
DFEAM: Dynamic Feature-oriented Energy-aware Adaptive Modeling

Fumiya Tanaka, Kenji Hisazumi and Akira Fukuda
Kyushu University, Fukuoka, Japan

Keywords: Embedded System, Self-adaptive Software, Model-driven Development, xtUML, Feature-oriented.

Abstract: There is an increasing demand for reducing the power consumption in the field of embedded-system develop-
ment. A development methodology, which can change software’s power consumption according to the power
consumption of the hardware, can help fulfill this requirement. However, there will be a trade-off between
the power consumption and service quality, which must be balanced for efficient operation. In this paper, we
propose dynamic feature-oriented energy-aware adaptive modeling (DFEAM), which develops self-adaptive
software through model-driven development for achieving a proper balance between the power consump-
tion and quality of service (QoS). In this method, the application itself decides its behavior, according to the
power-consumption situation, by linking the feature model describing the variability of the application with
the description of its behavior, using the executable and translatable unified modeling language (xtUML).
For achieving a satisfactory QoS for variations that are complex and dependent on variable points, a model is
created to quantify the QoS values, which is then used as an index of comparison for finding the optimum vari-
ation. We conducted case studies on applications with multiple variable points, and evaluated them using the
GQM model. The results of the evaluation showed that the adaptation incorporated provided the maximum
software quality under the given power limitations, thus verifying the usefulness of the proposed DFEAM
method.

1 INTRODUCTION

Size limitations and high manufacturing costs are
common issues in embedded-system development. In
the case of battery-driven devices, the battery size is
restricted by the hardware size. This scales down
the battery storage capacity and shortens the operat-
ing time. The operating time is also shortened when
the embedded system provides multiple functions and
is used in many types of scenarios. In this context,
the power consumption needs to be reduced, as much
as possible, to meet the uptime requirements. How-
ever, this will lead to a tradeoff between the power
consumption and the quality of service (QoS). In em-
bedded software development, there is a need to re-
duce the power consumption while, simultaneously,
improving the QoS.

Self-adaptive software (Macı́as-Escrivá et al.,
2013; Mens et al., 2017; Weyns et al., 2012) de-
velopment is one of the solutions to this challenge.
Self-adaptive software can change its behavior ac-
cording to the runtime circumstances, and is widely
recognized to be effective in dealing with complex
and dynamic software requirements. As the runtime
circumstances change constantly, a developer can-

not describe the best behavior, during the develop-
ment phase. The application software in an embed-
ded system should automatically behave in a manner
appropriate for the current environment, because not
all possible patterns can be anticipated in the design
phase.

In this research, we propose a modeling method
named dynamic feature-oriented energy-aware adap-
tive modeling (DFEAM), which realizes self-adaptive
software that achieves both reduction of power con-
sumption and maintenance of QoS. The proposed
method has two main elements: the behavior model
and the adaptation concept.

The remainder of this paper is organized as fol-
lows. The related studies on self-adaptation using
models are described in Section 2. In Section 3, the
proposed method is explained using a meta model.
The content of a case study and its evaluation are ex-
plained in Section 4, and finally, the outline of this
research is summarized in Section 5.

The contribution in this paper is the proposal of
the self-adaptive software development methodology
to solve the trade-off between the power limitation of
application and QoS, which is a problem in embedded
system development.

290
Tanaka, F., Hisazumi, K. and Fukuda, A.
DFEAM: Dynamic Feature-oriented Energy-aware Adaptive Modeling.
DOI: 10.5220/0007370802900297
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 290-297
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

$POUFYU�
.PEFM

7BSJBCJMJUZ
.PEFM

"EBQUBUJPO
1PMJDJFT

$PNQTJUJPO
.PEFM

8FBWJOH
.PEFM

���(BUIFS�$POUFYU�
*OGPSNBUJPO

���"OBMZ[F�$POUFYU�
*OGPSNBUJPO

���&YFDVUF�
"EBQUBUJPO�1PMJDZ

���(FOFSBUF�B
3FDPOGJHVSBUJPO

1MBO

���(FOFSBUF�84�#1&-�
$PEF��

)PU�%FWFMPQNFOU

$POUFYU�
.POJUPS

&YFDVUJPO�
&OHJOF

8BT�BOZ�4-"�
WJPMBUFE "EBQUFE

7BSJBCJMJUZ
.PEFM

"EBQUFE
$PNQPTJUJPO

.PEFM

%FTJHO�5JNF

3VOUJNF

$POGJHVSBUJPO
(FOFSBUPS

.PEFM�#BTFE�3FDPOGJHVSBUPS

6TFT

6TFT

-JOLT -JOLT

6QEBUFT "OBMZ[FT

2VFSJFT :FT
"EBQUT "EBQUT &YFDVUFT

Figure 1: Overview of MoRE-WS (Alfred et al., 2014).

2 RELATED WORKS

In this section, we describe research on self-adaptive
research using models and research on power-aware
modeling.

In (Alfred et al., 2014), MoRE-WS, which is a
framework for dynamic adaptation of web services,
was proposed. This framework adapts web services
by combining multiple models including a variable
model. The framework supports the modeling of
adaptive models at design time and performs adaptive
execution at runtime. Figure 1 shows an overview of
the MoRE-WS framework. The upper part of Figure 1
shows the support provided by the framework dur-
ing the design phase. MoRE-WS supports the mod-
eling of feature models and web-service configura-
tion models, including those with variability, at de-
sign time and the generation of adaptation rules. The
variable feature model is mapped to the web-service
configuration model, and the service configuration is
changed according to the configuration of the feature
model. At runtime, the framework adapts the models
modeled during design time, according to the adapta-
tion rules and context changes detected by the context
monitor. Properties of the web-service operation are
handled in the context. Figure 1 shows the adapta-
tion flow. The adaptation is realized by generating a
reconfigured plan of the variable feature model, ac-
cording to the changes in the context, and reflecting it
on the code of WS-BPEL.

In (Abdallah et al., 2017), a model-driven power
consumption reduction approach in SoC (System-on-
Chip) design has been proposed. In SoC design, re-
ducing power consumption is a major concern. How-
ever, a method known as an effective method is re-
quired to decide architecture configuration and power
management technology at an early stage of design.
They model power estimation parameters and dy-
namic power management to obtain power results at
an early stage of design. By generating and simulat-
ing a power-aware simulation code from the model,
it is possible to obtain the power result at the design
time. In the proposed method, they model an applica-

tion model describing the dynamic behavior of an ap-
plication in an activity diagram and a power manage-
ment model that summarizes architecture parameters
and algorithms. After that, each model is converted
into C++ simulation code and then linked. power re-
sults at the early stage of design can be obtained by
simulation, power consumption estimation and analy-
sis. Power consumption is estimated from the power
management model using a known power character-
istic model of processor.

In the related research that we have mentioned so
far, it is realizing the application at the time of execu-
tion or the application for the electric power by using
the model. However, QoS-aware and energy-aware
self adaptation method using xtUML has not yet been
proposed.

3 DFEAM

We propose a method that can realize self-adaptation,
based on the power consumption and software quality,
using xtUML. Based on model-driven architecture.
It is capable of testing at the design stage and per-
formance measurement and strongly supports model-
driven development. The system specifications de-
scribed by xtUML can be converted into source code,
irrespective of the platform.

A methodology for self-adaptive software devel-
opment, based on the power consumption, using a
model-driven development and xtUML has already
been proposed (Tanaka et al., 2017). In this method,
the application itself can decide the behavior accord-
ing to the power-consumption situation by linking the
feature model describing the variability of the appli-
cation with the description of behavior, using xtUML.
However, it is not possible to compare the qualities
of the complicated variations and find the variation
that can solve the tradeoff between power consump-
tion and quality. Therefore, in DFEAM method, we
create a quantitative QoS model to compare the qual-
ity of variations and use it as an indicator of optimal
variation determination.

The system composition of the proposed method
is shown in Figure 2. The proposed method consists
of two elements: behavior models based on xtUML
and self-adaptation concept based on the concept of
MAPE-K (Kephart and Chess, 2003). MAPE-K is a
control loop model and includes a monitor, an ana-
lyzer, a planning component, and an execution com-
ponent. In the DFEAM concept, Monitor mainly per-
forms the role of the monitor and analyzer, and Man-
ager performs the role of the planning and execution
components. The Monitor and Manager are described

DFEAM: Dynamic Feature-oriented Energy-aware Adaptive Modeling

291

Figure 2: System composition of DFEAM.

by xtUML, and translated into source code by using
model-driven approach. In this section, we will ex-
plain the development procedure at design time by
DFEAM and the adaptation flow at runtime with the
system configuration of Figure 2.

3.1 Procedure

We will describe the self-adaptive software develop-
ment procedure using DFEAM. It is assumed that the
requirements of the application are determined for de-
velopment.

3.1.1 Variability Analysis

First, we analyze the variability of the application that
realizes the requirement and express it with a feature
model. The feature model assigns features to soft-
ware functions and describes the variable functions at
runtime as variable features. The feature model con-
sists of common features, Alternative features, Op-
tional features and Parameterized features. The Al-
ternative feature is a feature that selects one, and the
Optional feature is a feature that selects valid or in-

valid. The Parameterized feature is a feature having
continuous values as variable points. Since there are
Alternative features with Parameterized features and
multiple choices, there arises a problem that innumer-
able variations are present.

3.1.2 xtUML Description

Next, we describe a behavior model (Fig. 2:Behavior
model) with xtUML. The behavior model consists of
Common Behavior and Variable Behavior. Applica-
tion behavior is represented by continuous state tran-
sitions. Common operations not based on variations
are described by one state transition without branch.
On the other hand, the variable operation needs to be
described so that only the state transition which re-
alizes the behavior selected by the variable point is
executed. We use a state transition diagram with vari-
able points for associating features with states. It can
set the guard conditions for state transitions, and the
state transitions according to the active features can
be managed by them. In the variable behavior part,
we set a state for each variable point to realize the
guard conditions. In the transition management state,

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

292

Figure 3: A state machine description at variable point.

a conditional branch is described in an action lan-
guage, and similar to the guard condition, state transi-
tion management corresponding to the active feature
is realized. Figure 3 shows a description of the state
machine diagram at the variable point related to Op-
tional feature. When encryption feature is active, a
state transition start encryption is fired. On the other
hand, the feature is inactive, another state transition
start communication is fired.

The power consumption monitor (Monitor) and
the variable point manager (Manager), which are
components of the adaptive concept, are also written
in xtUML. First, in xtUML, one variable point class
holds the status of all the variable points held by the
application. The status of the variable point changes
according to the context. Therefore, a mechanism for
determining the optimum variation from the dynamic
power consumption is necessary. The role of the vari-
able point manager is to determine the optimum vari-
ation based on the required power consumption de-
rived by the monitor and is to update the status of the
variable point according to the estimated power con-
sumption. This manager is handled as another class
in xtUML. The power consumption monitor, which
is another component is a mechanism for acquiring
the dynamic power consumption. The monitor per-
forms the role of deriving the required power con-
sumption of the software (Required Power) according
to power limitation (Thresholds). It is described as
part of the state machine diagram held by the variable
point manager class. We use a simple state machine
for power consumption monitoring and describe be-
haviors to periodically collect resource consumption
of devices (Resource Consumption). It obtains the
estimated power consumption (Estimated Power) at
runtime by using the power consumption estimation
model prepared beforehand from the resource con-
sumption.

3.1.3 Search for Optimum Variation

After describing by xtUML, we create a model for
finding indices for searching for optimal variation.
The main novelty of this method is that it is possi-
ble to add QoS consideration to self adaptation by
comparing the quality of each variation by creating
a QoS model on a common scale. Figure 4 shows
the relationship between the software and the factors
affecting its quality. This is a metamodel of the man-
ager’s planning and execution action in Figure 2. The
QoS depends on the feature’s weight, quality func-
tion, and activity. The feature’s activity affects the
application’s behavior via the transition constraint.

The QoS model (QoS model) is created using
weights (Weight) and quality functions (Quality) for
each variable feature. The weight is a value indicat-
ing how important the variable function correspond-
ing to the variable point is as the function of the appli-
cation. Quality function is a function expressing the
influence of variable point on QoS. We normalize the
effect on software quality by variability change from
0 to 1. These weights and quality functions are val-
ues whose designers arbitrarily reflect the degree of
importance and the degree of influence on the qual-
ity in service of variable functions. The QoS model
is created by reflecting the tree structure of the fea-
ture tree with weights and quality functions. In this
model, the QoS value of the entire application is ob-
tained by following the tree recursively from root to
leaf. The formulation reflecting the tree structure will
be described below.

We define the QoS value for a feature tree whose
root is feature k as Qk, therefore a QoS value of the
entire application is Qroot . Feature k has nk number
of child features (nk ≥ 0). When feature k has any
child feature, we specify its child feature as feature
k i (1 ≤ i ≤ nk). QoS model for the entire application
is as follows.

Qroot =
nroot

∑
i=1

Qroot i

Qroot : the QoS value for entire application
root i : i th child of root feature

In addition, variable feature k has variability vk,
weight wk and quality function Fk(vk). The domain
of vk and the expression of Fk depend on the type
of feature. The quality functions Fk(vk) of the Alter-
native feature and Parameterized feature are a func-
tion arbitrarily set by the developer. The function of
the Optional feature is a function that returns 0 or 1.
For simplicity we assume that the Parameterized fea-
ture is a leaf of the feature tree. We formulate each

DFEAM: Dynamic Feature-oriented Energy-aware Adaptive Modeling

293

Figure 4: A metamodel of relation between application and quality standard.

of the variable features with the characteristics Com-
mon, Alternative, Optional and Parameterized.

Com : Qk =
nk

∑
i=1

Qk i

Alt : Qk = wkFk(vk)+Qk v vk = {1,2, ...nk}

Opt : Qk = Fk(vk)(wk +
nk

∑
i=1

Qk i) vk = {0,1}

Par : Qk = wkFk(vk) (vk ≥ 0)

Qk : the QoS for a feature k tree
k i : i th child of feature k
wk : the wight of feature k

Fk(vk) : the quality function of feature k

Next, we create a power model to estimate the
power consumption of each variation. This model is
a polynomial with each variable point as a parame-
ter. We perform model fitting using a realistic number
of variations obtained by randomly changing values.
The formula for creating a Power model for an appli-
cation with n variable points vi is as follows.

Power =C+
n

∑
i=1

aivi

We describe the procedure of searching for the op-
timal variation. First, QoS value and estimated power

consumption of all variations are obtained using QoS
model and Power model. Next, all the variations
are sorted by the estimated power consumption and
grouped by the estimated power consumption within
a certain range. The range depends on the power con-
sumption required at runtime. The developer extracts
variations with the highest QoS value in the group for
the group in which the variation corresponding to the
range exists in the group. For the extracted repre-
sentative variation group, if there are other variations
with a higher QoS value with lower power consump-
tion, the variation is excluded from the representative
variation group. The finally obtained variation is used
for self application.

3.2 Adaptation Flow

We describe the behavior change flow of an applica-
tion developed using DFEAM at runtime. At runtime,
the power consumption monitor operates in parallel
with the behavior of realizing the application. The
power consumption monitor periodically estimates
the power consumption at the time of execution by ac-
quiring the resource consumption, and the power con-
sumption required for the application is determined
from the estimated power consumption and the power
limit. The variable point manager selects variations
that meet the requirements from the adopted varia-
tions and updates the status of variable points. Since

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

294

the state transition permitted by changing the status
of the variable point changes, the operation of the ap-
plication also changes. Therefore, it is possible to
change the behavior of the application according to
the power consumption. In addition, the behavior at
that time is changed so as to be optimal in the QoS
value according to the defined criteria.

4 CASE STUDY

We do case studies to demonstrate the usefulness of
DFEAM. We modeled the variability xtUML using
BridgePoint. BridgePoint can automatically generate
code from xtUML and is utilized as a tool in model-
driven development. In BridgePoint, developers de-
scribe class diagrams and can set state machines in
classes where behavior exists. Furthermore, if there
is behavior within the state, the detailed behavior can
be described by using an action language.

4.1 Case Study Design

We designed an application that acquires and stores
simple environmental information, as a case study.
The outline of the application is presented below.

The application obtains environmental infor-
mation using a temperature sensor or an illumi-
nance sensor operating on a battery-driven de-
vice. The sensing intervals of both sensors are
the same. The environmental information is
obtained by converting the acquired data into
temperature and illuminance and adding a time
stamp. The information is accumulated locally
on the device and is sent to the server after a cer-
tain number of sensing operations. The server
holds the data transmitted from the device and
provides services using real-time environmental
information. It is conceivable that the server
communicates with a plurality of devices.

4.2 Implementation

The feature model of the case study is shown in Fig-
ure 5. We describe behavior model, power consump-
tion monitor and variable point manager with xtUML.

We set the weights and quality functions for the
variable features of the application as shown in Ta-
ble 1. For SensingInterval, TransmitSize, Brightness,
it is defined by the step function shown in (a)∼(c) of
Figure 6. When VP Number is i, the variable point
value is vi, the weight is wi, and the quality function is

Figure 5: Feature model in case study.

Fi(vi), the QoS model in the case study is determined
as follows. Incidentally, the expression is described
in three parts.

Qpart1 = F1(v1){w1 +F2(v2)(w2 +w4F4(v4))

+w5F5(v5)}
Qpart2 = w3F3(v3)

Qpart3 = F6(v6)(w6 +w7F7(v7))

Qmax =
7

∑
i=1

wi

Qroot =
Qpart1 +Qpart2 +Qpart3

Qmax

Next, we create a power model to estimate the
power consumption of each variation. We perform
model fitting using 80 kinds of variations obtained by
randomly changing values. The power model equa-
tion is shown below.

Power =C+
7

∑
i=1

aivi

The procedure for finding the optimum variation is
as follows. First, we obtain QoS values and estimated
power consumption of all variations using QoS model
and Power model. Since the quality function of the
parameterized feature is discretized when setting the
quality function, the number of variations that can be
selected practically is 180 in total. A scatter diagram
of QoS values and estimated power consumption of
180 all variations is shown in Fig. 7.

Next, all the variations are sorted by the estimated
power consumption and grouped by the estimated
power consumption within a certain range. In this
case study, 26 groups were created every 0.001 A, and
there were variations corresponding to the range of 7
groups among them. The table 2 shows the result of
extracting the variation with the highest QoS value for
the group with variations in the group. From the ta-
ble, variations of #4 and #6 show that variations with

DFEAM: Dynamic Feature-oriented Energy-aware Adaptive Modeling

295

Table 1: Weight and quality function.

VP Number 1 2 3 4 5 6 7
VP Name Communication Encryption SensingInterval KeySizes TransmitSize Display Brightness
Weight 10 8 7 6 5 3 1
Quality 0/1 0/1 Fig. 6(a) 0.5/0.8/1 Fig. 6(c) 0/1 Fig. 6(b)

0 20 40 60
Sensing Interval (a)

0.0

0.2

0.4

0.6

0.8

1.0

Q
oS

 V
al
ue

0 50 100 150 200 250
Brightness (b)

0.0

0.2

0.4

0.6

0.8

1.0

Q
oS

 V
al
ue

0 20 40 60 80 100
Transmit Size (c)

0.0

0.2

0.4

0.6

0.8

1.0

Q
oS

 V
al
ue

Figure 6: Quality function.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
QoS

0.270

0.275

0.280

0.285

0.290

0.295

0.300

Es
tim

at
ed
 P
ow

er
 [A

]

Figure 7: Scatter diagram of QoS and estimated power.

Table 2: Variations with the highest QoS value in each
group.

Power QoS
1 0.27193 0.380
2 0.27294 0.815
3 0.27344 0.90
4 0.27896 0.885
5 0.27960 0.995
6 0.29599 0.835
7 0.29685 1.0

higher QoS values with lower power consumption ex-
ist in other groups. Since these variations are varia-
tions that do not satisfy the requirement of operating
with maximum QoS under limited power, these are
excluded. As a result, five variations were selected as
optimal variations under specific limited power. The
five triangular points of the Figure 7 are the five vari-
ations obtained as a result of the search.

5 EVALUATION

In this section, we evaluate the usefulness of the
DFEAM using the GQM model (Basili et al., 1994),
for the five variations obtained in the case study. The
GQM model is a measurement framework, which es-
tablishes a clear target and associates metrics neces-
sary for achieving a goal. As many previous software
measurements have used the GQM model, we decided
that it would be suitable for the evaluation in our re-
search (Alfred et al., 2014; Chen et al., 2003). Table 3
shows the GQM model used for evaluation. Q1 in-
dicates the trade-off between the power consumption
and QoS, for the five variations selected, and it con-
firms whether the premise of trade-off optimization is
satisfied or not. By confirming this, it can be shown
that the arbitrary QoS model used in this method is
valid. To estimate Q1, we use the estimated power
consumption (M1) and QoS value (M2) of each vari-
ation. Q2 meets the requirement to develop software
that provides the maximum QoS under a certain lim-
ited power. We use the QoS value (M 3) of each vari-
ation to evaluate Q2.

Figure 7 shows the estimated power and QoS val-
ues of all variations. In Figure 7, the five triangle
points represent the selected variations. For Q1, we
can see that the QoS value is higher for variations
with larger power consumptions than in the figure,
and the trade-off relationship between the power con-
sumption and service quality does not disappear in the
selected five variations. Therefore, the prerequisite
for the optimization of the trade-off relation, which is
the main aim of this method, is satisfied, and it can
be said that the selected variation group is a reason-
able group. Furthermore, with respect to Q2, since the

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

296

Table 3: GQM model.

Goal Question Metrics
Adaptation is appropriate Is there a trade-off in the selected variation group?(Q1) Estimated power(M1)

QoS value(M2)
Does it provide maximum QoS under limited power? (Q2) QoS value(M3)

trade-off relationship of the selected variation group
can be confirmed, the higher the power consumption
is, the higher the QoS value will be. Therefore, QoS is
also the maximum when selecting one variation that
uses the maximum power consumption under a lim-
ited power. From the above results, it can be said that
Q1-2 is achieved and appropriate adaptation is pos-
sible. Thus, we show that this method is useful as a
self-adaptation methodology to optimize the tradeoff.

In this case study, it is shown that the runtime vari-
ation determined using DFEAM provides the max-
imum QoS at the priority defined under the power
limitation. However, it is impossible to show how
much effect is expected for the demand of power-
consumption reduction. In addition, DFEAM arbi-
trarily determines the importance of functions by tak-
ing the developers’ use cases of applications into con-
sideration. Therefore, the selected variations are sub-
ject to the constraints of the developers and use cases.

6 CONCLUSION

First, we stated that embedded systems have restric-
tions on the hardware in many cases and according
to these restrictions. It is necessary to reduce the
power consumption to meet the operating time re-
quirements. However, there is a tradeoff between
power consumption and QoS, and there are demands
for solutions to balance these, in software develop-
ment. In this research, we proposed a self-adaptive
modeling method, DFEAM, which realized software
that performed self-adaptation to solve this trade-off,
using model-driven development based on xtUML.
The proposed method modeled an executable model
that performed self-adaptive behavior to solve a trade-
off by searching for an optimal variation using a self-
adaptive concept incorporating the concept of MAPE-
K and a model showing quantitative QoS. In a case
study, this method was applied to applications with
multiple variable points and evaluated using the GQM
model. From the evaluation, it was observed that ap-
propriate adaptation had been made to provide the
maximum software quality under the given power
limitations. Therefore, it can be said that the DFEAM
is useful as a self-adaptive method to optimize the
trade-off between the power consumption and the

QoS.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant
Number 15H05708.

REFERENCES

Abdallah, F. B., Trabelsi, C., Atitallah, R. B., and Abed,
M. (2017). Model-Driven Approach for Early Power-
Aware Design Space Exploration of Embedded Sys-
tems, volume 87.

Alfred, G. H., Pelechano, V., Mazo, R., Salinesi, C., and
Diaz, D. (2014). Dynamic adaption of service compo-
sitions with variability models, volume 91.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994).
Goal question metric paradigm. In Encyclopedia of
Software Engineering 1, pages 528–532.

Chen, T., Far, B. H., and Wang, Y. (2003). Development of
an intelligent agent-based gqm software measurement
system. In Proceedings of the ATS 2003 Conference,
pages 188–197.

Kephart, J. and Chess, D. (2003). The vision of autonomic
computing, volume 36.

Macı́as-Escrivá, F. D., Haber, R., del Toro, R., and Her-
nandez, V. (2013). Self-adaptive systems: A survey of
current approaches, research challenges and applica-
tions, volume 40.

Mens, K., Capilla, R., Hartmann, H., and Kropf, T.
(2017). Modeling and Managing Context-Aware Sys-
tems’ Variability, volume 34.

Tanaka, F., Hisazumi, K., Ishida, S., and Fukuda, A. (2017).
A methodology to develop energy adaptive software
using model-driven development. In Proceedings of
the 2017 IEEE Region 10 Conference (TENCON),
pages 769–774.

Weyns, D., Iftikhar, M. U., Gil, D., and Ahmad, T. (2012).
A survey of formal methods in self-adaptive systems.
In C3S2E, pages 67–79.

DFEAM: Dynamic Feature-oriented Energy-aware Adaptive Modeling

297

