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Abstract: Recently, sparse representation has attracted increasing interest in computer vision. Sparse representation 
based methods, such as sparse representation classification (SRC), have produced promising results in face 
recognition, while the dictionary used for sparse representation plays a key role in it. How to improve the 
dictionary construction in sparse representation is still an open question. Principal component analysis 
network (PCANet), as a newly proposed deep learning method, has the advantage of simple network 
architecture and competitive performance for feature learning. In this paper, we have studied how to use the 
PCANet to improve the dictionary construction in sparse representation, and proposed a new method for 
face recognition. The PCANet is used to learn new features from face images, and the learned features are 
used as dictionary atoms to code the query face images, and then the reconstruction errors after sparse 
coding are used to classify the face images. It is shown that the proposed method can achieve better 
performance than the other five state-of-art methods for face recognition. 

1 INTRODUCTION 

Face recognition technology has been developed for 
a long time and a variety of methods have been 
proposed (Turk and Pentland, 1991; Zhang, Chen, 
and Zhou, 2005; Maksimov et al., 2006; Liu et al., 
2001). Due to the wide range of face recognition 
applications, there are still many researchers 
dedicated to face recognition in recent years. Facial 
similarity, shape instability and facial expressions, 
gestures, age and other diversity, light conditions, 
facial occlusion and many factors of the outside 
world increase the difficulty in face recognition 
(Ghiass et al., 2012; Chen and Su, 2017). 

Sparse representation (Wright et al., 2010) is a 
method that commonly used for signal compression 
and encoding. Sparse representation based methods, 
such as sparse representation classification (SRC) 
(Wright et al., 2009), have already been applied in 
image recognition and led to promising results. It is 
found that applying sparse representation to image 
classification can both reduce the computational 
complexity brought by high-dimensional data, and 
improve the robustness of the method (Zhang et al., 
2010; Elad and Aharon, 2006; Mairal, Elad, and 
Sapiro, 2008; Lu et al., 2015; Zhou, 2012). The 

sparse representation based classification has two 
steps: coding and classification. First, the query 
image is coded over the features which have strong 
discriminative properties between objects to be 
characterized. Then classification can be carried out 
by computing the reconstruction errors using the 
coding coefficirnts and the selected features. The 
general form of the sparse coding model is as 
follows: 

2

1 2
min  . . 
α

α s t y Dα ε   (1)

where y is the query image, D is the dictionary 
which is constructed by the selected features, α is the 
encoding sparse vector of y on the dictionary D, and 
ε (ε > 0) is a constant (Yang et al., 2011a). 

In the SRC method, training samples are directly 
used as dictionary atoms for coefficient encoding. It 
classifies the query images by evaluating which 
class leads to the minimal reconstruction error. The 
method is simple and easy to understand, but a large 
amount of class information among the training 
samples is not used. Another classical sparse 
representation method is K-SVD (Aharon, Elad, and 
Bruckstein, 2006), which is an iterative method that 
alternates between sparse coding of the query 
images based on the current dictionary and a process 
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of updating the dictionary atoms to better fit the 
data. The update of the dictionary columns is 
combined with an update of the sparse 
representations, thereby accelerating the 
convergence. Since sparse coding problem is 
equivalent to Lasso's problem (Tibshirani, 2011), 
Yang et al. propose to perform face recognition by 
solving Lasso problem in Robust Sparse Coding 
(RSC) (Yang et al., 2011a). The coding coefficients 
are calculated by iterative improvement, and a 
weight matrix is added to the face image, which 
gives a very small weight to pixels with occlusion or 
noisy interference. All of these methods are common 
in learning a public dictionary shared by all classes. 
However, the methods of public dictionary learning 
do not make full use of the relationship between 
sample labels and dictionary atoms, and hence 
performing classification based on the reconstruction 
error associated with each class is not allowed. 
Different from these works, Yang et al. proposes a 
sub-dictionary learning method (Yang et al., 2011b), 
which learns a structured dictionary related to class 
labels. It performs classification using class-related 
reconstruction errors and produces better results than 
SRC. 

Although sparse representation based methods 
have been successfully applied in face recognition, 
they depend heavily on the selected dictionary D. So 
it is important to study how to improve the 
dictionary construction in sparse representation. 

Feature learning has been widely used in 
machine learning and a variety of feature learning 
methods have been proposed in recent years (Bengio 
et al., 2007; Learnedmiller, Lee, and Huang, 2012). 
Principal component analysis network (PCANet) is a 
novel deep learning algorithm for feature learning 
with the simple network architecture and parameter 
settings, which can be trained very efficiently. It was 
proposed by Chan et al. (Chan et al., 2015), and is a 
combination of principal component analysis (PCA) 
and a convolutional neural network (CNN). PCANet 
uses the most basic and simple operations to 
simulate the processing layers in a typical neural 
network: the data adaptive convolution filter bank in 
each stage is selected as the most basic PCA filter; 
the nonlinear layer is set to be the simplest binary 
quantization (hashing); for the feature pooling layer, 
it uses only the block-by-block histogram of the 
binary code, which is considered to be the final 
output feature of the network. It has been shown that 
even the very basic PCANet has competitive or even 
better performance compared with other methods in 
image classification tasks (Chan et al., 2015). 

In this paper we have studied how to improve 
dictionary construction in sparse representation 
using PCANet, and then proposed a new method for 
face recognition. As mentioned above, using the 
original training samples as the dictionary atoms 
could not fully exploit the discriminative 
information hidden in the training samples. So 
PCANet is used to learn features from original face 
images, and the learned features are used as 
dictionary atoms in sparse representation instead. 
With the proposed improved sparse representation 
based on PCANet, the reconstruction error becomes 
more discriminative, which leads to a better face 
recognition method. 

The rest of this paper is organized as follows. 
Section 2 briefly reviews some related work, Section 
3 presents the proposed face recognition method 
based on sparse representation and PCANet, Section 
4 describes the experimental results, and Section 5 
concludes the paper. 

2 RELATED WORK 

2.1 Sparse Representation based 
Classification for Face Recognition 

Wright et al. propose the sparse representation based 
classification (SRC) method for face recognition 
(Wright et al., 2009). Based on the assumption that 
the same class training samples lie on a linear 
subspace, SRC searches the representative elements 
from the training sample dictionary to sparsely 
represent a test sample (Yang et al., 2011a). Suppose 
that there are c classes samples, and let 

 1 2, ,..., cD D D D  be the set of the training 

samples, where iD  is the sub-set of the training 

samples from the i-th class. A given unknown image 
y can be represented by the linear combination of the 
training samples associated with the i-th class as: 

i iy D α (2)

where ,1 ,2 ,, ,...,
ii i i i pα α α α     is the representation 

coefficients, it is a column vector, and pi is the 
number of the i-th training samples. 

Because there are c classes samples, the linear 
representation y can also be rewritten in terms of all 
the training samples as follows: 

y Dα  (3)
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where D is the dictionary and  1;...; ;...;i cα α α α

,1 ,2 ,0,...,0, , ,..., ,0,...,0
ii i i pα α α     is the coefficients 

vector whose entries are zero except those associated 
with the i-th class. If the number of training samples 
is large enough, the non-zero coefficients are sparse 
relative to the length of the coefficient vector. 

The coefficient vector can be estimated by 
sparsely coding y on D via l1-minimization problem: 

2

1 2
ˆ arg min  . . α α s t y Dα ε    (4)

Then the classification can be done via: 

 ( ) arg min i
i

identity y error  (5)

where 
2

ˆ , 1,2,...i i ierror y D α i c   , and îα  is the 

coefficients vector associated with class i. The 
implementation details of SRC can be found in 
(Yang et al., 2011b). 

2.2 Structures of the PCANet  

The PCANet used in the experiments has three 
layers and two stages. Suppose there are N training 
images  | 1, 2,...,iS i N , the size of each image is 

mn and the filter size of each layer is k1k2. Figure 
1 shows a detailed block diagram of the two-stage 
PCANet. Only the PCA filter core needs to be 
learned from the training images. That is why the 
PCANet can be designed and trained easily and 
efficiently. 

 

Figure 1: Detailed block diagram of a two-stage PCANet. 

2.2.1 The First Stage PCA 

For each pixel, a block image of size k1k2 is located 
around the pixel, then all the image blocks are 
collected for cascading as the representation of the i-

th image 1 2
,1 ,2 ,, ,..., k k

i i i i mny y y y      , where 

 1 2m m k  ,  2 2n n k  . We then subtract the 

block mean from each block and obtain 

,1 ,2 ,, ,...,i i i i mnY y y y    , where ,i jy  is a mean-

removed block. For all input images, the mean of the 
image are subtracted to produce the matrix: 

1 2
1 2, ,..., k k Nmn

NY Y Y Y    
   (6)

Supposing that the number of filters in the i-th 
layer is Li, the purpose of the PCA is to minimize the 
reconstruction error by finding a series of standard 
orthogonal matrices: 

11 2 1

2
min , . . 

k k L

T T
LFU

Y UU Y s t U U I


 


 (7)

where U is the filter bank and 
1LI  is identity matrix 

of size L1  L1. In PCANet, just the L1 primary 
eigenvectors of YYT are obtained. So the PCA filter 
is expressed as follows: 

   1 2

1 2

1
,

k kT
l k k lW matrics eig YY    (8)

where l=1,2,…L1,  
1 2,k kmatrics vector  is a function 

that map 1 2k kvector   to a matrix 1 2k kW  , and 

 T

l
eig YY  represents the l-th principal eigenvector 

of YYT. Then, the PCA mapping output of the first 
layer is calculated by: 

1, 1,2,...,l
i i lS S W i N    (9)

where the operation * represents the convolution of 
two dimensions. 

2.2.2 The Second Stage PCA 

The mapping process of the second layer is basically 
the same as the mapping mechanism of the first 
layer. As with the blocking operation done in the 
first layer, block sampling, cascading, and zero-
averaging are also performed on the input matrix 
(the mapped output of the first layer) in the second 
layer. The above operation is performed for each 
input matrix, and finally the block sampling form of 
the second layer input data is obtained: 

1 1 21 2, ,..., L k k NmnZ Z Z Z    
   (10)

where Z represents the outputs of all the images after 
convolving with 1

lW . 

Then the eigenvectors of ZZT is computed and L2 
principle eigenvectors are selected as PCA filters of  
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the second stage. So the PCA mapping output of the 
second layer is: 

2
2, 1,2,...l l

i i lR S W l L    (11)

We can see that the first layer and the second 
layer are very similar in structure, so it is easy to 
expand PCANet into a deep network structure 
containing more layers. 

2.2.3 The Output Stage Hashing and 
Histogram 

The binary processing is performed on each output 

matrix of the second layer,  2{ ,l
i lBinarify S W l 

21,2,..., }L , where Binarify(x) is a binarization 

function. If the x is a positive value, the function 
value is 1. Otherwise, the function value is 0. In the 
same pixel position of the L2 outputs, the L2 binary 
bits are viewed as a decimal number. This converts 
the L2 outputs into a single integer-valued “image”: 

 2 1 2

1
Γ 2

Ll l l
i i ll

Binarify S W


   (12)

After the above processing, each pixel value is 

encoded as an integer within 20, 2 1L   . 

For each output matrix of the second layer, we 
divide it into C blocks of size b1b2, calculate the 
histogram information of each block, and then 
cascade the histogram features of each block to 
finally obtain the block extended histogram features: 

     2
11

2
Γ ,..., Γ

LT L CLl
i i if Chist Chist      (13)

where  Γl
iChist  represents the concatenated 

histogram features of C blocks in decimal value map 
Γl

i . 

When the local blocks are selected, the blocks 
can be either overlapping or not. Experiments show 
that non-overlapping blocks are suitable for face 
recognition. 

3 THE PROPOSED METHOD 

Assume there are N training samples 1 2Ι [Ι , Ι ,
..., Ι ]N . First PCANet is used to learn features from 

the face images. In the proposed method, a two-stge 
PCANet is used to learn features from the face 
images. As mentioned above, only the PCA filter 
core need to be learned from the training samples. 
We need just one face dataset to learn PCA filters in 

PCANet, and then such trained network can be 
applied to learn features from new subjects in the 
other datasets. Let  1 2, ,..., Nf f f  be the set of the 

features learned using PCANet from original 
training samples. The dictionary in sparse 
representation is constructed by  1 2, ,..., NA f f f . 

Then the sparse representation is used to code 
the query face images. Using the method of 
Lagrange multiplier, equation (4) is converted to the 
following equivalent problem: 

 2

2 1
ˆ min

α
α Aα y λ α    (14)

where λ is the Lagrange multiplier. It’s a l1-
regularized least squares problem. In our 
experiments, the l1_ls interior-point method (Koh, 
Kim, and Boyd, 2007) for l1-regularized least 
squares is used to solve the problem.  

Once the coding coefficients are obtained, the 
reconstruction error can be computed with respect to 
the test sample as follows: 

2
ˆ , 1,2,...,i i ierror y Aα i c    (15)

Finally, the identity of y is the class corresponding 
to the minimal reconstruction error, as given in (5). 
Algorithm 1 summarizes the above procedure for the 
proposed method. 

Algorithm 1: Improving the Dictionary Construction in 
Sparse Representation using PCANet for Face 
Recognition. 

Input: Training samples A0, testing samples B0, filter 
size k1 k2, number of filters L1 L2, block size 
b1 b2, regularization parameter λ. 

Output: Identity of test samples. 
Step1: Learn PCA filters in PCANet using one face 

dataset. 
Step2: Produce new training samples A and test 

samples B with features learning from A0, B0 

using PCANet. 
Step3: Let A be the dictionary, using l1_ls to 

compute the coding coefficients of yi (the i-th 
sample in B) on A, 

 2

2 1
ˆ min i

α
α Aα y λ α   . 

Step4: Compute the reconstruction error： 

2
ˆ , 1,2,...,j i j jerror y A α j c   . 

Step5: Output the identity of yi:  

   arg min , 1,2,...,i j
j

identity y error j c  . 

Step6: Return to step3 until all samples in B are 
classified. 
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4 EXPERIMENTS 

The proposed method is verified on three publicly 
available face datasets: AR, Extended Yale B, and 
FERET. Experiments are conducted on computer 
with Intel Core i7 CPU(3.60GHz). The proposed 
method is compared with 1-nearest-neighbor (1NN), 
the sparse representation based classification (SRC), 
robust sparse coding (RSC), fisher discrimination 
dictionary learning (FDDL), and PCANet (classify 
by cosine distance). In all experiments, Principal 
Component Analysis (PCA) is applied to reduce the 
dimensionality. 

4.1 Parameter Selection 

In our experiments, a two-stage PCANet is used. 
The MultiPIE (Gross, Matthews, and Baker, 2008) 
dataset has the most face images, so it is used to 
learn PCA filters in PCANet, and then apply such 
trained PACNet to construct dictionaries of new 
subjects in the AR, Extended Yale B, and FERET 
datasets for face recognition. The important 
parameters in PCANet are the filter size k1, k2, the 
number of filters L1, L2, and the block size b1, b2. In 
order to determine the values of k1, k2, L1, L2, b1, b2, 
we conduct experiments by changing the values of 
k1, k2, L1, L2, b1, b2 from 1 to 15 on the MultiPIE 
face dataset. It is found that k1=k2=5, L1=L2=8, and 
b1=b2=8 is a good choice. We set λ=0.001 in all 
experiments. For the AR and FERET datasets, all 
the images from one dataset are put together and 
then the 5-fold cross-validation is used. The initial 
samples are segmented into 5 parts, a single part is 
retained as data for testing, and the other 4 parts are 
used for training. Cross-validation is repeated 5 
times, each part is tested once, and the average of 5-
time results is used to finally obtain a single estimate. 

4.2 The AR Dataset 

The AR dataset (Martinez, 1998) consists of over 
4,000 images from 126 individuals (70 males and 56 
females), which varies in illumination, expression 
and accessories like scarves and sunglasses blocking 
some part of the face. A subset containing 1,400 
images of 100 subjects with 50 males and 50 
females without accessory are chosen in the 
experiment. Sample images of the first person are 
illustrated in Figure 2. All images are resized into 
6043. Dimensionality of the features is reduced to 
300 by PCA for all experiments on the AR dataset. 

 

Figure 2: Sample images of the first subject from AR 
dataset. 

Table 1 shows the results of 1NN, SRC, RSC, 
FDDL, PCANet and the proposed method on the AR 
dataset. The proposed method achieves best among 
all the methods. It is at least 0.43% higher than 
others. 

Table 1: The classification accuracy on the AR dataset. 

Methods Accuracy (%) 

1NN 77.16±3.54 
SRC 96.50±1.14 
RSC 99.27±0.32 

FDDL 76.07±7.69 
PCANet 99.36±0.42 

The proposed method 99.79±0.28 

4.3 The Extended Yale B Dataset 

The Extended Yale B dataset (Georghiades, 
Belhumeur, and Kriegman, 2001) consists of 2,414 
images of 38 individuals captured under various 
lighting conditions controlled in laboratory. Figure 3 
shows sample images of the first person under 
various lighting conditions. For each subject, the 
frontal illumination images (the first 6 images) are 
selected as the training images and the rest for 
testing. All images are resized into 5448. 
Dimensionality of the features is reduced to 200 by 
PCA for all experiments on the Extended Yale B 
dataset. 

 

Figure 3: Sample images of the first subject from 
Extended Yale B dataset. 

Table 2 shows the classification accuracies of 
1NN, SRC, RSC, FDDL, PCANet, and the proposed 
method on the Extended Yale B dataset. The 
proposed method has the highest classification 
accuracy: 97.99%, which is at least 8.73% higher 
than others. 
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Table 2: The classification accuracy on the Extended Yale 
B dataset. 

Methods Accuracy (%) 

1NN 42.32 
SRC 48.67 
RSC 53.43 

FDDL 54.20 
PCANet 89.26 

The proposed method 97.99 

4.4 The FERET Dataset 

The FERET dataset (Phillips, 2000) consists of 
14,051 images with different poses, illuminations 
and expressions. We choose a subset containing 
frontal images marked with “ba”, “bj”, and “bk”, of 
which there 600 images from 200 individuals. Such 
images from the subsets are given in Figure 4. All 
images are resized to 7060. Dimensionality of the 
features is reduced to 400 by PCA for all 
experiments on the FERET dataset.  

Table 3 shows the results of 1NN, SRC, RSC, 
PCANet, and the proposed method on the FERET 
dataset. The proposed method produces the second 
highest classification accuracy: 89%, while the 
PCANet produces the best result. 

 

Figure 4: Sample images from FERET dataset. 

Table 3: The classification accuracy on the FERET dataset. 

Methods Accuracy (%) 

1NN 35.33±3.01 
SRC 65.33±4.40 
RSC 50.33±4.03 

PCANet 90.22±3.71 
The proposed method 89±2.76 

Comparing with other face datasets, the FERET 
dataset is a small dataset. It has 200 individuals, but 
one subject only has 3 images. So, another 
experiment is done on the extended FERET dataset 
by using both the original images and the mirror face 
images of original samples. 

According to (Xu et al., 2017), for original face 
image x, its mirror face image is defined as: 

   , , 1mx p q x p Q q    (16)

where 1,...,  ;  1,...,p P q Q  , P and Q denote the 
number of rows and columns of the face image 
matrix. 

Table 4: The classification accuracy on the extended 
FERET dataset. 

Methods Accuracy (%) 

1NN 56.17±1.45 
SRC 76.5±1.43 
RSC 61±2.27 

PCANet 90.91±1.10 
The proposed method 94.33±1.11 

The results of 1NN, SRC, RSC, PCANet and the 
proposed method on the extended FERET dataset 
are showed in Table 4. The classification accuracies 
of all the methods for the extended FERET dataset 
become higher compared to the corresponding 
results for the original FERET dataset. And the 
proposed method has produced the highest 
classification accuracy: 94.33%, which is at least 
3.42% higher than the other methods. 

In the experiments, the proposed method  
produces the highest classification accuracy within 
the 6 methods on AR and Extended Yale B datasets. 
For the FERET dataset in which the size of the 
training data in each class is very small, the 
proposed method only produces the second best 
result. And after increasing the size of the training 
data in the FERET dataset with the mirror face 
images, the proposed method can also produce the 
highest classification accuracy of 94.33% on the 
extended FERET dataset. 

5 CONCLUSIONS 

To improve the classification accuracy in sparse 
representation for face recognition, in this paper, we 
have proposed an improved dictionary construction 
method in sparse representation using PCANet. 
Extensive experiments demonstrate that the 
proposed method outperforms some previous state-
of-art methods for face recognition. It is found that 
that the dictionary construction is crucial for sparse 
representation. Compared to the original images, the 
features learned by PCANet from the images can 
serve as better dictionary atoms for sparse 
representation in face recognition. One disadvantage 
of the method is that when the size of the training 
data in each class is too small, the proposed method 
does not perform satisfactorily. As shown in the 
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experiments, this problem can be solved by 
increasing the size of the training data with the 
mirror face images. Since the process of sparse 
coding is very time-consuming, we will work on 
improving the efficiency of the proposed method in 
the future work. 
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