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Abstract: We propose a novel algorithm for multi-exposure fusion (MEF). This algorithm decomposes image patches
with the DCT transform. Coefficients from patches with different exposure are combined. The luminance and
chrominance of the different images are fused separately. Details of the fused image are finally enhanced as
a post-processing. Experiments with several data sets show that the proposed algorithm performs better than
state-of-the-art.

1 INTRODUCTION

Multi-exposure fusion (MEF) is a technique for com-
bining different images of the same scene acquired
with different exposure settings into a single image.
The natural light has a large range of intensities which
a conventional camera cannot capture. By keeping the
best exposured parts of each image, we can recover a
single image where all features are well represented.

High Dynamic Range (HDR) imaging from a ex-
posure sequence is usually confused with MEF. In
HDR, the irradiance function of the image has to be
built, and in order to do so, the camera response func-
tion has to be estimated. Most methods use the al-
gorithm by Malik and Devebec (Debevec and Malik,
2008). Finally, to be displayed, the estimated HDR
function has to be converted into a typical 8 bit im-
age. This problem is known as tone-mapping (Rein-
hard et al., 2005).

All proposed MEF algorithms combine the set of
images, somehow choosing for each pixel the one
with better exposition. State of the art methods ex-
press this choice as a weighted average depending on
common factors as exposure, saturation and contrast,
e.g. Mertens et al. (Mertens et al., 2009). The pixel
values or their gradient might be combined. In the
case that pixel gradient is manipulated, a final esti-
mate has to be recovered by Poisson editing (Pérez
et al., 2003). Robustness of methods is achieved by
using pyramidal structures or working at the patch
level instead of the pixel one.

We propose a multi-exposure image fusion algo-
rithm inspired by MEF Mertens’s algorithm (Mertens

et al., 2009) and the Fourier Burst Accumulation
(FBA) algorithm proposed by Delbracio and Sapiro
(Delbracio and Sapiro, 2015). Instead of combining
gradient or pixel values, we fuse the DCT coefficients
of the differently exposed images. The algorithm de-
composes the image into patches and computes the
DCT. The coefficients of patches at the same location
but different exposure are combined depending on its
magnitude. This strategy is used to combine patches
of the luminance. The chrominance values are fused
separately as a weighted average at the pixel level.

The novel method for the fusion of the luminance
images is presented in section 3.1. The chrominance
fusion algorithm is described in section 3.2. Section
3.3 proposes a detail extraction technique to enhance
the fused result. Finally, in section 4 some results and
comparisons with other image fusion algorithms are
presented.

2 RELATED WORK

There exists an extensive amount of research in MEF.
The first distinction among MEF algorithms is wether
they combine pixel color values or pixel gradients.
Secondly, pixel-wise algorithms may be regularized
or made robust by using multi-scale pyramids or patch
based strategies. Finally, the fusion method might be
applied directly to RGB channels, to a decomposi-
tion of luminance and chrominance, or a decompo-
sition into basis and detail images. This latter case
permits to additionally apply an enhancement of the
detail part.
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Pixel-wise methods, directly applied to RGB com-
ponents, compute a weighted average

u(x) =
K

∑
k=1

wk(x)Ik(x) (1)

where K is the number of images in the multi-
exposure sequence, Ik(x) is the input value at x po-
sition in the k-th exposure image and wk(x) is the k-th
weight at this position. The weight map wk measures
information such as edge strength, well-exposedness,
saturation, etc. Mertens’s algorithm (Mertens et al.,
2009) is the widely used algorithm in this class. It
computes three quality metrics:

• Contrast C: the absolute value of the Laplacian
filter applied to the grayscale of each image.

• Saturation S: measures the standard deviation of
R, G and B channels.

• Well-exposedness E: measures the closeness to
the mid intensity value.

These metrics are combined into a weight map for
each image

wk(x)=
Ck(x)αc Sk(x)αsEk(x)αe

∑
K
j=1 C j(x)αcS j(x)αsE j(x)αe

, k= 1,2, . . . ,K.

Other methods compute fusion by a weighted av-
erage, but with a different configuration to the pro-
posed one by Mertens et al. For example, Liu et al.
(Liu and Wang, 2015) propose to use the SIFT de-
scriptor at each pixel to compute the weights, which
are later refined and merged by a multiscale proce-
dure.

The second type of methods use the gradient of
the images, and then recovers the solution by Pois-
son image editing (Pérez et al., 2003). For several
algorithms, just the most convenient gradient is cho-
sen, for example Kuk et al. (Kuk et al., 2011). Other
methods combine all gradients, for example (Raskar
et al., 2005; Zhang and Cham, 2012; Gu et al., 2012;
Sun et al., 2013). Sun et al. (Sun et al., 2013) addi-
tionally filter the weight maps to make fusion more
robust. Ferradans et al. (Ferradans et al., 2012) first
apply an optical flow algorithm to register the images
before combining the gradient.

Paul et al. (Paul et al., 2016) fuse differently the
luminance and the chrominance values, the YCbCr
(Gonzalez and Wood, ) color space is used. The lu-
minance is combined by using gradient based fusion.
However, chromatic components are fused by direct
pixel-wise averaging, where weight depends on how
far is a pixel from a gray value.

Pixel wise methods are regularized by using pyra-
midal structures or working at the patch level. Burt

and Adelson (Burt and Adelson, 1983) proposed the
Laplacian pyramid decomposition for image fusion.
This decomposition was adopted by Mertens et al.
(Mertens et al., 2007) algorithm. The weight maps
are decomposed into a Gaussian pyramid G(wk)

l and
the input images into a Laplacian pyramid L(Ik)

l , l
denotes the level in the pyramid decomposition. For
each level l the blended coefficients of the Laplacian
pyramid are computed as

L(u)l(x) =
K

∑
k=1

G(wk)
l(x)L(Ik)

l(x). (2)

Finally, the pyramid L(u)l(x) is collapsed to obtain
the fused image u.

Patch based methods use as minimal unity small
image windows. The decision is more robust than
pixel wise algorithms since much more values are
involved. The first patch based algorithm was pro-
posed by Goshtasby (Goshtasby, 2005). The image is
divided into several non-overlapping blocks and the
ones with the highest entropy are selected. Block-
ing artifacts are reduced by a blending function. In
(Zhang et al., 2017a), Zhang et al. use patch correla-
tion to detect motion and define the average distribu-
tion, which is applied with a multi-scale procedure.
Zhang et al. (Zhang et al., 2017b) use super-pixel
segmentation to detect motion. This detection per-
mits to replace non corresponding parts by the speci-
fied reference image. Finally, a multi-scale approach
uses gradient magnitude of each pixel to define av-
erage configuration. Recently Ma et al. (Ma et al.,
2017) proposed to decompose the image patches into
three components: signal strength, signal structure
and mean intensity. Then, they fuse each component
separately. Moreover, the direction of the signal struc-
ture provides information for deghosting.

3 PROPOSED FUSION
ALGORITHM

We propose a novel algorithm for multi-exposure fu-
sion adopting the Fourier aggregation model (Delbra-
cio and Sapiro, 2015) as main tool. Compared to most
existing MEF algorithms, we apply a different proce-
dure for the luminance and chrominance components
of the images. We use the YCbCr (Gonzalez and
Wood, ) color transformation for this separation. The
luminance channel (Y ) contains most geometry and
image details while the chrominance (Cb,Cr) chan-
nels carry information about color.
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3.1 Luminance Fusion

For the Fourier transform, it is well known that
the magnitude decay of coefficients is related to the
smoothness of the function. That is, the sharpness of
detail information of an image is related to the amount
of significant Fourier coefficients.

A local interpretation of the decay of the Fourier
or DCT transform, indicates that under/over exposed
patches will have Fourier coefficients of smaller mag-
nitude, due to the lack of high frequency information.
For shake removal, one supposes the existence of a
true spectrum, modified in each image by a different
kernel. For MEF, one can fuse the DCT coefficients
in order to recover the full transform.

We locally apply a weighted average of each fre-
quency depending on its magnitude, permitting to
recover the most significant ones, and thus the ex-
posed details. This strategy does not apply to the
zero frequency Fourier coefficient, i.e. the mean.
Large zero frequency coefficients correspond to over-
exposed images, then applying the same weighted
combination would simply overexpose the whole im-
age. We use the Mertens algorithm (Mertens et al.,
2009) to set the zero frequency coefficient.

Let assume we have a multi-exposure sequence
of image luminances, supposed to be pre-registered,
which we denote by Yk, k = 1,2, . . . ,K. Since each
image might contain well exposed areas, we apply
the combination locally. We split the images Yk into
partially-overlapped blocks of b×b pixels, {Bl

k}, l =
1, . . . ,nb, nb the number of blocks. We propose to fuse
the non-zero frequencies of each block as follows:

B̂l(ξ) =
K

∑
k=1

wl
k(ξ)B̂

l
k(ξ), ξ 6= 0, l = 1,2, . . . ,nb,

(3)
where B̂l

k denotes the DCT transform of the block Bl
k

and the weights wl
k(ξ) are defined depending on ξ as,

wl
k(ξ) =

|B̂l
k(ξ)|p

∑
K
n=1 |B̂l

n(ξ)|p
, ξ 6= 0. (4)

The parameter p controls the weight of each Fourier
mode. If p = 0 the fused frequency is just the arith-
metic average, while for p→ ∞ each fused frequency
takes the maximum value of the frequency in the se-
quence.

For ξ = 0, which corresponds to the mean in-
tensity of the block Bl , the application of such a
procedure would correspond to average those blocks
with highest mean and therefore an over exposed im-
age. Let YM be the luminance of the result of ap-
plying Mertens’s algorithm (Mertens et al., 2009) to

the multi-exposure image sequence. We split it into
blocks BMl , l = 1, . . . ,nb and define the zero fre-
quency mode of each block as

B̂l(0) = BMl l = 1, . . . ,nb (5)

where BMl denotes the mean value of the block BMl .
Finally, if F −1 denote the inverse Fourier trans-

form we obtain the fused blocks,

Bl(x) = F −1(B̂l(ξ)), l = 1, . . . ,nb. (6)

Since blocks are partially overlapped, the pixels in
overlapping are averaged to produce the final image.

3.2 Chrominance Fusion

We adopt a similar strategy to (Paul et al., 2016),
and directly combine for each pixel, the values of the
Cb,Cr channels at the same coordinates. The Cb,Cr
components have a range from 16 to 240, being 128
the absence of color information. That is, if both
chromatic components are equal to 128, the image
is gray. In order to maximize the color information,
color components further from 128 are privileged.

Let us denote the chrominance channels of the
input multi-exposure sequence by Cbk and Crk, k =
1,2 . . . ,K. The fused chrominance channels are rep-
resented as follows

Cb(x) =
K

∑
k=1

wb
k(x)Cbk(x), Cr(x) =

K

∑
k=1

wr
k(x)Crk(x)

(7)
We will use a non linear weight on the difference

to the gray. We use an exponential kernel,

wc
k(x)=

exp
(
(Cck−128)2

σ2

)
−1

∑
K
j=1

(
exp

(
(Cc j−128)2

σ2

)
−1

) , c∈{b,r}.

(8)
The value of σ is set to σ = 128.

3.3 Enhancement

Recent methods (Li et al., 2012; Singh et al., 2014;
Li et al., 2017) perform an additional enhancement to
the fused details. This is achieved by first decompos-
ing the images into a base and detail images. These
components are fused independently and when com-
bined an additional parameter permits to enhance the
detail part.

We apply the detail enhancement separately of
the MEF fusion chain. We use the screened-Poisson
equation (Morel et al., 2014a; Morel et al., 2014b), to
separate the details.

λu(x)−∆u(x) =−∆ f (x) x ∈Ω (9)
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(Mertens et al., 2009) (Raman and Chaudhuri, 2009) (Gu et al., 2012) (Li et al., 2012)

(Li and Kang, 2012) (Li et al., 2013) (Ma et al., 2017) Ours

Figure 1: Exposure fusion comparison. From top to bottom and left to right: Mertens et al. (Mertens et al., 2009), Raman et
al. (Raman and Chaudhuri, 2009), Gu et al. (Gu et al., 2012), Li et al. (Li et al., 2012), Li et al. (Li and Kang, 2012), Li et al.
(Li et al., 2013), Ma et al. (Ma et al., 2017) and our result.

with homogeneous Neumann boundary condition. In
(Morel et al., 2014a), the authors show that the so-
lution of the screened Poisson equation (9) acts as a
high-pass filter of f when λ increases, containing the
details of f . The difference f − u contains the basis
image, responsible for the geometry.

Let f denote the fused image by applying the
method introduced in sections 3.1, 3.2. The proposed
detail enhancement consists in solving the equation
(9), and thus splitting the image into a detail u and ge-
ometry f −u parts. By recomposing the fused image
with an additional detail enhancement we obtain

f̂ (x) = f (x)−u(x)+αu(x) = f (x)+(α−1)u(x).
(10)

4 EXPERIMENTAL RESULTS

In this section we compare the proposed method with
state of the art algorithms for exposure fusion. We
compare with Mertens et al. (Mertens et al., 2009),
Raman et al. (Raman and Chaudhuri, 2009), Gu et
al. (Gu et al., 2012), Li et al. (Li et al., 2012), Li et
al. (Li and Kang, 2012), Li et al. (Li et al., 2013)
and Ma et al. (Ma et al., 2017). All results except
for the last method were taken from the dataset pro-
vided in (Zeng et al., 2014) and (Ma et al., 2015). This
database (Zeng et al., 2014; Ma et al., 2015) contains
seventeen input images with multiple exposure levels
(≥ 3) together with fused images generated by eight
state-of-the-art image fusion algorithms. The results
from Ma et al. (Ma et al., 2017) were computed with
the software downloaded from the author’s page. In
all cases, default parameter settings are adopted.

Our results were computed using the same param-
eters for all tests in this section. The parameters for
the weighted average of the Fourier modes and the
chrominance channels are set to p= 7 and σ= 128 re-
spectively. Finally for the enhancement we set λ= 0.5
and α = 1.5.

Figure 1 displays the results of all methods in the
”Belgium House” data set. A zoomed detail of these
images is displayed in Figure 2. The results by Ra-
man et al. (Raman and Chaudhuri, 2009) and Gu et
al. (Gu et al., 2012) are quite dark and blurred. The
fused image by Li et al. (Li et al., 2013), having a
better luminance than the two previous methods, it
has large regions with a darker value than expected,
as for example in the wall below the painting. The
rest of the methods have a good global illumination.
However, looking closer to the details in Figure 2, we
might observe that many outdoor details in Mertens et
al. (Mertens et al., 2009), Li et al.(Li et al., 2012) and
Ma et al. (Ma et al., 2017) are overexposed, loosing
its definition. We might also observe that details in Li
et al. (Li et al., 2012) are excessively enhanced, mak-
ing them look like unnatural. Our result seems to be
the best compromise having a natural look and a good
definition of details.

Figure 3 and 5 respectively display the results with
the ”House” and ”Cadik” tests and corroborate obser-
vations on previous figure. Figures 4 and 6 shows
zoomed details of figure 3 and 5, respectively. For
the ”House” set, it must be noted the excessive detail
and color enhancement of Ma et al. (Ma et al., 2017),
the poor luminance balance of Li et al. (Li and Kang,
2012) and the detail blur in Li et al. (Li et al., 2013).
For the ”Cadik” set, let note that only Li et al. (Li
et al., 2013) and our result are able to correctly avoid
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(Mertens et al., 2009) (Raman and Chaudhuri, 2009) (Gu et al., 2012) (Li et al., 2012)

(Li and Kang, 2012) (Li et al., 2013) (Ma et al., 2017) Ours

Figure 2: Detail of images in Fig. 1. We observe that many outdoor details in Mertens et al. (Mertens et al., 2009), Li et al.(Li
et al., 2012) and Ma et al. (Ma et al., 2017) are overexposed. Details in Li et al. (Li et al., 2012) are excessively enhanced,
making them look like unnatural. Our result looks natural and details are well defined.

(Mertens et al., 2009) (Raman and Chaudhuri, 2009) (Gu et al., 2012) (Li et al., 2012)

(Li and Kang, 2012) (Li et al., 2013) (Ma et al., 2017) Ours

Figure 3: Exposure fusion comparison. From top to bottom and left to right: Mertens et al. (Mertens et al., 2009), Raman et
al. (Raman and Chaudhuri, 2009), Gu et al. (Gu et al., 2012), Li et al. (Li et al., 2012), Li et al. (Li and Kang, 2012), Li et al.
(Li et al., 2013), Ma et al. (Ma et al., 2017) and our result.

saturation near the lamp’s light. However, details on
Li et al. (Li et al., 2013) are excessively blurred.

5 CONCLUSION

We have presented a novel fusion algorithm for multi-
exposure images. The block based method uses
the DCT coefficient instead of the traditional gra-
dient combination. Moreover, we propose to apply
an enhancement to the fused image by applying the

screened Poisson equation.
Experiments have shown the improvement of the

proposed algorithm compared to state of the art.
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