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Abstract: In this paper, we present a novel approach for energy-based flow visualization. Inspired by Bernoulli’s prin-

ciple, which is limited to steady inviscid flow, we derive a set of energies whose sum is conserved along

pathlines in 2D time-dependent viscous flow. We present an interactive approach for visual analysis based on

these quantities, as well as a compact color-coded representation. This enables effective analysis of energy

conversion along selected pathlines, as well as its spatial coherence. We exemplify the utility of our approach

using results from computational fluid dynamics and flow in elastic porous media.

1 INTRODUCTION

Many problems in science and engineering require

vector field representations. A prominent example are

flow problems, which are often addressed by compu-

tational fluid dynamics (CFD) by means of numerical

solution of the Navier–Stokes (NS) equations.

There exists a wide spectrum of flow visualization

techniques for analyzing vector fields from CFD. On

the one hand, there are geometric approaches, such as

arrow glyphs and streamlines, which show the over-

all structure of a flow, but fail at revealing underlying

physical mechanisms. On the other hand, there are

physically based approaches, such as the λ2 vortex

criterion, which often involve derivatives of the vec-

tor fields and sometimes additional quantities such as

the pressure field. Either way, most flow visualization

techniques aim at a simplified representation of flow,

often providing a “segmentation” into regions of si-

milar behavior or extraction of respective boundaries.

In this paper, we investigate the analysis of flow

fields with regard to their immanent energies. We pre-

sent an approach that, on the one hand, enables the

analysis of energy conversion in flows for a better un-

derstanding of the involved physical mechanisms. On

the other hand, our approach enables the identification

of regions of physically similar behavior with respect

to these energies. Our approach is inspired by Ber-

noulli’s principle, which, however, is applicable only

to inviscid stationary flow. We extend it to viscous

time-dependent flow, and derive from it a technique

for interactive visual analysis of flow fields.

The contributions of this paper include:

• a set of energy quantities whose sum is conserved

along trajectories, up to solver-induced error,

• an approach to quantify that solver-induced error

and relate it to our quantities,

• an interactive exploration approach enabling de-

tailed analysis of energy conversion and the phy-

sical mechanisms along trajectories, and

• an approach to reveal the regions of qualitatively

similar behavior with respect to energy dynamics.

2 RELATED WORK

The most closely related work in the field of fluid

dynamics is Bernoulli’s Hydrodynamica (Bernoulli,

1738), which presents the concept later denoted Ber-

noulli’s principle, detailed in Section 3.

Previous work in the context of energy-based flow

visualization includes proper orthogonal decomposi-

tion for separating different scales with respect to

energy (Pobitzer et al., 2011), and a graph based ap-

proach, which focuses on the conversion and trans-

portation of internal and kinetic energy (Fernandes

et al., 2017). The focus of our work, in contrast, is

on decomposition, transport, and conversion of diffe-

rent energy types along pathlines.

Less closely related are physically based criteria,

such as λ2 (Jeong and Hussain, 1995) for vortex ex-

traction, and interaction between shear flow and vorti-

250
Hanser, K., Meggendorfer, S., Hügel, P., Fallenbüchel, F., Fahad, H. and Sadlo, F.
Energy-Based Visualization of 2D Flow Fields.
DOI: 10.5220/0007359602500258
In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 250-258
ISBN: 978-989-758-354-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



ces (Schafhitzel et al., 2011; Sadlo et al., 2006). Other

approaches employ physical principles for visualizing

advection properties, such as schlieren flow visuali-

zation (Brownlee et al., 2010) and virtual rheoscopic

fluids (Barth and Burns, 2007).

3 BERNOULLI’S PRINCIPLE

Bernoulli presented in his early work on hydrodyna-

mics (Bernoulli, 1738) his principle, which relates ki-

netic, pressure, and potential energy. Assuming invis-

cid steady flow, i.e., flow that has zero viscosity and

no time dependency, his principle states that energy is

conserved along streamlines, e.g., if velocity increa-

ses along a streamline, it implies a respective decrease

of pressure energy and/or potential energy. In other

words, it describes the transformation of energy along

streamlines in fluid flow.

A streamline

ξξξt
x0
(s) := x0 +

∫ s

0
u
(

ξξξt
x0
(σ), t

)

dσ (1)

is obtained by solving an initial value problem (IVP)

in a single time step t of the (potentially unsteady) n-

dimensional vector field u(x, t) defined on a domain

Ω⊆R
n, with x∈ Ω and u ∈R

n. That is, one starts the

integration at a seed point x0 ∈ Ω with ξξξt
x0
(0) = x0,

and integrates a curve tangential to the vector field

u(x, t) for a given duration s, keeping physical time t

fixed. On the other hand, a pathline

ξξξx0,t0(t) := x0 +

∫ t

t0

u(ξξξx0,t0(τ),τ)dτ (2)

is obtained by solving an IVP “including” physical

time, i.e., by starting integration at a seed point x0 and

seed time t0, and integrating along the time-dependent

vector field u(x, t), that is, the integration parameter

is physical time t. Notice, that in steady vector fields,

streamlines and pathlines are identical.

According to Bernoulli’s principle, along such

a streamline in steady inviscid flow, i.e., at each

point x = ξξξt
x0
(s), the sum of kinetic energy

Eu(x, t) :=
‖u(x, t)‖2

2
, (3)

pressure energy

Ep(x, t) :=
p(x, t)

ρ
, (4)

and potential energy

Eh(x) := gh(x), (5)

stays constant, i.e., Eu(x, t) + Ep(x, t) + Eh(x) =
const., with pressure p(x, t), density of the fluid ρ,

h(x) the height of point x, and gravity g.

(a) u(x, t) (b) Eu(x, t)

(c) Ep(x, t) (d) Et(x, t)

(e) (f) ε(x, t)
Figure 1: Inviscid steady flow past a back-facing step.
(a) Velocity magnitude (low-black; high-yellow), with stre-
amlines (white). (b) Kinetic energy Eu(x, t) (low-black;
high-red) is not constant along streamlines, and neither is
pressure energy Ep(x, t) (c) (low-black; high-blue). (d) To-
tal energy Et(x, t) =Eu(x, t)+Ep(x, t), however, is constant
up to small deviations. Isolines (red) of Et(x, t) and stream-
lines (white and gray) (e) deviate slightly due to inaccura-
cies of the simulation and derivative estimation, which we
quantify as solver error ε(x, t) (f) (0-black; 0.1-magenta).

Figure 1 illustrates the principle, at the example of

a simple inviscid (ν = 0) steady 2D flow simulation

obtained with the Gerris flow solver (Popinet, 2007).

In this example (and the following), gravity has been

set to zero for simulation, resulting in zero potential

energy everywhere, i.e., there is only conversion be-

tween kinetic and pressure energy here. Notice, that

the focus of this paper is flow visualization, i.e., the

input to our technique is the simulated fields u(x, t),
p(x, t), as well es density ρ and viscosity ν.

It is apparent that Eu(x, t) (Figure 1(b)) is not uni-

form along the streamlines, and that neither is Ep(x, t)
(Figure 1(c)). Nevertheless, their sum, which we de-

note total energy Et(x, t) := Eu(x, t)+Ep(x, t), is al-

most constant (Figure 1(d)), as can be seen when

comparing the streamlines to isolines of Et(x, t) (Fi-

gure 1(e)). The small deviations between streamlines

and isolines of Et stem from inaccuracies of the simu-

lation and derivative estimation during visualization.

To assess such inaccuracies, we derive a quan-

tity which we denote solver error ε(x, t) (Figure 1(f)).
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The numerical solver aims at solving the NS equation

Du(x, t)

Dt
=−

∇p(x, t)

ρ
+ν∆u(x, t), (6)

with material derivative

Du(x, t)

Dt
:=

∂u(x, t)

∂t
+(∇u(x, t))u(x, t), (7)

density ρ, Laplacian ∆, and kinematic viscosity ν.

However, due to inaccuracies (nonzero solver residu-

als, as well as potential inconsistencies between de-

rivative estimation in the solver and estimation du-

ring our visualization process), the left hand side is in

general not identical to the right hand side when the

terms of Equation 6 are computed from the simulated

fields u(x, t) and p(x, t). This motivates us to obtain ε
as the discrepancy between the two sides, i.e.,

ε(x, t) :=
1

µ

∥

∥

∥

∥

Du(x, t)

Dt
+

∇p(x, t)

ρ
−ν∆u(x, t)

∥

∥

∥

∥

, (8)

normalized by µ, which is the average of the magni-

tude of Du(x, t)/Dt over the domain Ω:

µ :=
1

vol(Ω)

∫
Ω

∥

∥

∥

∥

Du(x, t)

Dt

∥

∥

∥

∥

dΩ, (9)

with vol(Ω) being the volume (area) of the domain.

4 METHOD

The majority of fluid dynamics problems involves

time dependency and necessitates nonzero viscosity,

which strongly limits the applicability of Bernoulli’s

principle. Our main aim in this work, is to ad-

dress both of these issues, i.e., to derive a concept

that enables energy-based flow visualization in time-

dependent viscous flow. Whereas we formulate our

approach here for 2D flows, its extension to 3D dom-

ains would be straightforward in large parts.

4.1 Derivation of Energies

Let us start with a steady CFD simulation of a flow

around an obstacle. Again, gravity g was set to

zero for simulation, but in this case, the modeled

fluid has nonzero kinematic viscosity ν, leading to

a wake behind the obstacle exhibiting low veloci-

ties (Figure 2(a)). The kinetic energy field Eu(x, t)
(Figure 2(c)) and the pressure energy Ep(x, t) (Fi-

gure 2(e)) can be easily computed according to Equa-

tions 3 and 4 using the simulated fields u(x, t) and

p(x, t). However, if these energies are summed up to

obtain the total energy Et(x, t), the resulting field (Fi-

gure 2(g)) is not constant along streamlines, in con-

trast to the inviscid case from Section 3 (Figure 1(d)).

The reason for this discrepancy is the nonzero vis-

cosity, which is violating the assumptions of Ber-

noulli’s principle. That is, velocity undergoes diffu-

sion due to the viscosity (according to the rightmost

term ν∆u(x, t) in Equation 6). In other words, the

internal friction in the flow “tries to minimize” the

gradient of the velocity field and thus causes kinetic

energy to “diffuse”. The direction of this diffusion is

not constrained to directions along streamlines, and

therefore Et is, in general, not constant along a stre-

amline in viscous flow.

An interesting observation is, however, that since

the Navier–Stokes equation (Equation 6) represents

the material derivative of velocity u(x, t), it descri-

bes the acceleration of a fluid parcel at location x and

time t. On the other hand, Bernoulli’s principle invol-

ves the variation of kinetic energy Eu along a stream-

line. The difference of kinetic energy between two

points s0 and s1 on such a streamline has to equal

the total work between these points, and since work

equals the integral of force along a path, we obtain

Eu(x1, t) = Eu(x0, t)+
∫ s1

s0

Du(ξξξt
x0
(s), t)

Dt
·ds, (10)

with x0 = ξξξt
x0
(s0) and x1 = ξξξt

x0
(s1) being the re-

spective positions on the streamline, and line ele-

ment ds := u(ξξξt
x0
(s), t)ds. Notice that Eu is a specific

energy in Bernoulli’s formulation, and therefore we

do not need to multiply the material derivative with

density ρ to obtain Eu(x1, t). Notice also that since

pathlines and streamlines are identical in steady flow,

and since the Navier–Stokes equation also holds for

unsteady flow, we can replace in Equation 10 the stre-

amline ξξξt
x0

by a pathline ξξξx0,t0 in this example (and in

general, as we will see later).

Altogether, Equation 10 provides an alternative

approach for computing Eu(x, t), i.e., at time t, we

can start a pathline at point x, integrate it backward

in time (in reverse flow direction) until time tα (with

tα < t), and evaluate the line integral accordingly:

Ẽu(x, t) =Cu +

∫ tα

t

Du(ξξξx,t(τ),τ)
Dt

·dτττ, (11)

with line element dτττ := u(ξξξx,t(τ),τ)dτ, and pathline

ξξξx,t(τ) := x+
∫ τ

t
u(ξξξx,t(τ),τ)dτ (12)

with τ < t. Cu is an integration constant, which needs

to be chosen. Notice that we denote our result integra-

ted kinetic energy Ẽu, in contrast to Bernoulli’s kinetic

energy Eu.

Figure 2(d) shows Ẽu(x, t) for Cu = 0, with re-

verse integration duration of 100 seconds. For this

integration duration, the pathlines either reach the in-

let at the left boundary, or stay in the recirculation
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(a) u(x, t) (b) Ẽν(x, t)

(c) Eu(x, t) (d) Ẽu(x, t)

(e) Ep(x, t) (f) Ẽp(x, t)

(g) Et(x, t) (h) Ẽt(x, t)

Figure 2: Steady viscous flow around obstacle, from left to right. (a) Velocity u(x) together with streamlines (white). (b) In-
tegrated diffusion energy Ẽν(x), according to Equation 15, with two selected streamlines (gray). (c) Kinetic energy Eu(x),
computed locally according to Equation 3. (d) Integrated kinetic energy Ẽu(x) (Equation 11). (e) Pressure energy Ep(x)
and (f) integrated pressure energy Ẽp(x, t) (Equation 14). (g) Total energy Et(x) is not conserved along streamlines, whereas
integrated total energy Ẽt is, i.e., Ẽu + Ẽp + Ẽν = const. is our counterpart to Bernoulli’s principle for unsteady viscous flow.

region right to the obstacle. Since the inlet velo-

city is constant along the inlet, Figure 2(d) is, up

to an additive constant, identical to Figure 2(c), ex-

cept for the region behind the obstacle. The reason

why Ẽu(x, t) in that region has values different from

Eu(x, t), is that setting Cu = 0 there is not consistent

with setting Cu = 0 at the inlet. While one could set

Cu = Eu(ξξξ−x,t(tα)), i.e., to the value of Eu at the “up-

stream end” of the pathline, such an evaluation cannot

be achieved for our integrated diffusion energy intro-

duced below. Therefore, we set Cu = 0.

If we bring the right hand side of Equation 6 to

the left side, we have three terms on the left hand side

that sum up to zero, i.e.,

Du(x, t)

Dt
+

∇p(x, t)

ρ
−ν∆u(x, t) = 0, (13)

or, in other words, three terms whose sum is constant

along a pathline.

The same procedure as for Ẽu(x, t) can be carried

out with respect to the pressure term, leading to the

integrated pressure energy

Ẽp(x, t) =Cp +

∫ tα

t

∇p(ξξξ−x,t(τ),τ)
ρ

·dτττ. (14)

For the same reasons as above, we set Cp = 0, which

results in Figure 2(f).

In analogy, the third term of Equation 13 moti-

vates to compute the energy difference between two

points along a pathline due to energy diffusion as:

Ẽν(x, t) =Cν −
∫ tα

t
ν∆u(ξξξ−x,t(τ),τ) ·dτττ, (15)

which we denote integrated diffusion energy (Fi-

gure 2(b)). Notice that Ẽν cannot be obtained without
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Figure 3: 2D pathline plots, with Ẽu (red), Ẽp (blue), Ẽν
(green), Ẽt (yellow), and ε (gray). (a) Plot corresponding to
upper selected (gray) streamline in Figure 2. (b) Plot corre-
sponding to lower selected (gray) streamline in Figure 2.

integration, whereas Eu and Ep could. Nevertheless,

for consistency, we will work with Ẽu, Ẽp, and Ẽν.

Finally, Ẽt(x, t) := Ẽu(x, t) + Ẽp(x, t) + Ẽν(x, t),
our integrated total energy, is conserved along pathli-

nes, and represents the basis for our approach. It can

be seen as the counterpart to Bernoulli’s principle, for

unsteady viscous flow. Figure 2(h) shows Ẽt , and one

can see that the field is constant along pathlines, in

contrast to Et (Figure 2(g)).

4.2 2D Pathline Plots

To ease visual analysis of the variation (conversion)

of the energies Ẽu, Ẽp, and Ẽν along pathlines, we

introduce 2D pathline plots. In these plots, a given

pathline represents the abscissa, parametrized by arc

length in flow direction. Figure 3(a) shows the plot for

the upper gray pathline (which is identical to a stre-

amline in this case) in Figure 2, whereas Figure 3(b)

shows the plot for the lower gray pathline in Figure 2.

In our implementation, the user can interactively seed

a pathline and explore the transformation of energy

along it by examining the respective plot in a linked

view. It can be seen how the energies are converted

and that Ẽt is indeed conserved.

The upper pathline (Figure 3(a)) passes close by

the obstacle. Before the obstacle, Ẽu reduces and Ẽp

increases, indicating conversion from kinetic to pres-

sure energy. Behind the obstacle (where the pathline

resides in the low-velocity wake), Ẽu is low but incre-

asing, while Ẽν is decaying almost at the same rate,

whereas Ẽp stays almost constant. This indicates that

kinetic energy is transported from the outside into this

region by diffusion, which means that that part of the

wake is accelerated due to viscosity, but influenced by

pressure only in close vicinity to the obstacle.

Energy dynamics along the lower pathline (Fi-

gure 3(b)), on the other hand, is basically not af-

fected by viscosity. We identify from the pathline

plot that the flow is first accelerated due to conver-

sion from pressure energy to kinetic energy, and la-

(a) Ẽu (b) Ẽp

(c) Ẽν (d) Ẽt

(e)

Figure 4: 3D pathline plots provide context for the 2D
pathline plots. The front gray pathline corresponds to Fi-
gure 3(b), whereas the farther one refers to the plot form
Figure 3(a). For more compact context, the surfaces can be
combined into a single view (e).

ter the flow decelerates again, by transforming kinetic

energy back to pressure energy.

4.3 3D Pathline Plots

Whereas the 2D pathline plots are an effective me-

ans for interactive analysis of energy dynamics al-

ong individual pathlines, they do not provide context,

i.e., they do not give information about the relation or

comparison between different pathlines. To this end,

we introduce 3D pathline plots, as a complementary

technique that provides overview and context. We

construct these plots by computing a rake of pathlines

(i.e., a set of pathlines seeded along a straight seeding

curve, e.g., as shown in Figure 2), generating the 2D

plot for each of these pathlines, and then creating a

mesh between “adjacent” curves of the same quantity.

That is, we take for each of the quantities Ẽu, Ẽp, Ẽν
and Ẽt all arc-length parametrized curves, distribute

them evenly in “orthogonal” direction, and create for

each of the quantities a triangle mesh. Figure 4(a)–(d)

shows an example for the resulting surfaces. Notice

that in Figure 2, we show only every second pathline

that is used for generating the 3D plots, and for better

visibility, we additionally show only the lower half.

For improved context, the selected 2D pathline is

denoted by a dark gray curve both in the 2D fields, as

well as on the 3D plot surfaces. For more compact

overview, the resulting surfaces can also be merged

(Figure 4(e)), however, in that configuration they rat-

her serve for context than for qualitative insights, due

to potential occlusion issues and clutter.
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4.4 Energy Conversion Maps

Although the 3D pathline plots provide good context

for interactive exploration by means of 2D pathline

plots, they exhibit several shortcomings for qualita-

tive or even quantitative analysis.

First, as mentioned above, their merged represen-

tation (Figure 4(e)) tends to suffer from occlusion and

visual clutter. Second, the fact that they do not re-

present the spatial domain but instead a space that is

spanned by pathline arc length and pathline index hin-

ders interpretation. Third, we set the constants Cu,

Cp, and Cν to zero, but any choice would be possi-

ble, which makes the “offset height” of the individual

pathline curves in the 3D pathline plot surfaces ba-

sically meaningless, including their intersection (e.g.,

the intersection between the red and green manifold

in Figure 4(e)). Since the final goal of our work is the

analysis of conversion of different types of energy, it

is rather the rate of change of these energies along a

pathline that is of interest, than their value itself. This

motivates us to use material derivatives of Ẽu, Ẽp, and

Ẽν for a more qualitative and quantitative analysis.

The material derivative is a differentiation with re-

spect to time-dependent flow, and it captures the rate

of change of a quantity, as “observed” along a path-

line. Thus, the material derivative of Ẽu, Ẽp, and Ẽν
gives us the amount of energy type per time unit that is

gained or lost by means of energy conversion along a

pathline. We could plot these derivatives again by me-

ans of the 3D pathline plot approach (see Figure 5(a)

for an example). Whereas this would solve the issue

with the constants, since they vanish in the deriva-

tive, this representation would still suffer from occlu-

sion, visual clutter, and non-spatial domain. There-

fore, we present energy conversion maps, our final

component that complements our already presented

building blocks.

Our energy conversion maps are 2D RGB images

in case of 2D flow. For Ẽu, we compute its mate-

rial derivative DẼu(x, t)/Dt, determine the 5th per-

centile P5 and the 95th percentile P95 of the material

derivative, obtain the maximum Pm of |P5| and |P95|,
and then linearly map the material derivative to the

red channel, mapping −Pm to zero red value and Pm

to full red value. Analogously, we map the material

derivative of Ẽν to the green channel, and the mate-

rial derivative of Ẽp to the blue channel. This means,

that if all material derivatives are zero, this will result

in medium gray color. Figure 5(b) shows a respective

result, corresponding to Figure 5(a).

The light blue region in front of the obstacle in

Figure 5(b), for example, corresponds to conversion

of kinetic to pressure energy. The orange region to

(a)

(b)

Figure 5: (a) 3D plot representation of material derivatives
of Ẽu (red), Ẽp (blue), and Ẽν (green). (b) Energy conver-
sion map, mapping to red, green, and blue color channel.

the sides of the obstacle, on the other hand, indicates

conversion of pressure energy to kinetic energy. The

purple region behind the obstacle, i.e., in its wake, re-

presents conversion from diffusion energy to both ki-

netic and pressure energy. Finally, the greenish parts

on either side of the purple wake indicate conversion

from kinetic and pressure energy to diffusion energy,

which means that the greenish regions “give” their

energy to the purple one via viscous interaction.

5 RESULTS

Having in place our overall technique, we will ap-

ply it now to different datasets. First, we exa-

mine a slightly time-dependent flow around an obsta-

cle (Section 5.1), followed by a more unsteady case

exhibiting a Kármán vortex street (Section 5.2). Fi-

nally, we demonstrate that our approach is also ap-

plicable to advanced flow problems, such as the flow

through elastic porous media (Section 5.3).

5.1 Slightly Unsteady Obstacle Flow

We now examine a CFD simulation that has been si-

mulated on the same geometry as the above steady

obstacle flow, but with higher inlet velocity. As a

consequence, the flow is slightly time-dependent, i.e.,

the wake behind the obstacle is “oscillating”. Fi-

gure 6(a) shows streamlines of a snapshot of the time-

dependent flow, whereas Figure 6(b)–(e) show the

pathlines used for plot-based visualization. Notice

that Ẽu, Ẽp, Ẽν, and Ẽt are not consistent with the

pathlines, since these fields are computed by a large

set of reverse-integrated pathlines started at each point
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(a) u(x, t) (b) Ẽu

(c) Ẽp (d) Ẽν

(e) Ẽt (f) ε
Figure 6: Slightly unsteady obstacle flow. (a) Velocity
magnitude with streamlines. (b) Integrated kinetic energy
with pathlines (white and gray). (c) Integrated pressure
energy. (d) Integrated diffusion energy. (e) Integrated to-
tal energy. (f) Solver error.

in space, as explained above, and therefore are loca-

ted at different space-time location. Nevertheless, a

look at the respective pathline plots (Figure 7(a) for

the upper gray pathline and Figure 7(b) for the lower

one) reveals that Ẽt is still conserved very well along

these pathlines. A closer inspection of Figure 7(a) re-

veals that Ẽt slightly increases when the pathline pas-

ses the obstacle. This is consistent with higher va-

lues of the solver error ε there. Overall, investiga-

ting the 3D pathline plots (Figure 7(c)–(g)) and the

energy conversion map (Figure 7(h)) reveals that this

flow is still similar to the steady one from Section 4,

and that our approach works equally well with pathli-

nes in time-dependent flow.

5.2 Kármán Vortex Street

This example is the result of increasing the inlet velo-

city even more, resulting in Kármán vortex shedding.

As can be seen from the different energy fields and

the comparison between streamlines (Figure 8(a)) and

pathlines (Figure 8(b)–(e)), this dataset is substan-

tially time-dependent. Furthermore, it exhibits lar-

ger solver error ε (Figure 8(f)) than the one from

Section 5.1. This larger error leads to a lower level

of energy conservation at the obstacle, as can be seen

from the variation of Ẽt in the 2D pathline plot for

the upper pathline (Figure 9(a)). In contrast, energy

is well conserved for the lower pathline (Figure 9(b)),

consistent with the lower solver error in that region.

The energy conversion map (Figure 9(h)) reveals

that the area around the vortex shedding is domina-

ted by conversion from kinetic to pressure energy

(light blue), and back from pressure energy to kine-

tic energy (orange). Close to the Lagrangian coherent
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Figure 7: Slightly unsteady obstacle flow. 2D pathline plot
for upper (a) gray pathline from Figure 6(b) and lower (b)
one. 3D pathline plots (c)–(g). (h) Energy conversion map
reveals similarity with steady example from Section 4.

structures (ridges in the reverse finite-time Lyapunov

exponent field (Figure 9(i)), computed for the same

integration time as our energies), our approach indica-

tes conversion from kinetic and pressure energy to dif-

fusion energy (green), and back from diffusion energy

to kinetic and pressure energy (purple). This may

indicate, similar to the case from Figure 5(b), that

energy is transported via viscous mechanisms (diffu-

sion). Besides that, the dark blue regions indicate con-

version from kinetic and diffusion energy to pressure

energy, and the yellow regions back from pressure to

kinetic and diffusion energy, also relating to viscous

effects. Nevertheless, a more detailed analysis and va-

lidation regarding the impact of ε has to be subject to

future work.
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(a) u(x, t) (b) Ẽu

(c) Ẽp (d) Ẽν

(e) Ẽt (f) ε
Figure 8: Kármán dataset. (a) Velocity magnitude with
streamlines (white). Kinetic (b), pressure (c), diffusion (d),
and total energy (e). Solver error (f) is considerably higher
compared to the slightly unsteady case (Figure 6(f)).

5.3 Elastic Porous Flow

Our last example is a simulation of a flow through an

elastic porous medium. In this case, it is the solution

of the consolidation model of Biot, which averages

the porous medium to macroscopic scale. The setup,

which is quadratic in rest state, exhibits three diffe-

rent permeabilities (Figure 11(a)). The upper and lo-

wer boundaries are non-permeable, the left boundary

is a velocity inlet, and the right boundary serves as a

“valve”, i.e., the permeability is very low during the

first phase, and high during the second phase. As a

consequence, the material is first “inflated”, and starts

releasing the fluid after the inflow has been stopped

and the right boundary has been “opened”.

Since this example consists of an elastic porous

medium, within which energy can be stored as pres-

sure and deformation, we replace the material deriva-

tive of energies by the time derivative, i.e., we focus

on the material instead of the flow through the mate-

rial. Also, due to the used simulation model, we do

not need to take into account diffusion caused by vis-

cosity. Thus, diffusion energy from above is replaced

by deformation energy, which we compute as

Ed :=
1

2

∫
C
‖∇d(x, t)+ (∇d(x, t))⊤‖2dx

+

∫
C
|∇ ·d(x, t)|2dx,

(16)

with displacement field d(x, t) and cell C of the grid.

Figure 10(a)–(c) shows the first phase of the pro-

cess for kinetic energy, (f)–(h) for pressure energy,

and (k)–(m) deformation energy. Accordingly, (c)–(e)

shows the second phase for kinetic energy, (h)–(j) for

pressure energy, and (m)–(o) for deformation energy.

Figure 11(b) depicts energy dynamics at the center.
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Figure 9: Kármán flow. 2D pathline plots (a) and (b) reveal
that energy conservation is violated close to the obstacle due
to high solver error (Figure 8(f)) in that region. 3D pathline
plots (c)–(g) reflect energy dynamics of vortex shedding.
(h) Energy conversion map. (i) Finite-time Lyapunov expo-
nent field, for comparison (low-black; high-cyan).

The three phases and respective energy conversions

are clearly visible in the plot. It is apparent that du-

ring the inflation phase, kinetic energy is higher at

the inlet, whereas during the outflow phase, kinetic

energy is larger at the outlet. Interestingly, pressure

energy as well as deformation energy are larger at the

inlet in both phases. The energy conversion maps (Fi-

gure 10(p)–(t)), based on the time derivative, reveal
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Figure 10: Elastic porous flow. (a)–(e) Kinetic energy, (f)–(j) pressure energy, (k)–(o) deformation energy, and (p)–(t) re-
spective energy conversion maps, each with respective streamlines.
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Figure 11: Elastic porous flow. (a) High (blue), medium
(gray), and very low (red) permeability. (b) Plot of ki-
netic (red), pressure (blue), deformation (green), and to-
tal (yellow) energy over time, at the center of the domain.

that during the first phase, energy conversion is low

(close to gray colors), whereas at the start of the se-

cond phase, one can see conversion from pressure and

deformation energy to kinetic energy, in particular at

the outlet. During the second phase, we observe that

the region that converts deformation and pressure into

kinetic energy shrinks from right to left.

6 CONCLUSION

We presented a counterpart to Bernoulli’s principle,

which describes the conservation and conversion of

energy along streamlines in inviscid flow. By exten-

ding the concept to time-dependent flow and accoun-

ting for viscous effects, we established a basis for the

visualization of energy dynamics in flow fields. We

presented an interactive exploration approach based

on our concept, complemented it with a direct visu-

alization approach of energy conversion, and demon-

strated its utility using simple examples. As future

work, we would like to further investigate the proper-

ties of our approach using additional examples, and

extend it to 3D flow fields and other types of energy.
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