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Abstract: In this paper, we report three contributions in the field of gene-gene interaction (epistasis) detection. Our first

contribution is the comparative analysis of five approaches designed to tackle epistasis detection, on real-world

datasets. The aim is to help fill the lack of feedback on the behaviors of published methods in real-life epistasis

detection. We focus on four state-of-the-art approaches encompassing random forests, Bayesian inference,

optimization techniques and Markov blanket learning. Besides, a recently developed approach, SMMB-ACO

(Stochastic Multiple Markov Blankets with Ant Colony Optimization) is included in the comparison. Thus, our

second contribution addresses assessing the behavior of SMMB-ACO on real-world data, while SMMB-ACO

was mainly evaluated so far through small-scale simulations. We used a published case control dataset related

to Crohn’s disease. Focusing on pairwise interactions, we report a great heterogeneity across the methods

in running times, memory occupancies, numbers of interactions output, distributions of p-values and odds

ratios characterizing the interactions. Then, our third contribution is a proof-of-concept study in the context of

genetic association interaction studies, to foster alternatives to analyses driven by prior biological knowledge.

The principle is to cross the results of several machine learning methods whose intrinsic mechanisms greatly

differ, to provide a priorized list of interactions to be validated experimentally. Focusing on the interactions

identified in common by two methods at least, we obtained a priorized list of 56 interactions, from which we

could infer one interaction network of size 7, four networks of size 4 and six of size 3.

1 INTRODUCTION

Over the past twenty years, automated high-

throughput genotyping technologies have allowed a

shift from candidate-gene analyses to genome-wide

association studies (GWASs). The primary objective

of GWASs is to detect associations (i.e., statistical de-

pendences) between genetic variants and a phenotype

of interest, in a population under study. Aiming to

better understand the biology of diseases, GWASs are

expected to foster prevention and improve drug treat-

ment, to usher the era of personalized medicine. In

the latter, prevention and drug treatment are designed

depending on the genetic profile of the patient.

Typically, in GWASs, between a few thousand

to ten thousand subjects are genotyped, which pro-

vides the measure of DNA variation at characterized

loci called genetic markers, spread over the genome.

Single nucleotide polymorphisms (SNPs) are widely-

used genetic markers. Depending on the microarray

used, the number of SNPs ranges from a few hundred

thousands to a few millions. From now on, we will

consider SNP-based association studies.

New biological insights were gleaned by explo-

ring GWAS hits for diseases such as inflammatory bo-

wel disease, type 2 diabetes, cardiovascular diseases,

bipolar disorder, as well as some cancers, to cite a few.

However, most of the inherited risk remains to be ex-

plained for most phenotypes investigated so far, a situ-

ation named missing heritability. Therefore, comple-

mentary lines of investigation have started to explore

alternative heritable components of complex phenoty-

pes, encompassing rare variants, structural variants,

epigenetics, and genetic interactions. This paper fo-

cuses on computational approaches designed to iden-

tify genetic interactions, also named epistatic interac-

tions. From a statistical point of view, epistasis defi-

nes the deviation from the model in which the cumu-

lative effects of multiple SNPs linearly determine the

phenotype. A persuasive piece of evidence supports

the role of genetic interactions to explain where part

of the missing heritability hides: biomolecular inter-

actions are ubiquitous in gene regulation and bioche-

mical and metabolic systems (Furlong, 2013; Gilbert-

Diamond and Moore, 2011). Biological evidence of

epistasis has been put forward in several publicati-
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ons (Gao et al., 2010; Nicodemus et al., 2013; Gi-

bert et al., 2017). The gap between the plausible high

number of epistatic interactions existing in genomes

and the limited number of results published may be

explained by the computational challenge posed by

epistasis detection. Moreover, loss-of-function muta-

tions that occur de novo or persist within populations

at low frequencies are known to significantly alter epi-

static interactions (Mullis et al., 2018).

In the remainder of this article, a combination of

SNPs that interact to determine a phenotype is called

an interaction. A k-way interaction is a combination

of k interacting SNPs. A 2-way interaction will also

be called a gene-gene interaction (with SNPs either in

exons or introns).

A key motivation for the large-scale comparative

study reported in this paper lies in the following ob-

servation: we miss feedback about the respective be-

haviors of methods designed to implement GWASs

on real-world data. This observation extends to Ge-

netic Association Interaction Studies (GAISs), and a

fortiori to genome-wide AIS (GWAISs). This paper

contributes to fill this lack. Another strong motiva-

tion for our work was to analyze how SMMB-ACO

(Sinoquet and Niel, 2018), a method proposed most

recently, compares with other approaches, on real

GWAIS data. The remainder of the paper is organized

as follows. Section 2 presents a succinct overwiew of

the recent state-of-the-art. Section 3 provides the mo-

tivations for our study. Section 4 depicts the five me-

thods involved in our study, in a broad-brush way for

the four reference methods chosen, and in more de-

tails for the recently developed SMMB-ACO. Section

5 focuses on the experimental protocol, the real-world

datasets analyzed, the implementation and parameter

adjustement of the five methods. The experimental

results, discussion and feedback gained are presented

in the last section.

2 RELATED WORK

Performing a GAIS is challenging. In the category

of statistical approaches, multivariable multiplica-

tive linear regression (MMLR) offers a framework to

model the relationship between a continuous variable

of interest (outcome) y and multiple interacting pre-

dictors x1,x2, ...,xq (continuous or categorical), such

as in y ∼ β0 +β1 x1 +β2 x2 +β12 x1x2, with q = 2. In

MMLR, interaction terms allow to escape from the

pure linear scheme (y ∼ β0 + β1 x1 + β2 x2). One

step further, linear generalized regression (LGR)

provides a way to model an outcome that is not li-

nearly determined by predictors: for this purpose, a

link function f is used to transform the outcome y,

to match the real distribution of y. Besides, simi-

larly as for MMLR, interaction coefficients may be

specified for LGR. For example, the LGR model to

adjust in the case of two interacting predictors wri-

tes: f (y) ∼ β0 +β1 x1 +β2 x2 +β12 x1x2. Obviously,

MMLR and LGR cannot be used to analyze data on

a genome scale, because of the combinatorial issue

posed by the enumeration of combinations of q pre-

dictors, with 2 ≤ q ≤ r, and upper bound r arbitra-

rily set by the user. Moreover, identifying an appro-

priate link function f in LGR may not be trivial. To

note, logistic regression (LR) is a specific case of

LGR where the link function is known, and allows

to model a binary outcome. Typically, in case con-

trol association studies, with p representing the pro-

bability to be affected by the pathology of interest,

a LR model with two interacting predictors writes:

logit(p) = ln( p
1−p

) = β0 + β1 x1 + β2 x2 + β12 x1x2.

We will further specify to which aim and how LR is

used in the comparative study reported here. Appro-

aches in the line of multifactor-dimensionality re-

duction (MDR) are also compelled to test all combi-

nations of q SNPs, and also fail to handle GWAS data

unless GPU calculation is used (Gola et al., 2016).

The high dimensionality of GWAS data advocates

the design of (supervised) machine learning and data

mining approaches to tackle the problem of epistasis

detection. A direct way to reduce the search space is

to decrease the data dimensionality. Relief-based ap-

proaches (RBAs), random forests and penalized re-

gression are three major feature selection techniques

used in epistasis detection.

Algorithms in the line of Relief first compute (ge-

netical) similarities between individuals; a nearest

neighbor-based technique then allows to assess im-

portances for SNPs with regard to the phenotype of

interest (see (Urbanowicz et al., 2018) for a recent

review). Not to speak of the bias induced by the

pre-selection of SNPs marginally associated with the

phenotype, the computation of pairwise similarities is

prohibitively expensive.

A random forest (RF) is a set of decision trees

grown from bootstrap samples of observations. At

each node, a random subset of K predictors is used

to determine the optimal split. The optimal split is the

one that decreases the most node impurity for a clas-

sification tree (respectively the sum of squared errors

for a regression tree) after the split. RFs applied to

GWAS data produce a ranking of the markers, by de-

creasing importance measures (Schwarz et al., 2010;

Yoshida and Koike, 2011). Until the 2010s, RF lear-

ning was computationally and memory inefficient in

high-dimensional settings. The fast implementation
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of random forests for high-dimensional data provided

via ranger is one of the software programs included in

our comparative study.

RBAs and RFs both allow to rank and select top

scoring SNPs. In the epistasis detection context, a

procedure is required downstream RBAs and RFs, to

generate gene-gene interactions. This procedure may

consist in statistical tests such as regression, or may

be a specific approach dedicated to epistasis detection

(e.g., (Lin et al., 2012)).

In contrast, penalized regression (PR) such as re-

gularized feature selection through Lasso, Ridge or

Elastic Net regression can be used to directly output

gene-gene interactions (Ayers and Cordell, 2010). A

prominent downfall of these methods is the prohibi-

tive running time. The method reported in (Chang

et al., 2018) copes with high data dimensionality

through a two-stage procedure: 2-way interactions

are first detected within genes using Randomized

Lasso and penalized Logistic Regression (RLLR);

then, considering the list of SNPs obtained from the

latter 2-way interactions, any combination of such

two SNPs is tested using again RLLR, to identify

cross-gene epistasis. The biological motivation for

this kind of dimensionality reduction is questionable

since the 2-way interactions within the genes are not

kept.

In the panel of standard supervised machine lear-

ning and data mining techniques, support vector

machines (SVMs) and artificial neural networks

(ANNs) can be used directly for epistasis detection.

To this aim, SVMs separate interacting and non-

interacting combinations of SNPs using a hyperplane

in multi-dimensional space (e.g., (Shen et al., 2012)).

ANNs allow to model non-linear feature interactions

through network connections. The recent revolution

in training feedforward networks with many hidden

layers through advanced stochastic gradient descent

open a path for deep neural networks (DNNs). Ho-

wever, the DNN used in (Uppu et al., 2016) was le-

arned from small datasets (no more than 1,600 indi-

viduals, a few tens of SNPs). In the still more recent

work reported in (Fergus et al., 2018), logistic regres-

sion was employed to pre-select around 5,000 SNPs

to fit a deep learning model (1,500 subjects). Baye-

sian neural networks (BNNs) merge an ANN with a

probabilistic model. Notably, this allows the quantifi-

cation of variable influence with incertainty measures.

In (Beam et al., 2014), BNNS were used to detect epi-

static interactions on a relatively limited scale (around

a hundred individuals described by 60,000 SNPs).

Bayesian networks (BNs) allow to model de-

pendences between variables in an uncertain con-

text. Therefore BNs offer an appealing framework for

gene-gene interaction detection, to discover the best

scoring graph structure connecting SNPs to the varia-

ble of interest. The branch and bound heuristic used

in (Han and Chen, 2011) allowed to process a relati-

vely limited dataset, a published AMD (Age Macular

Degenerated) dataset, which describes around 150 in-

dividuals for about 110,000 SNPs. In (Jiang et al.,

2010), a greedy search performing a forward phase

(edge addition) followed by a backward phase (edge

removal) is applied. However, for tractability reasons,

the process starts including one pair of interacting

SNPs exerting a marginal effect on the phenotype,

thus addressing a specific case of epistasis called em-

bedded epistasis. In the BN framework, feature sub-

set selection stated as Markov blanket learning is

another line of investigation. In a BN built over the

variables of a dataset V , the Markov Blanket (MB)

of a target variable T , MB(T ), is defined as a mini-

mal set of variables that renders any variable outside

MB(T ) probabistically independent of T , conditional

on MB(T ). Typically, a MB of the phenotype is a set

of interacting SNPs able to determine the phenotype.

Thus, instead of learning a whole BN as abovementi-

oned, algorithms were designed to learn the Markov

blanket of a given phenotype of interest. However,

in high-dimensional settings, the complexity of MB

learning remains challenging. FEPI-MB (Fast epista-

tic interactions detection using Markov blanket) (Han

et al., 2011) and DASSO-MB (Detection of ASSOci-

ations using Markov Blanket) (Han et al., 2010) were

able to process the AMD dataset previously mentio-

ned.

Bayesian inference is employed by the popu-

lar BEAM algorithm (Bayesian Epistasis Association

Mapping) (Zhang and Liu, 2007). BEAM partitions

SNPs into three groups: SNPs with a marginal effect

on the phenotype, SNPs that jointly contribute to the

phenotype, and background SNPs. A Markov chain

Monte Carlo (MCMC) process exploits Bayes theory

to partition the SNPs into these three groups. Data-

sets with half a million of SNPs could be processed

by BEAM, at the cost of high running times (up to a

week and even more).

Other approaches, derived from the optimization

field, have been proposed to search the space of com-

binations of SNPs. The method reported in (Aflakpa-

rast et al., 2014) combines Bayesian scoring with an

evolutionary-based heuristic approach; it allowed to

process around 1,400 subjets and 300,000 SNPs. Ant

colony optimization (ACO) was exploited by several

proposals. AntEpiSeeker, a widely cited reference,

relies on the straightforward adaptation of classical

ACO to epistasis detection (Wang et al., 2010), and is

tractable on the genome scale. The objective to max-
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imize in AntEpiSeeker is the χ2 statistics of the test

of dependence between a group of SNPs and the phe-

notype. The method described in (Sun et al., 2017)

seeks to optimize an objective combining the mutual

information measure with a BN-based score, and was

able to process the AMD dataset abovecited. Multi-

objective ACO optimization was also proposed, in

which the Akaike information criterion (AIC) score

and a BN-derived score must be optimized (Jing and

Shen, 2015). The computational burden limited the

analysis to separate chromosome datasets.

3 MOTIVATIONS FOR THE

STUDY

In light of the literature published on the subject, we

can draw a number of remarks about the evaluation

and comparison of methods developed to cope with

epistasis detection. First, to evaluate the performance

of a method, multiple datasets (for instance 100) must

be generated under some controlled (i.e., simulated)

condition. To generate statistics for this condition,

a performance measure (e.g., power, F-measure, for

example) must be computed for each dataset. As this

performance measure is a function of true positives,

false positives and false negatives, its computation re-

quires that multiple executions (for instance, 100) of

the same stochastic method be achieved for each si-

mulated dataset. Thus, for tractability reasons, simu-

lations on the genome scale are only accessible to cen-

tres with outstanding intensive computing and storage

resources (e.g., (Chatelain et al., 2018)), and the over-

whelming majority of studies still compare methods

on simulated datasets describing 100 SNPs (and a few

thousand observations). It follows that the methods

are compared, and subsequent conclusions drawn, in

conditions that in no way reflect the real-world situa-

tion of GWAS analyses.

Second, for the same tractability reasons, publi-

cations analyze the method they propose on a single

GWAS dataset but never perform comparisons with

other methods on GWAS datasets. On the one hand,

comparing several methods requires authors to ad-

just parameters for methods they did not develop and

do not always know well. For those approaches that

rely on supervised machine learning, parameter ad-

justment means running 10 times the method (in a

10-fold cross-validation scheme) under each instanti-

ation (from a grid of instantiations) of the set of para-

meters. The computational burden is therefore prohi-

bitive. On the other hand, the same parameter adjus-

tment issue arises for optimization-based approaches.

Besides, the latter methods generally output several

solutions and this number of such solutions may vary

across the grid of instantiations. Thus, it is not straig-

htforward to assign a score to such outputs, which im-

pedes the ability to rank instantiations.

Third, in publications focused on a novel method,

running times are but exceptionally reported for exe-

cutions on simulated datasets, as well as for execu-

tions on real GWAS datasets. Moreover, when a pu-

blication compares a novel method with other me-

thods, the comparison of running times across me-

thods is practically always missing.

Fourth, so far, no extensive AIS analysis was de-

signed to provide interactions jointly identified by se-

veral approaches, with the aim of generating a short

list for further biological validation.

The works reported in this paper were designed

with the previous four points in mind. Finally, another

strong motivation for our work was to analyze how

SMMB-ACO (Sinoquet and Niel, 2018), a method

proposed most recently, compares with state-of-the-

art approaches, on real data.

4 THE FIVE APPROACHES

COMPARED

The four state-of-the-art approaches selected fall into

various categories: random forest, Bayesian infe-

rence, ant colony optimization, Markov blanket lear-

ning. The newly developed SMMB-ACO method

combines Markov blanket learning with ant colony

optimization.

So far, any novel method proposed was gene-

rally compared to Random Jungle (Schwarz et al.,

2010). We therefore selected ranger, the successor

of Random Jungle, which is a fast implementation

of random forests to handle high-dimensional data

(Wright and Ziegler, 2017).

Also a reference for epistasis detection, BEAM3

(Zhang, 2012), the successor of BEAM (Zhang and

Liu, 2007), was incorporated in our study. Simi-

larly as BEAM, BEAM3 employs a MCMC search

technique to probabilistically assign SNPs to three

groups (background, marginal dependence with the

phenotype, involvment in an interaction). Moreo-

ver, the MCMC simulation allows to assign a sta-

tistical significance to each SNP, thus avoiding cos-

tly permutation-based tests. A major difference with

BEAM is that BEAM3 detects flexible interaction

structures using disease graphs. Besides, BEAM3 dy-

namically accounts for the unknown linkage disequi-

librium (LD) among SNPs. LD is defined as the net-

work of dependences that exists among genetic data,

as the result of evolutionary events. The aim is to fil-
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ter out the secondary associations due to LD: secon-

dary associations will not be admitted in the disease

graph when better candidates are already present. On

the one hand, the complexity of the disease graph is

reduced. On the other hand, it is expected that the pri-

mary disease associations are reported with improved

resolution. BEAM3 was able to process around 4,700

subjects described by about 400,000 SNPs.

AntEpiSeeker (Wang et al., 2010), a reference in

epistatis detection, is the third method considered in

our study. In each iteration of AntEpiSeeker, ants

each select a SNP set of user-defined size from the

initial dataset, according to a probability distribution

P, and calculate a χ2 statistics to assess the depen-

dence strength with the phenotype. Feedback on the

learning process is memorized through the so-called

pheromone levels, based on the χ2 statistics. The

SNP sets with the highest χ2 statistics are recorded.

The probability distribution P is updated based on

the pheromone levels following the standard ACO

scheme. At the end of the iterations, a user-specified

number of best SNP sets is available, together with a

list L of top SNPs ranked by decreasing pheromone

levels. Finally, in a post-processing phase, each best

set S is examined: if the size of the interactions to be

uncovered is q, the subsets of S of size q whose SNPs

are all in L are kept as solutions. To note, the false po-

sitive issue is addressed as follows: if two interactions

overlap, the one with the smaller p-value is kept.

FEPI-MB (Han et al., 2011) and DASSO-MB

(Han et al., 2010) are two deterministic algorithms

that tackle epistasis detection through feature subset

selection based on Markov blanket learning. The key

ingredients in these two algorithms are the forward

and backward phases. In a forward step, a SNP is ad-

ded to the growing MB provided it is the candidate

SNP most dependent with the phenotype, conditional

on the MB, and that this dependence is statistically

significant. Conversely, a backward phase successi-

vely examines all SNPs belonging to the current MB;

each such SNP is removed from the MB based on (sta-

tistically significant) conditional independence. We

chose DASSO-MB, whose backward phase is more

elaborate than in FEPI-MB: FEPI-MB removes a SNP

if it is shown significantly independent conditional on

the current MB; in contrast, DASSO-MB discards a

SNP as soon as it shown independent with the phe-

notype, conditional of a subset of the current MB. In-

deed, such a subset could be the MB to be discovered.

Finally, at the crossroads of machine learning and

optimization, the fifth method retained in our study

is SMMB-ACO (Stochastic Multiple Markov Blan-

kets with Ant Colony Optimization) (Sinoquet and

Niel, 2018). SMMB-ACO is an hybrid approach

that combines Markov blanket construction with sto-

chastic and ensemble features. To address the issue

of scalability in high-dimensional settings, SMMB-

ACO relies on a heuristic designed to search promi-

sing areas of the search space.

In each iteration of SMMB-ACO, several ants

each learn a suboptimal Markov blanket from a subset

of SNPs sampled from the initial set. The MB lear-

ning performed by each ant runs a forward phase in-

tertwined with backward phases. In this respect, MB

learning in SMMB-ACO is similar to that in DASSO-

MB. However, a genuine difference in the SMMB-

ACO and DASSO-MB forward steps is the following:

SMMB-ACO stochastically adds a group of SNPs as-

sociated with the phenotype, whereas DASSO-MB

incorporates the SNP most associated with the phe-

notype. The two MB learning algorithms are descri-

bed and commented in Figures 1 (a) and (b). The sto-

chastic feature of SMMB-ACO relies on SNP sam-

pling, following a probability distribution P updated

based on pheromone levels. It is possible to spe-

cify a specific operating mode for SMMB-ACO, to

cope with high-dimensional data: a two-pass process

is then triggered. Figures 1 (c) and (d) outline this

process.

5 EXPERIMENTAL SETTING

We first present the experimental protocol. Then, the

real-world datasets used are briefly described. Third,

we focus on implementation aspects. This section

ends with considerations about the parameter adjus-

tment of the approaches compared.

5.1 Experimental Protocol

We consider SNPs coded on 0, 1 and 2 to respecti-

vely denote major homozygous, heterozygous and

minor homozygous, where the allele with minor fre-

quency is the disease susceptibility allele. We call in-

teraction of interest (IoI) any 2-way interaction for

which logistic regression (y ∼ β0 + β1 x1 + β2 x2 +
β12 x1x2) provides a significant p-value for the inte-

raction coefficient β12, given some specific signifi-

cance threshold. As highlighted previously, the RF-

based approach ranger can only tackle feature se-

lection. Downstream ranger’s execution, we thus

generated C2
20 2-way interactions from the selection

of 20 SNPs with the highest importance measures.

Then we selected the IoIs at significance threshold

5× 10−4. To put all approaches on the same foot-

ing for the comparison, we filtered out the outputs of

BEAM3, AntEpiSeeker and DASSO-MB and adap-
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Figure 1: Sketches of the DASSO-MB and SMMB-ACO algorithms. (a) DASSO-MB. (b) SMMB-ACO stochastic procedure
to learn a suboptimal Markov blanket. (c) and (d) Two-pass SMMB-ACO algorithm adapted to high-dimensional data. MB:
Markov blanket. V is the initial set of SNPs. (a) Incorporating SNPs one at a time as in DASSO-MB hampers the epistasis
detection process: since the independence test achieved at first iteration is conditioned on the empty Markov blanket (MB),
a SNP marginally dependent with the phenotype is incorporated from the outset, which biases the whole MB learning. (b)
Instead, SMMB-ACO addresses this issue by including groups of SNPs. To this aim, each forward step starts with the
sampling of a set S of k SNPs, from the subset Sa of size Ka that is assigned to the ant that is driving the learning of the
suboptimal MB. For each non-empty subset S′ of S, a score is computed, that assesses the association strength between S′

and the phenotype, conditional on the growing Markov blanket MB. The subset S′ with the highest association score is
incorporated into MB if the association is statistically significant. (c) After all iterations are completed, the set of SNPs
obtained as the union of all suboptimal MBs is returned. This set of SNPs is the set U1 returned by the first pass of SMMB-
ACO (see (d)). (d) A second pass of SMMB-ACO is performed with U1 as the input. This time, the resulting set U2 is
submitted to a backward phase, to yield U3, a set of SNPs. To include SMMB-ACO in our experimental protocol, we
suppressed the post-processing phase of the native algorithm (Sinoquet and Niel, 2018), which outputs as an interaction any
suboptimal MB generated in (b) provided it is contained in the set U3 obtained in (d). In our protocol, for reasons detailed in
subsections 5.1 and 5.4 (last paragraph), the post-processing phase of SMMB-ACO consisted in the generation of interactions
of interest (IoIs), as defined in subsection 5.1, from set U3.

ted the post-processing in SMMB-ACO to keep only

IoIs at significance threshold 5× 10−2. The thorough

justification for the use of two significance thresholds

will be provided in subsection 5.4.

In this comparative analysis, DASSO-MB is the

only deterministic approach. Each other (stochastic)

method was run 10 times on each dataset.

To note, generating all 2-way interactions from a

set of t SNPs and assessing their dependence with the

phenotype through logistic regression may be compu-

tationally expensive (e.g., 30 hours if t = 20 SNPs).

This result shows the necessity to use advanced me-

thods for datasets scaling in tens of thousands of

SNPs, as is the case in this study.

5.2 Real-World Datasets

We used the genome-wide data related to Crohn’s

disease (CD) provided by the Wellcome Trust

Case Control Consortium (WTCCC, https://www.

wtccc.org.uk/). Major pathways involved in Crohn’s

disease have emerged from standard single-SNP

GWASs (Graham and Xavier, 2013). This back-

ground motivated our choice to analyze the WTCCC

dataset related to Crohn’s disease. Using the cohort

of cases affected by CD and two cohorts of unaffected

(controls) provided by the WTCCC, we generated 23

datasets related to the 23 human chromosomes. We

applied the quality control procedure specified by the

WTCCC to each dataset. In particular, this procedure

dismisses SNPs having more than 1% of missing data

and subjects having more than 5% of missing data,

and checks for the so-called Hardy-Weinberg equi-

librium at 5.7× 10−7 threshold. After quality cont-

rol, the size of the population of cases and controls is

4,686 (1,748 affected; 2,938 unaffected). The statis-

tics about the number of SNPs per dataset are as fol-

lows: the average is 20,236; the minimum and maxi-

mum are 5,707 and 38,730, respectively. Finally, we

imputed data using a k-nearest neighbor procedure, in

which the missing variant of subject s is assigned the

variant most frequent in the nearest neighbors of s.
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Table 1: Implementations for the five software programs used in the comparative study.

ranger http://dx.doi.org/10.18637/jss.v077.i01

BEAM3 http://www.mybiosoftware.com/beam-3-disease-association-mapping.html

AntEpiSeeker http://nce.ads.uga.edu/ romdhane/AntEpiSeeker/index.html

DASSO-MB not distributed by its authors, reimplemented

SMMB-ACO https://ls2n.fr/listelogicielsequipe/DUKe/130/SMMB-ACO

5.3 Implementation of the Comparative

Study

Except for DASSO-MB, all approaches are available

on the Internet (Table 1); they are coded in C++. We

recoded DASSO-MB in C++. The extensiveness of

our comparative study required intensive computing

resources from the Tier 2 CCIPL data centre (Inten-

sive Computing Centre of the Pays de la Loire Re-

gion) (Intel 2630v4, 2×10 cores 2,2 Ghz, 20×6 GB).

We exploited the OpenMP intrinsical parallelization

of the C++ implementations of ranger, BEAM3 and

SMMB-ACO. We also exploited data-driven paralle-

lization to run each stochastic method 10 times on

each dataset. Because of the heterogeneity of the run-

ning times across the methods and of memory shor-

tage events, we had to balance the workload distri-

bution between (i) sequentially processing 23 chro-

mosome datasets for one method on one node (pro-

cess 23Chrs 1) and repeating this job 9 times (on ot-

her nodes), and (ii) processing a single chromosome

dataset 10 times for one method on one node (pro-

cess 1Chr 10) and repeating this job for the remai-

ning chromosomes (on other nodes). In the case of the

parallelized software programs ranger, BEAM3 and

SMMB-ACO, the 20 cores of a given node were em-

ployed in parallel. We managed the workload using

the three following modalities: short, medium and

long, for expected calculation durations respectively

below 1, 5 and 30 days. When a timeout occurred

in a node, depending on the degree of completion of

the job, we either switched to a modality with higher

time limit (process 23Chrs 1) or to a chromosome by

chromosome management (process 1Chr 10). In to-

tal, we performed 1,035 chromosome-wide analyses.

5.4 Parameter Adjustment

Most machine learning methods require the tuning of

a number of parameters. Table 6 in Appendix recapi-

tulates the main parameters of the software programs

used in our study.

The software program ranger was specifically de-

signed by its authors to handle high-dimensional data.

Through a complementary study (results not shown),

we tried various values of mtry between
√

n and n, the

total number of SNPs. On the datasets concerned, the

optimal value is shown to be 5
8
n.

To set the value of the product number of iterati-

ons × number of ants in AntEpiSeeker while attemp-

ting to diminish the large number of interactions out-

put by this method, we conducted a preliminary study.

In this preliminary study, the number of iterations was

kept to AntEpiSeeker default value (450). We varied

the number of ants between 500 and 5,000 (step 500).

We observed that using 1,000 ants, we could control

the total number of interactions reported to less than

15,000. while still guaranteeing a coverage of 10 for

each SNP in the largest chromosome-wide dataset.

We set the numbers of iterations of the burn-in and

stationary phases of BEAM3, following the recom-

mendation of its author.

DASSO-MB’s unique parameter is a type I error

threshold, and its adjustment is straightforward.

For a fair comparison, in theory, one would set the

product nit ×nants (number of ACO iterations × num-

ber of ants) in SMMB-ACO to the value chosen for

AntEpiSeeker. However, two points must be taken

into account. First, AntEpiSeeker software program

is not parallelized, whereas SMMB-ACO is: during

each of the nit SMMB-ACO iterations, nants Markov

blankets are learned in parallel. Second, the comple-

xities of an iteration in AntEpiSeeker and of an ite-

ration in SMMB-ACO are not comparable: in Ant-

EpiSeeker, each ant draws a set of SNPs and com-

putes the corresponding χ2 statistic; in SMMB-ACO,

each ant grows a Markov blanket via a forward phase

intertwined with full backward phases. We adjus-

ted SMMB-ACO parameters nit , nants and Ka (num-

ber of SNPs drawn by each ant), in order to gua-

rantee in theory that each SNP of the initial dataset

would be drawn a sufficient number of times in the

scope of a single run. With the parameter setting

(nit ,nants,Ka) = (360,20,160), we expect a coverage

of 30 for the largest datasets, in a single run. We recall

that 10 runs are performed for each stochastic method.

A type I error threshold is used for the indepen-

dence tests in AntEpiSeeker, and for the conditio-

nal independence tests in DASSO-MB and SMMB-

ACO. The common value choosen was 5× 10−4. It

is common to the threshold fixed for the logistic re-

gression used downstream ranger execution. A less

stringent threshold of 5× 10−2 was used for the lo-

gistic regressions performed in the filtering stages do-

wnstream BEAM3, AntEpiSeeker and DASSO-MB

executions as well as in the post-processing stage in
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Table 2: Orders of magnitude of the running times and memory occupancies for the five software programs used. Otherwise
stated, the average running time indicated is computed from the 23 chromosome datasets (ten executions for each dataset).

Method Average running time Memory occupancy

ranger
feature selection: 14 ± 7 mn 2 ± 0.6 GB

post-processing: 60 ± 20 mn

BEAM3

extremely volatile across the chromosome datasets 79 ± 46 GB

Chr7 to Chr23: 54 ± 66 s

Chr6: 22.4 ± 1.5 h

Chr1 to Chr5: above 8 days

AntEpiSeeker 16 ± 3 mn 0.5 ± 0.2 GB

DASSO-MB 82 ± 22 s 1.5 ± 0.7 GB

SMMB-ACO

extremely volatile across the chromosome datasets 43 ± 17 GB, extremely volatile even across

30 ± 17 mn (average on shortest executions) the 10 executions on a given chromosome

otherwise, up to 3 days, with large variations dataset; many execution abortions due

to memory limitation (120 GB)

SMMB-ACO. A recapitulation is provided in Figure

2.

Figure 2: Flow diagram for the comparative analysis.

6 RESULTS AND DISCUSSION

We first compare running times and memory occu-

pancies across the five approaches. Then we compare

the numbers of interactions of interest (IoIs) identi-

fied by the five methods and analyze the distributions

of p-values and odds ratios obtained. Third, we focus

on the IoIs jointly identified by several methods. This

section ends with a discussion.

6.1 Running Times and Memory

Occupancies

There are salient features to draw from Table 2.

DASSO-MB is the software program both much

faster and far less greedy in memory than its com-

petitors. AntEpiSeeker is remarkable in that it

shows a low running time across all chromosomes.

The quickness of ranger is further impeded by the

exhaustive test of 2-way interactions performed do-

wnstream. The behaviors of BEAM3 and SMMB-

ACO are both extremely volatile across the datasets,

for various reasons. In SMMB-ACO, the stochastic

feature translates in the great heterogeneity of me-

mory occupancy, possibly up to memory shortage,

even for short chromosomes. In around the third of

the datasets, it was necessary to launch additional runs

(up to 5), to obtain the 10 runs required by our pro-

tocol. Nevertheless, the processing of all chromoso-

mes remains feasible within 5 days, on 10 nodes. In

contrast, we experienced timeouts with BEAM3, for

the 5 largest chromosomes. In these cases, we were

compelled to specify large timeouts (30 days), with

the consequence of longer waiting times, to guarantee

that executions demanding more than 8 days could

be completed. Despite these prohibitive running ti-

mes, BEAM3, the program most greedy in memory

on average for the datasets considered, never ran out

of memory.

6.2 Interactions of Interest Identified

Numbers of Interactions of Interest. Table 3 high-

lights contrasts between the methods. First, with only

18 interactions, it was nearly expected that DASSO-

MB would not detect IoIs. In the remainder of this ar-

ticle, we will not mention DASSO-MB anymore. Se-

cond, a salient feature is the great heterogeneity in the

numbers of IoIs detected by the four other methods.

These numbers scale in a ten thousands, a thousand,

a hundred and a few tens for AntEpiSeeker, SMMB-

ACO, BEAM3 and ranger respectively.

Figure 3 focuses on the distribution of IoIs across

the chromosomes. A first conclusion is that a sharp

contrast exists between AntEpiSeeker and SMMB-

ACO, whose IoIs are abundantly present in nearly all

chromosomes, and BEAM3 and ranger, whose IoIs

are confined to 10 and 5 chromosomes respectively.

Besides, the number of IoIs in BEAM3, around four

times higher than in ranger, is circumbscribed to a

number of chromosomes that is two times less than

for ranger.
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Figure 3: Comparison of the distributions of interactions of interest detected with ranger, BEAM3, AntEpiSeeker and SMMB-
ACO. AntEpiSeeker detected 13,062 IoIs which are spread over the 23 chromosomes (smallest number of IoIs for a chromo-
some: 202; median number: 380). Moreover, IoIs are overly abundant in chromosome X, whose presence is not known to bias
Crohn’s disease onset (4,427 IoIs representing 34.9% of AntEpiSeeker’s IoIs; the corresponding bar is truncated in subfigure
(a)). These observations comfort the hypothesis of a high rate of false positives. SMMB-ACO identified 1,142 IoIs distributed
across all chromosomes except chromosome X (smallest number of IoIs for a chromosome: 8; median number 38; largest
number: 251; the corresponding bar (Chr10) is truncated in subfigure (b)). In constrast, the 131 IoIs detected by BEAM3
are located within 5 chromosomes only, whereas the 34 IoIs identified by ranger are distributed across 10 chromosomes. As
regards BEAM3, Chr1, Chr6, Chr7, Chr8 and Chr14 respectively harbour 13, 83, 2, 18 and 15 IoIs. The IoIs detected by
ranger are located on Chr2 to Chr7, Chr9, Chr19, Chr22 and Chr23 (minimum number of IoIs for these 10 chromosomes: 1;
maximum number: 6).
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Figure 4: Distributions of p-values and odds ratios for the interactions of interest detected with ranger, BEAM3, AntEpiSeeker
and SMMB-ACO. IoIs: interactions of interest. R: ranger. B: BEAM3. A: AntEpiSeeker. S: SMMB-ACO. Each subfigure
(x2) shows the distribution of odds ratios for the IoIs whose p-values fall into subfigure (x1). −log10(5×10−2) = 1.5.

Table 3: Comparison of the numbers of interactions de-
tected with the five approaches.

Number of Number of

interactions interactions of

identified interest (IoIs)

ranger 34 (34) (100%)

BEAM3 1,082 131 (12.1%)

AntEpiSeeker 14,670 13,062 (89.0%)

DASSO-MB 18 0

SMMB-ACO 6,346 1,142 (18.0%)

Distributions of P-values and Odds Ratios. The

subfigures 4 (a1) to (d1) and Table 4 allow to compare

the distributions of p-values observed for the IoIs. We

consider four intervals for the p-values. Again, a great

heterogeneity is observed across the methods. A first

remark is that AntEpiSeeker and ranger are the only

two methods to show p-values within the two first in-

tervals (i.e., below 10−10) (even down to 10−50 for

some outliers in both methods). A second observation

is that ranger and AnEpiSeeker’s p-values spread over

whole third interval ]10−10, 10−5], whereas SMMB-

ACO’s lowest p-values range in [10−5.5, 10−5]. In

contrast, BEAM3 is the only method whose 131 p-

values are all contained in the fourth interval (and

are even confined to [10−3.5, 5 × 10−2]). Besides,

another discrepancy is evidenced: we have seen that

ranger and AntEpiSeeker’s IoIs are distributed in all

four intervals; however, a sharp contrast exists bet-

ween these methods. Two thirds of the 34 ranger p-
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Table 4: Distributions of p-values for the interactions of
interest detected with ranger, BEAM3, AntEpiSeeker and
SMMB-ACO. Four significance intervals are shown for
−log10(p-value). −log10(5×10−2) = 1.5.

≥ 20 [10, 20[ [5, 10[ [1.5, 5[

ranger 10 12 6 6

BEAM3 0 0 0 131

AntEpiSeeker 13 13 458 12,578

SMMB-ACO 0 0 6 1,136

values are concentrated in the two first intervals, whe-

reas an overwhelming majority of the 13,062 AntEpi-

Seeker p-values are distributed in the third and fourth

intervals, with a balance of 3.6% / 94.4% between

these intervals, respectively. In addition, it is now

clear that the statistical threshold of 5× 10−4 in the

post-processing downstream ranger is not a functio-

nal equivalent for the same statistical threshold used

by AntEpiSeeker, DASSO-MB and SMMB-ACO du-

ring their learning processes.

In parallel, subfigures 4 (a2) to (d2) show the

distributions of odds ratios for the interaction coef-

ficients. In standard GWASs, SNPs with frequen-

cies between 1% and 5% exert effects of moderate

size, with odds ratios below 1.5, most often in range

[1.1,1.3], and up to 2.1 (Stadler et al., 2010). A few

publications document odds ratios for GWIASs. For

example, odds ratios in range [1.3,1.4] are reported in

(Li et al., 2018). Nevertheless, much higher odds ra-

tios may be reported, such as values between 2 and 7,

and even up to around 12 in (Grange et al., 2015). If

we consider odds ratios above 20 as outliers, ranger

and AntEpiSeeker are the two only methods that pro-

vide such outliers. The higher number of outliers ob-

served for AntEpiSeeker can be explained by a much

higher number of IoIs. In contrast, the odds ratios

observed for BEAM3 and SMMB-ACO are all below

9 (see Figure 5). Consistently with (Grange et al.,

2015), we observe that outliers for odds ratios do not

necessarily coincide with outliers for p-values.

Interactions of Interest Jointly Identified by at Le-

ast Two Approaches. Beyond the methodological

comparison on a real dataset, we wish to examine

whether IoIs were jointly output by at least two appro-

aches. The fact that two methods whose core mecha-

nisms greatly differ identify common IoIs suggests

that the corresponding short list of IoIs could be tested

in priority by the biologists (Ritchie and Van Steen,

2018). None of the 131 IoIs identified by BEAM3

is detected by another method. On the contrary, 32

of the 34 IoIs detected by ranger were also detected

by AntEpiSeeker. AntEpiSeeker and SMMB-ACO

detected 16 common IoIs. SMMB-ACO and ranger

have only 3 IoIs in common. One IoI was jointly
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Figure 5: Focus on subfigures 4 (c2) and (d2) showing the
distributions of odds ratios for BEAM3 and SMMB-ACO.

identified by AntEpiSeeker, ranger and SMMB-ACO.

Given the number of interactions output by AntEpi-

Seeker, an overlap was expected between AntEpi-

Seeker and some other method. On the other hand,

our study indicates that the mechanisms behind Ant-

EpiSeeker and SMMB-ACO, which both use ACO,

explore different sets of solutions.

Biological Insights. The 56 IoIs jointly selected by

two or three methods are related to 25 known ge-

nes. From these 56 IoIs, we could infer 11 inte-

raction networks: six of size 3 in Chr2, Chr5, Chr6,

Chr7 and Chr19; four of size 4 in Chr3, Chr14, Chr16

and Chr17; and one of size 7 within Chr10. Besides

a number of standard single-SNP GWASs, the few

AISs devoted to CD focus on genes or pathways al-

ready known to contribute to the disease onset. It is

not a surprise that our study highlights six genes al-

ready known to impact CD onset: NOD on Chr16,

CCNY and NKX2-3 on Chr10, LGALS9 and STAT3

on Chr17, and SBNO2 on Chr19 (McGovern et al.,

2015; Khor et al., 2011). It was also expected that our

protocol designed for AIS investigation without prior

biological knowledge would detect novel interaction

candidates, which it does.

The network of size 7 is presented in Table 5. It

is related to 5 known genes. It is beyond the scope of

this study focused on methodological and computati-

onal aspects, to bring deeper biological insights on the

potential mechanisms involved in the networks and

IoIs.

6.3 Discussion

The presence of p-value and odds ratio outliers is not

an issue in AntEpiSeeker, in regard to the large num-

ber of AntEpiSeeker IoIs. However, this presence in

the few ten IoIs output by ranger comforts the ne-

cessity to lower the significance threshold used for

ranger down to the threshold used in filtering and

post-processing, for the other methods (in our case
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Table 5: Network of 7 SNPs identified in chromosome
10. iv: intron variant; nctv: nc transcript variant; uv: up-
stream variant. LINC01475 (long intergenic non-protein
coding RNA 1475), related to nodes D, E and F in the in-
teraction network, is expressed in 7 tissues including colon,
small intestine, duodenum and appendix. NKX2-3, the ot-
her gene related to node F, is a member of the NKX family
of homeodomain-containing transcription factors; the lat-
ter are involved in many aspects of cell type specification
and maintenance of differentiated tissue functions. Node
A is related to CREM which encodes a transcription fac-
tor that binds to the cAMP responsive element found in
many cellular promoters. Alternative promoter and transla-
tion initiation site usage enables CREM to exert spatial and
temporal specificity in cAMP-mediated signal transduction.
This gene is broadly expressed (36 tissues including colon,
small intestine and appendix). Node B is related to CCNY.
As all cyclins, CCNY controls cell division cycles, regu-
lates cyclin-dependent kinases; it is ubiquitous (27 tissues).
Node G, CPXM2, a protein of the carboxypeptidase X, M14
family member 2, is broadly expressed in 21 tissues.

SNP location related gene function

identifier (bp)

A rs2505639 35185493 CREM iv

B
rs16935948 35260820 CCNY iv

rs3936503 35260329 CCNY iv

C
rs10761659 62685804 — —

rs10995271 62678726 — —

D
rs10883365 99528007 LINC01475 nctv

rs10883367 99528233 LINC01475 iv

E

rs1548964 99529896 LINC01475 iv

rs1548962 99529978 LINC01475 iv

rs6584283 99530544 LINC01475 iv

F
rs10883371 99532698 LINC01475 uv 2kb

NKX2-3

G
rs7067790 123917521 CPXM2 iv

rs17680424 123917559 CPXM2 iv

IoI p-value IoI p-value

AE 0.00358 CD 0.04767

BD 0.00112 CF 0.04386

BE 0.00115 CG 0.00624

CE 0.04267

5× 10−2). We would expect a larger number of IoIs

for ranger, and thus a lower proportion of IoIs with

extreme odds ratios or p-values.

On the CD dataset, DASSO-MB is of no help. The

verbose AntEpiSeeker provided a wealth of results in

both a wide spectrum of p-values and of odds ratios.

SMMB-ACO neither provided outliers for p-values or

odds ratios, but generated plausible odds ratios (up to

9) and showed lowest p-values in the order of 10−5.5.

The widely cited software BEAM3 could not pinpoint

IoIs with p-values lower than 10−3.5. In this respect,

SMMB-ACO seems more promising than the renow-

ned BEAM3, on the CD dataset.

On the CD dataset, 56 IoIs were detected by two

methods at least. A first experimental confirmation

is that SMMB-ACO and AntEpiSeeker, which both

use ACO, are nevertheless intrinsically different since

their overlap is only 16. Second, the IoI overlaps bet-

ween ranger and AntEpiSeeker, and between ranger

and SMMB-ACO, tend to feature ranger as a revela-

tory tool of duplicate IoIs. This remark advocates the

relaxation of the significance threshold used for ran-

ger in this feasibility study, to emphasize the potential

revelatory role of ranger.

7 CONCLUSION AND FUTURE

WORK

In the GWAS field, small-scale simulations reveal no-

thing about the effectiveness of methods on large da-

tasets. In particular, the ratio between the number of

SNPs and number of subjects observed is not compa-

rable between simulated and real datasets.

This paper focuses on four state-of-the-art ap-

proaches designed to detect epistasis, together with

the recent proposal SMMB-ACO. Our work departs

from the standard framework as it reports the exten-

sive comparative analysis of these five approaches on

large-scale real data. We described an experimental

protocol conceived to output comparable sets of (2-

way) interactions across the approaches. We conside-

red 23 chromosome-wide case control datasets related

to Crohn’s disease. We achieved 1,035 genetic ana-

lyses and observed a great heterogeneity across me-

thods in all aspects: running times and memory re-

quirements, numbers of interactions of interest (IoIs)

output, p-value and odds ratio ranges.

This work served as a feasibility study to furt-

her extend the comparative analysis to six other real-

world datasets. At this scale (10,441 chromosome-

wide analyses on 161 datasets), we will be able to

confirm or infirm the trends observed for the CD da-

taset. A still more comprehensive study would also

extend the analysis to various genetic models.

Beyond the enlightening methodological compa-

rison on real datasets, the present work allowed to

cross the IoIs of several machine learning methods

whose intrinsic mechanisms greatly differ. Priorizing

the interactions jointly identified by at least two such

methods is a defensible option to obtain a short list,

when it is not affordable to test experimentally all the

interactions generated. Indeed, the 56 IoIs obtained

from the CD dataset allowed to infer six, four and one
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networks of respective sizes 3, 4 and 7, and six of the

genes involved in these networks are already known

to contribute to the disease onset. Applying the revi-

sed protocol to six other genome-wide datasets will

allow us to confirm whether ranger can be considered

as a revelatory tool of duplicate IoIs.
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APPENDIX

Table 6: Parameter adjustment for the five methods.

Software Parameter description Value

ranger

num.trees 500

number of trees

mtry 5/8 n

number of variables to possibly split at

in each node, with n, the total number

of variables

impmeasure Gini

type of importance measure index

BEAM3

itburn 50

number of iterations in burn-in phase

itstat 50

number of iterations in stationary phase

iAntCount 1000

number of ants

iItCountLarge 150

number of iterations for the large

haplotypes

iItCountSmall 300

number of iterations for the small

haplotypes

Ant- iEpiModel 2

-EpiSeeker number of SNPs in an epistatic

interaction

pvalue 5×10−4

p-value threshold

(after Bonferroni correction)

alpha 1

weight given to pheromone deposited

by ants

phe 100

initial pheromone rate for each variable

rou 0.05

evaporation rate in ant colony

optimization

DASSO-MB
alpha 5×10−4

global type I error threshold

nit 360

number of ACO iterations

nants 20

number of ants

Ka 160

size of the subset of variables

sampled by each ant

k 3

size of a combination of variables

sampled amongst the K above

variables (k < K)

SMMB-ACO ααα′ 5×10−4

global type I error threshold

τττ000 100

constant to initiate pheromone rates

ρρρ and 0.05

λλλ 0.1

two constants used to update

pheromone rates

ηηη 1

vector of weights, to account for prior

knowledge on the variables

ααα and 1

βββ 1

two constants used to adjust the

relative importance between

pheromone rate and prior

knowledge on the variables
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