter case, image resizing does not affect the 
aspect ratio, but extracting features from the center 
crop may lead to an efficient representation of the 
original frame since the structures of interest are not 
always in the center (w.r.t. Figure 1, in P1 the trocar 
is located towards the upper-right corner whereas in 
P4 the clips/tool-tip are in the bottom). 
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Figure 3: The images shown in Fig. 1, resized to 224×224. 

 

Figure 4: The saliency maps overlaid on the images shown 
in Fig. 1 (top) and the rectangular patches which were 
used as input to the CNN (bottom). 

In this work, we propose an alternative 
mechanism for region selection based on visual 
saliency. Integration of visual saliency in CNN-
based content-based image representation is a major 
trend nowadays. The main idea is to generate a 
saliency map that represents the most salient regions 
of the input image, without any prior assumption, 
based on various criteria such as color- and texture-
contrast (Leboran et al. 2017),(Cheng et al. 2015). 
Recent works have shown that using as input to the 
CNN a salient, instead of a center/resized crop, 
image provides better classification results (Obeso et 
al. 2017). In this work we have employed the static 
version of the adaptive whitening saliency (AWS) 
methodology, which has shown superior 
performance in predicting human attention (Leboran 
et al. 2017). Recently, this method was applied for 
keyframe extraction from video shots of LC 
operations (Loukas et al. 2018). In brief, the model 
employs a bank of 2D LogGabor filters, generating a 
series of filter response maps, which are then 
accumulated to generate the final saliency map of 
the image. 

For the purpose of this work, first we resized the 
original full HD frame of the video shot so that the 
smaller side (height) matched one side of the CNN 

input layer (i.e. 224 or 227). Second, we computed 
the saliency map of the resized frame based on the 
AWS model. Third, we computed the 5 strongest 
local maxima of the saliency map using a 
neighborhood size 9×9. Fourth, the spatial 
coordinates of these maxima were averaged 
providing the center location of an image patch that 
was used as input to the CNN. In case the center 
location was so that the patch lied outside the resized 
frame, the patch was shifted to lie within the frame 
window. Finally, a feature descriptor was extracted 
from the BFFC layer of the CNN, as described 
previously. 

Figure 4 provides the saliency maps overlaid on 
the corresponding resized frames shown in Figure 1. 
Below are the rectangular patches (in this case 
224×224), which were used as input to the CNN. It 
may be seen that most of the structures of interest lie 
within the image patch, such as the trocar in P1, the 
gallbladder in P2, the tools in P3-P7, and the 
retrieval bag in P8. 

2.4 Video Shot Classification based on 
Temporal Pooling 

Video shot classification was based on the 1st NN 
using two different distance metrics: Euclidean and 
cosine. For both metrics we used the compact 
feature representation of each shot based on the 
max- and average-pooling mechanisms, described 
before. The Euclidean metric simply takes the L2 
norm of the compact feature descriptors whereas the 
cosine distance is defined as one minus the cosine of 
the included angle between the descriptors. Each of 
the 400 compact feature descriptors of the 
corresponding video shots was treated as a candidate 
descriptor, for which the class is predicted based on 
its nearest distance among all other descriptors 
(treated as training descriptors). The results were 
obtained separately for each combination of pooling 
mechanism and distance metric. 

As described in Section 2.1, the time-stamp of 
the video frames seem to play an important role in 
the prediction of the surgical phase. Hence, we also 
investigated the effect of adding the time-stamp of 
the video shot as an additional dimension to the 
CNN features (n+1). Consequently, each video shot 
was represented by the pooled CNN descriptor 
concatenated by the time stamp of the shot (taken as 
the elapsed time, Telapsed, of the 1st frame of the shot 
from the beginning of the operation). 
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2.5 Video Shot Classification based on 
Temporal Modeling 

A significant limitation of the aforementioned 
pooling mechanisms for the video shot 
representation, is that the resulting descriptor does 
not take into account the temporal order of the 
individual frames. In other words, if one shuffles the 
frames of a video shot, then each of these 
mechanisms will lead to the same feature descriptor. 
However, the order of the frames (and so the 
extracted CNN descriptors) is an important piece of 
information that should be utilized in the 
classification task. A recurrent neural network 
(RNN) exhibits dynamic temporal behaviour for a 
time sequence, as the connections between nodes 
form a directed graph along the sequence. Moreover, 
RNNs use their internal state to process input 
sequences and they are able to connect previous 
information to the present task, such as using 
previous video frames for the understanding of the 
present frame and eventually the class of the entire 
video shot.  

In this work, the CNN feature extraction process 
was applied at each time point of the shot, leading to 
a temporal order of feature descriptors. Then, we 
employed the LSTM network, a special kind of 
RNNs, composed of a series LSTM units (as many 
as the number of shot’s descriptors), and a FC layer 
with softmax at the end to perform classification into 
the eight phases. To training parameters of the 
LSTM network were similar to those proposed 
recently in (Li et al. 2018): batch size=16, training 
epochs=80, hidden units=200, learning rate=0.001, 
the Adam method for optimization and cross-
entropy as loss function. 

Similarly to the aforementioned idea of 
concatenating the compact CNN shot descriptor with 
the time-stamp of the video shot, here we employed 
as input to the LSTM network the CNN features 

(extracted from each frame of the shot), 
concatenated with the time-stamp of the 
corresponding video frame (dimensionality: n+1). 
The model was run on every 25th frame (i.e. 1 fps) 
to reduce the computational cost. During 
training/testing the temporal order of the feature 
descriptors was preserved. The LSTM network was 
trained on 50% of the video shot dataset (i.e. 200 
video shots) and the remaining 50% served as the 
test set. We performed 5 random cycles of training, 
making sure that a video shot was included at least 
once in a training cycle, and then we averaged the 
evaluation metrics (see next section). 

3 EXPERIMENTAL RESULTS 

The performance of the aforementioned approaches 
was evaluated in terms of the following metrics: 

Acc = (TP + TN)/(P + N) (1) 
Pre = TP/(TP + FP) (2) 
Rec = TP/(TP + FN) (3) 

F1 = 2 × Pre × Rec/(Pre + Rec) (4) 

where: Acc, Pre, Rec, F1 denote Accuracy, 
Precision, Recall, and F1-score, respectively; TP, 
TN, FP, FN, P, N denote: true positives, true 
negatives, false positives, false negatives, positives 
and negatives, respectively. 

Table 2 shows average classification results 
using CNN features extracted from the resized raw 
images, for the two temporal pooling mechanisms 
and the two distance metrics. It is worth noting that 
for a particular CNN and pooling mechanism, the 
distance metrics are similar, except for ResNet101 
where Euclidean leads to worse results for average 
pooling. With regard to the two pooling 
mechanisms, max pooling seems to yield better 
performance, especially when used with cosine, for 
all CNNs. The best performance was achieved by 

Table 2: Classification results based on resized raw images (Features: CNN). 

CNN 
type 

Pooling: Max 
Distance: Cosine 

Pooling: Average 
Distance: Cosine 

Pooling: Max 
Distance: Euclidean 

Pooling: Average  
Distance: Euclidean 

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 

alex 
net 

.60 .60 .61 .61 .59 .60 .59 .60 .59 .60 .60 .60 .56 .58 .57 .57 

google 
net 

.60 .61 .62 .61 .55 .55 .56 .55 .60 .60 .61 .61 .53 .53 .54 .53 

vgg19 .60 .61 .61 .61 .57 .56 .57 .57 .60 .61 .60 .60 .56 .57 .57 .57 

resnet 
101 

.64 .65 .64 .64 .61 .64 .61 .62 .65 .66 .65 .65 .57 .59 .58 .58 
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ResNet101 (~65%) using max-pooling with either 
distance metric. 

Table 3: Classification results based on salient maps 
(Features: CNN). 

CNN 
type 

Pooling: Max, Distance: Cosine 

Acc Pre Rec F1 
alexnet 0.62 0.61 0.62 0.61 

googlenet 0.63 0.65 0.64 0.64 
vgg19 0.61 0.61 0.62 0.62 

resnet101 0.69 0.70 0.70 0.70 
 Pooling: Max, Distance: Euclidean 

alexnet 0.57 0.57 0.57 0.57 
googlenet 0.60 0.61 0.61 0.61 

vgg19 0.60 0.60 0.61 0.60 
resnet101 0.68 0.68 0.68 0.68 

Table 4: Classification results based on salient maps 
(Features: CNN and Telapsed). 

CNN 
type 

Pooling: Max, Distance: Cosine 

Acc Pre Rec F1 
alexnet 0.71 0.73 0.71 0.71 

googlenet 0.70 0.72 0.70 0.70 
vgg19 0.71 0.72 0.71 0.71 

resnet101 0.75 0.76 0.75 0.75 
 Pooling: Max, Distance: Euclidean 

alexnet 0.68 0.68 0.68 0.68 
googlenet 0.61 0.61 0.61 0.61 

vgg19 0.65 0.65 0.66 0.65 
resnet101 0.68 0.68 0.68 0.68 

Table 5: Classification results based on salient maps and 
LSTM (Features: CNN and Telapsed). 

CNN 
type Acc Pre Rec F1 

alexnet 0.73 0.74 0.73 0.72 
googlenet 0.81 0.82 0.81 0.81 

vgg19 0.78 0.77 0.78 0.77 
resnet101 0.86 0.88 0.86 0.86 

Table 3 summarizes the classification results 
using features extracted from the most salient region 
of the image, as described in Section 2.3. Average-
pooling is omitted as it was proved to yield worse 
results. Compared to Table 2 it is clear that 
extracting features from the most salient image patch 
leads to 2-5% improvement for both distance metrics 
and for all CNNs. The cosine distance produced 
better results (by 3-5%), for all CNNs. The best 
performance was achieved again by ResNet101 
(~70%), whereas the other three CNNs had similar 

performance (61-65%) although higher than that 
shown in Table 2. 

Table 4 presents the results using the CNN 
features extracted from the salient patch, 
concatenated with the ‘elapsed time’ feature. 
Compared to Table 3, there is a notable 
improvement by ~5-10% for all metrics, CNN 
architectures, and distance metrics (except for 
GoogleNet/ResNet101 with Euclidean, which is the 
same). Note that the difference in this experiment 
was that the feature vector was increased by 1, the 
elapsed time of the 1st frame of the shot from the 
operation start. Again, the cosine distance produces 
better results than Euclidean, for all CNNs (~3-9% 
improvement). The best performance was achieved 
again by ResNet101, about 5% higher than that 
using only the CNN features (75% vs. 70%). 

Table 5 provides the results based on LSTM 
model training. Similarly to Table 4, the input to the 
network was the CNN feature vector extracted from 
the most salient region of the video frame, 
concatenated with its time-stamp (i.e. elapsed time 
from operation start). Clearly the LSTM model 
yields superior performance across all metrics, 
compared to the naive NN cosine distance with max-
pooling (compare to Table 4). Specifically, the 
improvement was about: 2%, 10%, 7% and 11% for 
Alexnet, GoogleNet, VGG19, and ResNet101, 
respectively. The best performance was achieved 
again by ResNet101 (86-88%), whereas the second 
best model was GoogleNet (~81%). 

Table 6 illustrates the performance of the LSTM 
model for the individual classes, using a confusion 
matrix. Columns denote the predicted class while 
rows indicate the true class. The numbers denote the 
prediction percentage with respect to the samples 
from a particular class (positives). For phases P1-P4, 
the model yields almost perfect predictions, higher 
than 94%, and with very low or no confusion among 
the other classes. For P7 and P8 the results are also 
remarkable: 79% and 87% respectively. The model 
seems to slightly confuse P7 with P5 (9%), and 
much less with P4 and P8 (~5%). Phase P8 is 
slightly confused with P5 and P7 (5% and 8% 
respectively). For P5 and P6 the performance is 
similar (~72%). P5 is mostly confused with P7 
(26%), whereas P6 with P7 (19%) and P4 (10%). 
The lower results for P5, P6 may be due to the visual 
similarity with P7 as a result of smoke, as depicted 
in Figure 1. 
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Table 6: Confusion matrix based on salient maps and 
LSTM (Features: CNN and Telapsed). 

True/ 
Pred. 

P1 P2 P3 P4 P5 P6 P7 P8 

P1 1        
P2  .94 .06      
P3  .05 .94 .01     
P4    .93 .01 .01 .01 .04 
P5     .72  .26 .02 
P6    .10  .71 .19  
P7    .04 .09 .02 .79 .06 
P8     .05  .08 .87 

4 CONCLUSIONS 

In this paper we propose a method for video shot 
classification into surgical phases based on deep 
features and temporal information modeling. Our 
results lead to the following conclusions. First, 
extracting CNN features from the most salient 
regions of the image allows to achieve better results 
(up to 5%). Second, when using a NN approach for 
classification, the cosine distance provides better 
results (up to 5%). Third, video shot representation 
based on max-pooling of CNN image features is 
better than average pooling (up to 6%). Fourth, 
deeper CNNs provide more robust features for 
classification (up to 10% improvement). Fifth, 
‘elapsed time’ (a feature ignored so far), can 
increase performance dramatically (up to 10% and 
6% for shallower and deeper architectures, 
respectively). Finally, employing an LSTM model 
for temporal modeling of the CNN features fused 
with ‘elapsed time’ provides significant performance 
improvement: 86% accuracy and 88% precision 
(compared to 75% and 76% when max-pooling is 
employed, respectively). The investigation of a 
visual saliency model specialized to surgical videos, 
fine tuning of a ResNet model in which ‘elapsed 
time’ is embedded, and other temporal information 
modeling architectures, are major topics of interest 
for future research work. 
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