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Abstract: In order to realize automatic recognition of surgical processes in surgical brain tumor removal using 

microscopic camera, we propose a method of detecting and tracking surgical tools by video analysis. The 

proposed method consists of a detection part and tracking part. In the detection part, object detection is 

performed for each frame of surgery video, and the category and bounding box are acquired frame by frame. 

The convolution layer strengthens the robustness using data augmentation (central cropping and random 

erasing).  The tracking part uses SORT, which predicts and updates the acquired bounding box corrected by 

using Kalman Filter; next, the object ID is assigned to each corrected bounding box using the Hungarian 

algorithm. The accuracy of our proposed method is very high as follows. As a result of  experiments on spatial 

detection. the mean average precision is 90.58%.  the mean accuracy of frame label detection is 96.58%. 

These results are very promising for surgical phase recognition. 

1 INTRODUCTION 

In modern operating rooms, the number of sensors 

such as cameras has increased and the state of the art 

medical instrument and equipment have been 

introduced, which causes the advancement of 

surgeries.  The achievement of a system that 

recognizes the situation in the operating room is 

desired. Operation room monitoring system, staff 

scheduling management etc are required as functions 

of the surgical situation recognition system.  As 

another function, it is important to recognize surgical 

phases such as what kind of actions and/or tasks the 

doctors currently perform. This is needed for making 

surgical work efficient. Many studies have been 

conducted to recognize surgical phases based on 

image information that can be obtained from cameras 

used for the surgery. 

The MICCAI 2016 Modeling and Monitoring of 

Computer Assisted Interventions Workflow 

Challenge in conjunction with the MICCAI 

conference held a contest for surgical phase 

recognition from videos acquired by a laparoscopic 

camera in cholecystectomy surgery. This community 

has started thinking the importance of automated 

surgical phase recognition. 

Various attempts have been made to recognize the 

surgical workflows or phases by using various 

information such as the signal of the binary 

measurement device (Padoy et al., 2012), the RFID 

tag (Bardram et al., 2011), the data acquired via 

sensors of the tool tracking device (Holden et al., 

2014) and the survey robot (Lin et al., 2005).  

However, since the amount of information obtained 

from the surgery through the above-mentioned 

sensors is huge, collecting these signals requires 

almost manual annotation and installation of 

additional equipment, which tends to increase in 

unnecessary workloads.  

Therefore, recent studies consider to identify 

workflows based on video data collected during daily 

surgical operations. However, it is very difficult to 

automatically recognize the surgical phase from 

video scene only. Therefore, in early studies, research 
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to extract visual features manually from images was 

conducted (Blum et al, 2010) (Lalys et al, 2012) 

(Klank et al, 2008).  Recently, with the development 

of convolutional neural network (CNN), for various 

image recognition tasks CNN is used. Studies using 

CNN have also been proposed in the field of surgical 

phase recognition (Twinanda et al, 2017). Many 

studies based on CNN(Raju et al, 2016) (Sahu et al, 

2016) use the data set of M2CAI tool to recognize 

equipment and process at the frame level.  

On the other hand, the surgical phase is a kind of 

continuous function on time domain. Therefore, it is 

essential to utilize temporal information for accurate 

phase recognition so as to effectively extract 

continuous dynamics. Specifically, surgical phase 

recognition was achieved by Twinanda et al. They 

constructed a 9-layer CNN for visual features and 

designed a 2-level hierarchical HMM for modelling 

temporal information (Twinanda et al, 2017).  

Also, as a result of the development of a long-

short term memory (LSTM) network, it is possible to 

model nonlinear dependence of long - range temporal 

dependence. SV-RCNet (Jin et al, 2018), one of the 

cutting-edge research on phase recognition of 

surgical operations using LSTM, proposed to learn 

both spatial (visual) information and temporal 

information. 

This paper aims at achieving automatic analysis 

of surgical phases using intraoperative microscopic 

video images as one of the operator supporting 

functions of the project of the intelligent operating 

room (SCOT) (Okamoto et al, 2017) for the awake 

brain tumor removal surgery. This surgery removes 

brain tumor, preserving maximal brain functions; for 

this, the doctors communicate with awaking patients 

during the surgery.   Difficulties in this surgery are 

caused by differences in individual patients’ brains. 

As a result, the surgical phases becomes complicated; 

therefore, only experienced doctors can perform this 

surgery. It is difficult for surgical staffs other than the 

experienced doctor to confirm the surgical situations 

and predict the next surgical step; consequently, the 

flow of the operation is stagnant.   In order to solve 

the above problems, phase recognition is also 

required in surgical removal of waking brain tumor. 

However, in brain tumor removal surgery, it is 

difficult to recognize phases by frame-level 

annotation like the conventional method. This is 

because brain tumor removal surgery uses multiple 

tools for each phase and the same tool, are also used 

in different phases; namely, the phases and the tools 

used do not have a one-to-one relationship.  

Therefore, in the brain tumor removal surgery, in 

order to recognize the phase, it is important to focus 

on detailed information of the tool: specifically, 

temporal motion information of the tool, the pose of 

the tool, the type of the tool, and the like. 

TSSD (Chen et al., 2018) is an object detection 

method using spatial information and time series 

information. However, it is not practical to perform 

learning using both spatial and temporal information 

like Chen et al.’s method, because an enormous 

human annotation work is necessary for recognizing 

phases of surgical operations. Therefore, in order to 

use temporal information, this paper utilizes a fast 

conventional tracking method and deep learning 

method, but not LSTM.  

2 DATA SET 

None of data set for recognizing surgical tools of 
awake brain tumor removal surgery has been 
disclosed. Hence, We gave spatial annotation 
(bounding box) to surgical tools in frames of videos 
of actual awake brain tumor removal surgery 
performed at Tokyo Women's Medical University 
Hospital, and constructed a new data set that enables 
higher level phase recognition. 

Our dataset consists of 8 brain tumor removal 
surgeries’ videos recorded at 30 fps. We pick up the 
frames every 15 fps, randomly select 11175 frames 
and labeled the 11175 frames with spatial bounding 
boxes as tool candidates. The 11175 frames consist of 
7755, 2270, 1150 frames for training, validation, and 
test, respectively. The surgical tools included in the 
data set are Bipolar, Electrode, Scissors, Suction tube, 
Forceps, Clippers, which are mainly used for brain 
tumor removal surgery. The number of annotated 
instances per tool category is shown in Table 1. 
Figure 1 shows an example of each tool in the data set. 
The frequency of using surgical tools greatly varies 
depending on tumor location, grade and so on. 
Therefore, when learning is performed using n cross 
validation method for each patient, bias could occur 
in the current data set; therefore n closs validation is 
not used in this paper. 

Table 1: Number of annotated frames for each tool. 

Tool Number of annotated instance 

Bipolar 5789 

Electrode 2226 

Scissors 1533 

Suction tube 10207 

Forceps 945 

Clippers 896 

Total 21596 

Number of frame 11175 
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Figure 1: List of six surgical tools used in brain tumor removal surgery.

3 PROPOSED METHOD 

The proposed method is composed of two parts: a 

detection part and a tracking part. Figure 2 shows an 

outline of the proposed method of this research. 

 

Figure 2: Diagram of the proposed method. 

3.1 Detection 

Firstly extract the motion of a surgical tool, we detect 

and classify the surgical tool. We can obtain a 

candidate bounding box and its corresponding 

category of the surgical tool as the output of applying 

SSD (Liu et al, 2016) to a frame of the surgical video. 

3.1.1 Data Augmentation 

Here, before learning the data set, we execute data 

augmentation to improve the robustness against 

actual environmental changes that could occur at  

surgical sites. We conduct central cropping and 

random erasing (Zhong et al, 2017), and reinforced 

our original data set. In addition to the data 

augmentation originally provided by SSD, and 

reinforced our data set. 

3.1.2 Random Erasing 

In actual surgery videos, there are frames in which 

occlusions occur, and they make it difficult to detect 

surgical tools accurately (Figure 3). The main reason 

for the occurrence of occlusions is that the surgeon’s 

hands appear between the microscope and the 

surgical tool, or multiple tools overlap, etc. 

 

Figure 3: Frame in which occlusion occurs. 

In order to solve such a problem, we use random 

erasing to improve robustness against the occlusions 

in the data set and prevent over-fitting. Object 

detection is important in this research. It is supposed 

to detect instances of semantic objects of a particular 

class in an image. Therefore, we use object-aware 

random erasing. The width and height of image be W 

× H (pixels) respectively. Thus, the region of the 

image is S = W × H (pixels). The area of the erased 

area is randomly initialized to 𝑆𝑒 , where 𝑆𝑒/𝑆 is in 

the range between the minimum sl and maximum sh. 

The aspect ratio of the erased rectangular area is 

randomly initialized to re between r1 and r2. 

Parameters of the erasing area are sl=0.05, sh=0.1, 

r1=3, r2 = 1/r1.  

Here, let the coordinates bounding box of the top 

left and the bottom right of the ground truth be (xmin, 

ymin) and (xmax, ymax), respectively. Similarly, the 

ICPRAM 2019 - 8th International Conference on Pattern Recognition Applications and Methods

192



 

coordinates of the erased area are expressed as (xe, 

ye) (xe_max, ye_max). In this method, an erased area 

is generated so as to satisfy the condition expressed 

by Eqs. (1) and (2), rather than creating an erased area 

in the bounding box of the ground truth. 

 

 xmin<xe_max ∩  xe < xmax (1) 

ymin<ye_max ∩  ye < ymax (2) 

 

A generation model diagram of the generated erased 

area is shown in Figure 4, and an actual image is 

shown in Figure 5. 

 

Figure 4: Model of random erasing generation. 

 

Figure 5: Example of applying random erasing to images. 

The upper row is the original image which are cut out from 

the surgical video. The lower row is an image in which 

erased areas are generated for each original image. 

3.1.3 Training 

We use SSD for spatial detection of surgical tools. 

SSD is one of the-state-of-arts of object detection 

network. For the base network of SSD, we use VGG-

16 convolutional neural network (Simonyan et al, 

2014), which extracts powerful visual features. The 

base VGG-16 uses the model pre-trained and 

initialized by ILSVRC CLS-LOC dataset 

(Russakovsky et al, 2015), and we fine-tune the 

model by Dataset that we created. The architecture of 

SSD network is shown in Figure 6.  

We finetune-tune the VGG-16 network and 

optimize the performance of the model using 

probabilistic gradient descent with initial learning 

rates of 1 × 10−4 , 0.9 momentum, 0.0005 weight 

decoy. 

 

Figure 6: The architecture of SSD network. 

3.2 Tracking 

We track the surgical tools to detect how they are 

moving. In this paper, we do not use a method that 

requires large amounts of sequential time series data 

such as LSTM. The reason is that it takes a huge 

amount of human labor to build and self-tune our own 

data set for a network that combines a region proposal 

network such as SSD and LSTM.  

Therefore, we use Alex's SORT (Bewley et al, 

2016) which combines the famous Kalman Filter 

(Kalman et al, 1960) and Hungarian algorithm (Kuhn, 

1955) as one of the cutting-edge tracking methods for 

real-time tracking. 

3.2.1 Kalman Filter Estimation Model 

The Kalman filter is one of the most stable filters that 

can be estimated by predicting and updating the state 

of the tracking object (Tracker). Here, the Kalman 

filter is used to propagate the identity of the detected 

bounding box to the next frame. 

Since the predicted state of the current frame 

is compared with that of the next frame, a better result 

is obtained from the position of the detected object. 

The displacement between each bounding box in 

frames is approximated by a linear constant velocity 

model, which is not related to the motion of other 

objects and cameras. The state of each target is 

modeled as follows. 
 

𝑠𝑡𝑎𝑡𝑒 = [𝑥 , 𝑦, 𝑠, 𝑟, 𝑑𝑥, 𝑑𝑦, 𝑑𝑠]𝑇 (3) 
 

where x and y are the center coordinates of each 

bounding box, and scales s and r represent the scale 

(area) and aspect ratio of the bounding box 

respectively. 
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3.2.2 Assign Detection and Tracker 

In tracking multiple objects, the data assignment 

process is needed. In our tracking system we use 

Hungarian algorithm for data association. 

Each detection is estimated by predicting a new 

position by a Kalman filter (tracker). It is calculated 

using the IOU matrix between the bounding box of 

the tracker and the bounding box detected in the 

current frame. 

The minimum IOU (Intersection over union) is set 

as the threshold value in order to reject the assignment 

in which the overlap of each bounding box is less than 

𝐼𝑂𝑈𝑚𝑖𝑛 . In this paper, 𝐼𝑂𝑈𝑚𝑖𝑛  = 0.3.  

3.2.3 Tracking System 

Figure 7 shows a detailed model of the tracking 

system.  

In order to do the tracking, the algorithm 

initializes the tracker using only detected position 

information in the first frame of the video. Next, from 

the 2nd to final frames, a Kalman filter is applied to 

the tracker of the (t-1)-th frame, to predict the t-th 

frame, and the prediction of the t-th tracker is 

matched with the t-th detection of the Hungarian 

algorithm. By using the Hungarian algorithm, the 

processing of the bounding box is classified into three 

patterns shown below according to the relationship 

between tracker and detection. 

 

Figure 7: Our tracking system diagram. 

(ⅰ) Matched 
In this case, Both results from the tracker and the 

detection match. The Kalman filter correction process 

is performed to help the system model work better in 

the next sequence. 

 

(ⅱ) Unmatched detection 
There is the tracker, but there is no corresponding 

detection. In this case the tracker is removed. This is 

mainly used when the object leaves the image and 

deletes the ID unique to the object. 

 

(ⅲ) Unmatched tracker 
The detection exists, and there is no corresponding 

tracker. In this case we create a tracker that 

corresponds to the detection. This is mainly used 

when an object enters the image and creates a unique 

ID for the object. 

 

By combining (ⅱ) and (ⅲ), in the tracking system, 

the tracker is not deleted immediately after the tracker 

is hidden, the tracker is deleted only when no tool is 

detected in two consecutive frames, and the object ID 

is assigned to the corresponding tracker.  By 

recognizing the object ID, it is considered that the 

individual tool can be accurately identified and the 

tracking can be performed more accurately. 

4 EXPERIMENTS AND RESULTS 

In this chapter, we evaluate the method of tracking 

surgical tools using our data set we created. In the 

detection section (Sec. 4.1) we quantitatively evaluate 

the validity of our data augmentation, the task of 

spatial detection and frame level presence detection 

of surgical tools. In the tracking section (Sec. 4.2), we 

evaluate the trajectory of each tool qualitatively. 

Note that we have received approval by the ethics 

review committee of Tokyo Women's Medical 

University (1955－R2).  

4.1 Detection 

We use SSD for object detection. First of all, in order 

to confirm the validity of data augmentation, all 

layers of VGG-16 are fine-tuned for repeating 250 K 

times with 8 mini batch sizes. The learning rate is 

initialized to 10−4 , and it decreases by 10 times at 

100K, 150K, 200K iterations. Total training time was 

approximately 8 days on an NVIDIA GeForce 

1080Ti. Finally, the parameters of the model in this 

system were learned 150,000 times with batch size 
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24. The learning rate is initialized to 5 × 10−4, and it 

decreases by 10 times at 100K iterations. Total 

training time was approximately 10 days on an 

NVIDIA GeForce 1080Ti. 

4.1.1 Effectiveness of Data Augmentation 

We verified the effectiveness of our data 

augmentation method. The learning conditions are as 

follows. ①Default: the data set described in Section 

2. ②CCrop: central cropped data set. ③RE: random 

erasing data set. Table 2 summarizes the conditions. 

Table 2: Number of annotated frames for each tool. 

condition Train frames Test frames 

Default 7755 1150 

CCrop 23418 3296 

RE 31020 457 

 

① Default  
First, we compare the results of testing under each 

condition using default test data of our data set. Table 

3 summarizes the results. 

Table 3: vs Default Test each condition. 

Tool default CCrop RE 

Bipolar 89.78 89.78 90.72 

Electrode 99.38 94.81 99.66 

Scissors 97.77 96.61 96.41 

Suction tube 89.47 89.22 90.35 

Forceps 86.78 85.59 90.11 

Clippers 95.58 94.00 90.67 

Mean AP 93.02 91.67 92.99 

 

From Table 3, the mean AP (Average Precision) 

for default is the most accurate. In case of central crop, 

the average precision of all tools decreased. On the 

other hand, random erasing reduced the mean AP by 

0.02%, but this reduction is ignorable. In addition, for 

all tools other than scissors and clippers, it can be seen 

that the average precision of all have improved. 

 

②  Central Crop 

Next, we verify using the dataset to which the data 

enlarged and cutted off by central crop are added. The 

results are shown in Table 4. 

As shown in Table 4, the accuracy is improved in 

all the tools in the test data for CCrop, although the 

improvement is very small. Therefore, performing the 

central crop tends to be effective against the 

environmental change due to the magnification 

change of the microscopic image. 

 

 

Table 4: vs Central Crop Test Data.  

Tool default CCrop 

Bipolar 90.60 90.64 

Electrode 89.54 90.02 

Scissors 90.54 90.72 

Suction tube 89.49 90.13 

Forceps 89.76 90.07 

Clippers 89.95 90.30 

Mean AP 89.98 90.32 

 

On the other hand, as the reason why the 

improvement in accuracy was insignificant is that the 

ratio of cutting to the original image is [0.8, 0.9] this 

time; it is considered that the image does not change 

significantly and the accuracy does not improve. 

 

③  Random Erasing  
Finally, we verify test data with high occlusion 

level(RE test in Table. 2 .) as shown in Figure 3. The 

results are shown in Table 5. However, clippers are 

excluded, because there was no scene in which the 

clippers were hidden significantly in the surgery 

video.  

Table 5: vs Random Erasing Test Data. 

Tool Default RE 

Bipolar 89.86 89.70 

Electrode 70.15 66.80 

Scissors 46.56 69.35 

Suction tube 80.00 84.00 

Forceps 81.90 87.68 

Clippers   

Mean AP 73.69 79.51 

 

From Table 5, accuracy improvement can be seen 

in all the tools except Bipolar and Electrode, and the 

average accuracy increased by 5.82%. In particular, 

Scissors gained dramatically by about 23%. Figure 8 

shows some results of detection using the weights of 

Default and RE, respectively. (The visual-threshold is 

the value of the score : 0.6.) 

By doing RE we can successfully detect, classify 

and localize surgical tools. Figure 8(a)-(c) show that 

the detection is improved. In Figure 8(a), in the 

Default, the suction tube existing in the upper left 

cannot be detected, but it can be detected in the RE. 

In Figure 8(b), the suction tube (the area surrounded 

by the red color) existing in the upper left of both 

Default and RE is detected as forceps. However, 

when comparing the two, RE shows that the score of 

forceps classification is lower. (Default: 0.97 > RE: 

0.86). In Figure 8(c), two suction tubes overlap in the 

lower right corner of the image. In Default it is found 

that only one can be detected and bounding box is  
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Figure 8: Example of detection result in frame where 

occlusion occurs.(Left: Default weight, Right :  RE weight). 

redundant. In RE, two suction tubes can be detected 

and bounding box can be localized more accurately. 

However, for Electrode the score drops by 3.35%. 

The reason for this is that the shapes of electrodes 

excluding the tips and of the surgical tool called brain 

spatula, which is not to be classified in this paper, 

look very similar to each other. An example of 

erroneously recognizing the brain spatula as electrode 

is shown in Figure 9. 

From the above result, it was found that random 

erasing is very effective to the image data set acquired 

from an environment like the awake brain tumor 

removal surgery where occlusions frequently occcur. 

 

Figure 9: Example of misrecognition that brain spatula as 

electrode. 

 

4.1.2 Spatial Detection 

To the best of our knowledge, this study first 

performed robust localization and classification 

according to the actual environment of the surgical 

tool with actual brain tumor removed video. We 

analyze the movement of the surgical tools in more 

detail. 

Table 6 shows the performance when using the 

average accuracy (AP) for spatial detection of the 

surgical tool of brain tumor removal surgery in this 

study. 

Table 6: Spatial detection average precision (AP) per-class 

and mean average precision (Mean AP) in All Dataset.  

Tool AP 

Bipolar 90.71 

Electrode 90.55 

Scissors 90.74 

Suction tube 90.18 

Forceps 90.72 

Clippers 90.57 

Mean AP 90.58 

 

Mean AP is 90.58, showing overall good performance. 

Figure 10 shows some examples of detection results. 

Images surrounded by a red thick frame are these that 

can be detected correctly. It can be seen that, 

irrespective of class and quantity, existing tools are 

successfully detected. In addition, although two 

suction tubes in the second row are overlapped, it can 

be detected accurately. This also indicates that the 

random erasing is effective. Next, the images 

surrounded by the blue frame is an incorrectly 

detected image. Figure 10(a) is a misdetection of 

forceps as scissors. It is considered that this is due to 

the similar shape of the tip portion. Figure 10(b) 

bipolar appeared in the right part of the image is false 

positive. Our system misunderstood that surgeon’s 

left hand has the tool(bipolar). Figure 10(c) also 

misrecognized bipolar as electrode. Figure 10(d) 

shows that forceps existing right in the image is 

unrecognized. Since we set visual threshold = 0.6 and 

the value of confidence was less than  the threshold, 

the forceps couldn’t found. Overall our model has 

strong accuracy in spatial detection. 

4.1.3 Frame Level Presence Detection 

Next, in this subsection we calculate the detection 

accuracy at the frame level. We computed the 

accuracy based on whether the visual threshold of the 

detected object is greater than 0.6 for each frame.  

The accuracy is shown in Table 7, and the confusion 

matrix is shown in Table 8. 
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Figure 10: Example of detection result in frame. 

Table 7: Flame label detection accuracy per-class and mean 

accuracy in All Dataset.  

Tool Accuracy 

Bipolar 98.19 

Electrode 97.79 

Scissors 97.79 

Suction tube 94.85 

Forceps 95.89 

Clippers 94.98 

 

From Table 7, we can see that the detection 

accuracy by our approach demonstrates high 

performance.  

Empty cells in the confusion matrix in Table 8 

shows that the value is 0. Yellow cells give correct 

detections. False detections are indicated in blue. The 

right most column named “RE” in the table indicates 

reject, and it is a set of things which cannot be 

detected and which are lower than the threshold in the 

first place. 

Table 8: Confusion matrix. (T0:Biolar, T1: Electrode, T2: 

Scissors, T3: Suction tube, T4: Forceps, T5: Clippers, RE: 

reject.). 

 T0 T1 T2 T3 T4 T5 RE 

T0 1679 4  3   24 

T1 1 620     13 

T2  1 443    9 

T3 2 2  2891 1  152 

T4   1  303  11 

T5      265 13 

4.2 Tracking 

In this section, we show that the bounding box 

obtained from the model of the SSD that we have 

metastasized and learned is stabilizing the locus 

corrected by SORT. The method qualitatively 

evaluates the trajectory of the center coordinates of 

the bounding box by comparing it with the presence 

or absence of SORT. 

4.2.1 Detection and Tracker Assignment  

The proposed method performs detector and tracker 

assignment by using Hungarian method. In trajectory 

extraction, this method can delete erroneous 

detections and avoid unnecessary their assignment to 

the tracker. An example of this deletion is shown in 

Figure 11.  In Figure 11, on the right side of Figure 

11(a), multiple bounding boxes are detected at the tip 

of the electrode. On the other hand, on the left Figure 

11(a), using SORT, only one bounding box is 

generated at the electrode, because a paint of 

electrodes was not detected in the previous frame and 

there is no corresponding tracker, the single bounding 

box was deleted. For Figure 11(b) and Figure 11(c), 

erroneous detection is also suppressed for the same 

reason. 

4.2.2 Trajectory 

Figure 12. shows an example of trajectory extraction 

using SORT.  By using SORT, a smooth trajectory 

compared with “not using SORT” is obtained. The 

difference between with and without SORT can 

clearly be demonstrated by movies, while not clear in 

still images such as Figure 12.   

 

10

Correct detections

Incorrect detections

(a) (b)

(c) (d)
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Figure 11: Delete detection with no corresponding 

tracker.( Left: SORT, Right: without SORT). 

 

Figure 12: Trajectory. 

5 CONCLUSIONS 

This paper has proposed a method for detecting and 

tracking surgical tools from microscope video of 

brain tumor removal surgery.  The proposed method 

consists of a detection part and tracking part. In the 

detection part, object detection (SSD) is performed 

for each frame in surgery video, and the category 

(tool) and bounding box are acquired.  The 

convolution layer strengthens the robustness using 

Data Augmentation.  The tracking part uses SORT, 

which predicts and updates the acquired bounding 

box to which the object ID is assigned.  

Experiments using 3751 frames is conducted. 

Main results are as follows.  

1. Spatial detection’s mean AP is 90.58%. 

2. Frame label detection’s mean accuracy is 

96.58%. 

The future work of this research is as follows.  

①  In order to deal with unrecognized result, 

preprocess for CNN should be improved. 

②  More advanced recognition system will be 

studied which utilizes the content obtained from 

the time series data trajectory and class 

information of each tool.  

③ Using RFID tags the classification accuracy will 

be improved. We get information on the 

currently used surgical tools. We can improve the 

classification of actual surgical tools using 

acquired sensor information. In particular , we 

believe the above-mentioned method is effective 

for detecting tools with similar appearances 

(clipper, forceps, scissors). 

Furthermore, we plan to conduct research to 

identify the surgical phase. 
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