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Abstract: A recent catalogue of human transcriptome, namely CHESS database, assembled from RNA sequencing 

experiments as a part of the Genotype-Tissue Expression (GTEx) Project reported more non-coding RNA 

genes (21,856) than protein-coding (21,306), revealing an unexpectedly vast amount of transcriptional noise 

(Pertea et al, 2018). In this study, we introduce a workflow coded in KNIME that computationally 

distinguishes the ncRNA-ncRNA interaction sites with less reliable interaction sites containing less 

experimentally validated binding sites than the interaction sites with more experimental validation. Duplex 

structure and k-mer features of the ncRNA-ncRNA binding sites with experimental verification were used as 

input to the classification workflow. In our analysis, we observed that although duplex structure features had 

no positive effect on the success rate of the classification, using just the k-mer features, ~80% success could 

be achieved in categorization of the confidence of the ncRNA-ncRNA binding sites. Our result verified the 

classification performance of miRNA-mRNA targets using only k-mer features from our previous study 

(Yousef et al, 2018). 

1 BACKGROUND 

Post transcriptional gene regulation influences 

protein abundance and its dysregulation is a hallmark 

for many diseases. With the recent analysis of 

transcriptional data (Pertea et al, 2018), more of the 

transcriptome is revealed to be originating from non-

coding RNAs (ncRNAs). There is a wide variety of 

ncRNAs such as microRNAs(miRNAs), silencing 

RNA(siRNAs), Piwi-interacting RNA(piRNAs), 

small nucleolar  RNAs(snoRNAs), small nuclear 

RNAs(snRNAs), exRNAs, scaRNAs and the long 

noncoding RNAs (lncRNAs) , differing from each 

other by nucleotide sequence length, folding and 

function. All these non-coding RNAs are predicted to 

be involved in targeting post transcriptional 

regulation. Although the importance of the miRNAs 

role in gene regulation is well known to an extent, 

genetic mechanism of the other types of non-coding 

RNAs, especially, the role of long non-coding RNAs 

(lncRNAs) is not that well characterized.  

With the recent pan-cancer analysis of the 

lncRNAs, the dysregulation of the lncRNAs is 

considered to be widely involved in transcriptional 

perturbation in various cancer tumor contexts [49]. 

This recent surge in our knowledge of lncRNAs’ role 

in cancer is mostly attributable to high-throughput 

sequencing, especially CLIP-seq technology. With 

the assistance of the high-throughput CLIP-seq 

technology, functional annotation of the large 

functional interaction network of lncRNAs with other 

noncoding RNAs is getting clarified further revealing 

the previously unknown involvement of ncRNA 

interactions in cancer transcriptome. 

Experimental determination of ncRNA – ncRNA 

interactions is highly involved, error-prone and 

naturally dependent on tissue of expression, which is 

why computational methods have become important. 

One important problem in the identification of 

lncRNA-ncRNA interaction network is due to the 

nonspecific binding of RNA polymerase to random or 

very weak sites in the genome, causing the 95% 

transcriptional noise Several automated classification 
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methods have been applied to distinguish the plethora 

of ncRNA classes such as RNA-CODE (Yuan and 

Sun, 2013) based on the alignment of short reads, or 

RNAcon (Panwar et al., 2014) and (Childs et al., 

2009) based on the multi-feature extraction and full-

sequence analysis. The last two of the listed tools 

RNAcon and GraPPle incorporate the secondary 

RNA structure into the machine learning algorithms. 

Another recent tool, spongeScan, uses a k-mer-

complementarity based algorithm to predict the 

miRNA response elements in lncRNAs(Furió-Tarí et 

al, 2016). 

In this study, similar to RNAcon and GraPPle, we 

tested incorporating both the k-mers features and the 

duplex structure information to a KNIME machine 

learning workflow.  But rather than classifying the 

ncRNA classes, we tried to classify the ncRNA-

ncRNA binding data and compared the accuracy of 

the k-mer based and structure features. In addition, 

we introduced three new set of features which are 

extracted from the sequence and summarize the 

distance between k-mers. These new set of features 

named inter k-mer distance, k-mer location distance 

and k-mer first-last distance were compared to k-mer 

and all other published features describing an 

ncRNA-ncRNA interaction.  

The remainder of the paper is organized as 

follows: In Data section, the three types of data used 

by the classification algorithm are described. In 

Methods section, feature selection, classification and 

performance evaluation of the proposed algorithms 

are explained. In the Results and Discussion section, 

a performance summary of each categorization 

approach on the three set of data are presented. 

Finally, the limitations and future work are outlined 

in the Conclusions section.  

2 DATA 

The first set of data was obtained from StarBase(Li et 

al., 2014) where positive lncRNA-ncRNA interaction 

data is the subset with at least 5 supporting 

experiments confirming the interaction, labelled the 

“highest stringency” by Starbase.  Different pools of 

positive classes were generated by considering 

different number of supporting experiments. We have 

1950 examples with the 5 supporting experiments 

(very high stringency), 3280 with 3 (high stringency) 

and 8143 with 2 (medium stringency). 

Negative lncRNA-ncRNA interaction data is the 

subset of Starbase with only 1 supporting experiment 

with an lncRNA not listed in the CHESS 2.0[44] 

catalog. This filter yield in 2043 examples to form the 

negative class. CHESS is the most comprehensive 

and recent catalog of coding and non-coding 

transcripts, therefore our assumption was if an 

lncRNA is not documented in this vast catalog and 

contributes to an interaction that is observed only 

once experimentally, the interaction data might not be 

as reliable. The second set of data was downloaded 

and parsed from StarBase(Li et al., 2014) and 

mirTarbase (Chou et al., 2018) for the organism 

human via in-house Perl scripts. 

Table 1: Description of the data sets used in our study. The 

data sets were downloaded from StarBase[30] and 

mirTarbase [31]. Each entry has the interaction name of the 

data, the name of the source, number of examples and the 

number of unique miRNA involved. 

 Source Number 

of 

examples 

Number 

of 

unique 

miRNA 
miRNA-

lncRNA 

interactions 

StarBase 10199 278 

miRNA-

circRNA 

interactions 

StarBase 9997 24 

miRNA-

pseudogene 

interactions 

StarBase 16133 277 

miRNA-

sncRNA 

interactions 

StarBase 3293 273 

miRNA-

mRNA 

mirTarBase 3121 52 

 

The third set of data was generated on cancer 

implication of the lncRNA-miRNA interactions on 

StarBase. Positive data 603 examples contain the 

lncRNA-miRNA interactions involved in at least 1 

cancer type by pan-cancer grouping derived from 

TCGA for the 14 cancer types (>6000 samples). 

Negative data with 9513 examples contain all the 

lncRNA-miRNA interactions which are not detected 

in any of those 14 cancer types.  

3 METHODS 

3.1 Parameterization of ncRNAs 

The first step in applying machine learning to the 

current data is to represent the data in vector space 

v=(v1,v2,…,vn), where each component v relates to a 

specific feature and where n is the number of features. 

One simple way of representing sequences that 
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consist of 4 nucleotide letters is by employing k-mers. 

In a recent study, we have shown that k-mers are 

sufficient to allow to categorize pre-miRNAs into 

species (Yousef et al., 2006). 

3.2 K-mer Features 

Many studies performing ncRNA analysis used 

sequence-based features. Sequence-based features 

can be words or short sequence of nucleotides 

{A,U,C,G,} with the length k (so called k-mers or n-

grams). For example, 1-mers are the ‘words’ A, U, C, 

and G; 2-mers are the words AA, AC, …, UU, and 3-

mers lead to 64 (43) short nucleotide sequences 

ranging from AAA to UUU. In general, the number 

of all k-mers up to and including length k is∑ 4𝑖𝑘
0 .  

There were other studies with longer 𝑘 (Cakir and 

Allmer, 2010), but in this study 1-, 2-, and 3-mers 

were used as features. The 𝑘-mer frequencies are 

calculated by dividing raw counts by the length of the 

sequence (i.e., len(sequence) - k + 1). Hence, for 𝑘-

mers with 𝑘 =  {1, 2, 3}, 84 features were calculated 

per example. The 𝑘-mer frequency ranges between 0 

(if the k-mer is not present in the sequence) and 1 (if 

the sequence is a repeat of a mononucleotide; no such 

case was present in the data). 

3.3 Secondary Features 

Following the study of (Yousef et al., 2006) we 

generated features considering the secondary 

structure of ncRNA-ncRNA interactions: 

1. Number of Base Pairs 

2. Number of Bulges 

3. Number of Loops 

4. Number of bulges with length i , i=1 to 6  

5. Number of bulges with length greater than 6 

6. Number of loops with length I, i=1 to 6 (odd 

number capture asymmetric loops) 

7. Number of loops with length greater than 6. 

A KNIME workflow (Berthold et al., 2008) was 

created to extract those features using the secondary 

structure obtained from the mirBase (Griffiths-Jones, 

2010) and StarBase(Li et al., 2014).  

3.4 Feature Vector and Feature 

Selection 

In this study we considered different kinds of 

features, k-mer-based features, the novel k-mer 

distance features, and 831 features that were used in 

the study of (‘Sacar MD, Allmer J. Data mining for 

microrna gene prediction: On the impact of class 

imbalance and feature number for microrna gene 

prediction. 2013 8th Int. Symp. Heal. Informatics 

Bioinforma.IEEE; 2013 p. 1--6.’, no date). We also 

used information gain measurement (Shaltout et al., 

2014) as implemented in KNIME (version 3.1.2) 

(Berthold et al., 2008) for feature selection when we 

combined different kind of features.  

3.5 Classification  

A random forest (RF) classifier was implemented in 

KNIME (Berthold et al., 2008). The classifier was 

trained and tested with a split of 80% training and 

20% testing data. Equal number of negative and 

positive examples were forced to during the 100-fold 

Monte Carlo cross-validation (MCCV) (Xu and 

Liang, 2001) for model establishment.  

3.6 Model Performance Evaluation 

For each established model, we calculated a number 

of statistical measures like the Matthews’s correlation 

coefficient (MCC) (Matthews, 1975), sensitivity, 

specificity, and accuracy for evaluation of model 

performance. The following formulations were used 

to calculate the statistics (with TP: true positive, FP: 

false positive, TN: true negative, and FN referring to 

false negative classifications):  

 

Sensitivity (SE, Recall) = TP / (TP + FN) 

Specificity (SP) = TN / (TN + FP) 

Precision = TP / (TP + FP) 

F-Measure = 2 * (precision * recall) / (precision + 

recall) 

Accuracy (ACC) = (TP + TN) / (TP + TN + FP + 

FN); ACC 

MCC =
(TP/TN−FP/ FN)

√(TP+FP)(TP+FN)(TN+FN)(TN+FP)
 

Average of 100-fold MCCVs were reported as 

performance. 

4 RESULTS  

Several different datasets were tested using k-mers 

and duplex structures. Table 1 shows that just using 

the duplex structure was not sufficient to distinguish 

between the two classes. Interestingly using just, the 

non-coding sequence k-mers features was able to give 

a good signature for separating different datasets.  

With the two sets of data; miRNA-lncRNA 

(Stringency 5) vs miRNA-lncRNA (Stringency 1); e 
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have compared the performance of the several 

different kinds of features (First row in Table 1). 

Duplex features yielded a low accuracy of 0.57 which 

means that the structure alone does not contribute to 

the information to distinguish these two classes. 

However, ncRNA k-mer features yielded an overall 

accuracy of 0.82 (AUC is 0.91) which indicates that 

the ncRNA sequence coding information was 

sufficient to distinguish between two classes. When 

the difference between the different types on non-

coding miRNA types of the two classes are tested, we 

failed to see any positive results. 

We have tested the influence of the degree of the 

stringency and observed that with the presence of 

more experimental data supporting the interaction 

(higher stringency), the performance of the method 

improved (See Table rows 2-4). 

Additionally, we have tested the differences 

between the interactions of miRNA-ncRNA from the 

interaction of lncRNA-miRNA. Results in row 5 and 

6 show that based on k-mer feature generated from 

non-coding region we are able to distinguish between 

those classes with accuracy of 0.8, however, the 

duplex structure alone is not able to provide a 

sufficient separation. 

Row 7 shows the results of classification between 

two classes that we have generated as a sub-data that we 

call the third set (See Data Section) that related to the 

pan-cancer grouping rate of lncRNA-miRNA 

interaction. The accuracy indicates that although there is 

a difference between the two classes, still the difference 

is not as remarkable as other cases in this study. 

Rows 8 to 13 shows the results of all combination 

of the two-classes of the 1) miRNA-lncRNA 

interactions, 2) miRNA-circRNA interactions, 3) 

miRNA-pseudogene interactions and miRNA-

sncRNA interactions. The high classification 

accuracy rates of all these three combinations indicate 

a good separation. 

Table 2: Average performance for 100-fold MCCV using a random forest classifier and a split of 80% training and 20% 

testing employing on different datasets. AUC: area under curve. 

Dataset used for classification Sub-Type S
en

si
ti

v
it

y
 

S
p

ec
if

ic
it

y
 

A
cc

u
ra

cy
 

A
U

C
 

miRNA-lncRNA (Stringency 5) vs miRNA-lncRNA (Stringency 1) and 

in CHESS (#ncRNA=1950    , #chess=2043) 

duplex features 0.61 0.52 0.57 0.59 

ncRNA k-mer features 0.87 0.77 0.82 0.91 

duplex + ncRNA k-

mer features 0.86 0.77 0.81 0.90 

miRNA k-mer 

features 0.53 0.60 0.56 0.58 

miRNA-lncRNA (Stringency 2) vs miRNA-lncRNA (Stringency 1) and 

in CHESS #ncRNA=8143 , #chess=2043 

ncRNA k-mer features 

0.80 0.65 0.72 0.82 

miRNA-lncRNA (Stringency 3) vs miRNA-lncRNA (Stringency 1) and 

in CHESS (#ncRNA=  3280       , #chess=2043) 0.84 0.72 0.78 0.87 

miRNA-lncRNA (Stringency 5) vs miRNA-lncRNA (Stringency 1) and 

in CHESS #ncRNA=1950     , #chess=2043 0.87 0.77 0.82 0.91 

mirTarBase(has- miRNA:mRNA) vs miRNA-lncRNA (Stringency 5)  

#miRNA:mRNA= 3121  , #ncRNA=1950 

duplex features 0.64 0.65 0.64 0.68 

ncRNA k-mer features 0.85 0.75 0.80 0.87 

ncRNA k-mer features 

+ duplex 0.85 0.74 0.80 0.87 

mirTarBase(has- miRNA:mRNA) vs miRNA-lncRNA (Stringency 3)  

#miRNA:mRNA= 3121  , #ncRNA=3280 ncRNA k-mer features 0.84 0.75 0.79 0.87 

ncRNA Cancer   vs ncRNA non cancer (#pos = 603, #neg = 9513) ncRNA k-mer features 0.75 0.62 0.68 0.75 

lncRNA vs circRNA (#lcRNA =10199 , #circRNA = 9997) 

ncRNA k-mer features 

0.91 0.78 0.85 0.92 

lncRNA vs sncRNA (#lcRNA =10199 , #sncrRNA = 3293) 0.83 0.76 0.79 0.89 

lncRNA vs psuedoGene (#lcRNA =10199 , #psuedogene=16133) 0.85 0.76 0.80 0.90 

circRNA  vs  sncRNA (#circRNA = 9997,   #sncrRNA = 3293) 0.87 0.83 0.85 0.93 

circRNA vs psuedoGene (#circRNA = 9997,    #psuedogene=16133) 0.86 0.81 0.83 0.92 

sncRNA vs psuedoGene (#sncrRNA = 3293,,    #psuedogene=16133) 0.88 0.76 0.82 0.90 
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5 DISCUSSION 

The increased accuracy of the predictions by using 

data with more experimental evidence suggest that 

the ncRNA-ncRNA interaction data with scarce 

experimental support is not reliable enough to avoid 

misclassifications. Concluding, therefore, in spite of 

the overall good performances of our classification 

approach, supplementing the ncRNA-ncRNA 

interaction data with more experimental evidence will 

aid in increasing the accuracy of the classification 

workflow.  

6 CONCLUSIONS 

 In this study we have tested different datasets to 

study different types of non-coding RNA interactions 

and the differences between those interactions. In our 

experiments we have tested two main kind of 

features, k-mers features and duplex features. 

Interestingly we have discovered that using the k-

mers features is sufficient to distinguish between 

different types of noncoding RNA interactions. We 

didn’t observe any positive contribution of the duplex 

features. 
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