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Abstract: Understanding fishermen decision-making proccess, plays a key role in predicting the impacts of the fishing

activity in the marine ecosystems. Simulating fishing activity using multiagent based approaches provides

tools that assist decision-makers in order to pursuit sustainable fishing activity. In this paper we present a

multiagent architecture for the fishing activity where geo-referenced resources and fishing agents with different

profiles are used to model and simulate the complexity of human fishing activity. A first implementation of

the model (via NetLogo), along with gathered results, provides insights into the capability to build a research

tool for fisheries management.

1 INTRODUCTION

Fishing activity has been under scrutiny mainly be-

cause of the over-fishing and its impact in marine

ecosystems as well as in the economy of fishing com-

munities. Different research tools have been used to

understand the exploitation of the marine ecosystems,

including trophic web and biogeochemical simulation

models, despite the considerable problems in tuning

and validating complex numerical models with field

data (Pitcher et al., 2007; Morato et al., 2016). Multi-

agent systems have been increasingly used in the con-

text of what is being defined as a coupled human and

natural systems or CHANS systems (An, 2012). In

these systems it is usually aggregated a GIS represen-

tation, making interaction more representative of the

real world and socio-economic models, re-focusing

attention in ecosystem analysis from the ecology of

’nature’ to the important influence of people (An,

2012). With regard to the scenario being studied, dif-

ferent levels of complexity must be considered and all

of them must be somehow incorporated in the model

(Pitcher et al., 2010).

In this paper we present the SIMSEA, a multi-

agent architecture for simulating fishing activity in

a geo-referenced scenario where simulated human

decision-making agents with different profiles are

used to explore the complexity of human decision-

making. Profiles contribute to increase the diversity of

behaviours of these agents, tuning their decisions by

using a multi-criteria decision-making process. In this

paper we resport on the first implementation of a mo-

del in NetLogo (Tisue and Wilensky, 2004) applied to

the scenario of demersal fishing activity in Azores ar-

chipelago (NE Atlantic). Agents have different roles

in the model, they are either static or dynamic, re-

presenting different entities such as vessels, ports and

fishing grounds (areas where fishing activity occurs).

The model uses a multi-criteria decision-making me-

chanism applied on the top of a finite-state machine

to model agents’ behaviour which simulate human

decision-making. Moreover, the concept of risk aver-
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sion is used to create behaviour diversity among these

agents. A set of agents with different profiles descri-

bed as optimistic, pessimistic or middle are used to

tune the behaviour of these agents. To the best of our

knowledge, this is the first study focused on the simu-

lation of fishing activities in the Azores using Agent-

Based Systems.

The paper is organized as follows: In section 2

a background and related work is presented. Then,

in section 3, a description is made of the architecture

proposed. In sections 4 and 5, the implementation and

the running experiment using NetLogo are discussed.

Finally, in section 6, the conclusions are presented.

2 BACKGROUND AND RELATED

WORK

Previous work on multiagent based simulation de-

monstrated the utility of these tools applied to dif-

ferent areas (Abar et al., 2017) . DISPLACE (Bas-

tardie et al., 2015; Bastardie et al., 2013) is an agent

based simulation tool applied to the fishing activity,

calculating the income and evaluating the best ves-

sels’ trajectory under spatial constraints. It includes

a geo-referenced dynamic model of the resources (i.e.

fishing stocks) and the vessels have a simple decision-

making process based on a finite-state machine ar-

chitecture. This model is used essentially to evalu-

ate the costs/benefits of agents’ decisions predicting

also what are fishing captures in different scenarios.

Soulié and Thébaud (2006), also developed a multi-

agent bio-economic model to analyze the consequen-

ces of regulatory measures, such as temporary fishing

bans on the allocation of fishing effort between target

species and areas, and the potential economic impacts

of these measures.

The models produced in the context of the

CHANS systems are often based on production rule

systems i.e. systems that use rules if-then-else, and

some deliberative capabilities to fulfil goals however

without explicit deliberation or cognitive processes.

One of the reasons pointed out by some authors is the

fact that simpler models are better suited if the ob-

jective is to predict the behaviour of an organization

as a whole instead of predicting with accuracy a be-

haviour at the individual or small group level (Balke

and Gilbert, 2014). Although SIMSEA is intended to

analyse the global behaviour of a set of entities, it also

has the goal to address a small group of agents follo-

wing specific constraints related to the location and

availability of resources. So, it is expected to provide

decision-making methods that increase the capability

of the simulation to address the diversity of behavi-

ours related to the fishing activity.

Usually when human decision-making is part of

the simulated model of an agent, the concept of

being rational (Kennedy, 2012) is addressed. A ra-

tional agent has consistent and well-defined preferen-

ces across all available decisions options and chooses

the option that meets its preferences best, taking into

account all relevant information. Usually, the boun-

ded rationality, a concept of rationality more close

to human decision-making, is adopted. If an agent

has a bounded rationality, he takes a decision ba-

sed on his limited information and cognitive capabili-

ties in his limited processing time (Groeneveld et al.,

2017). A rational decision-making is often associa-

ted to maximizing expected utility. So, bounded rati-

onal agents are the ones that provide answers to pro-

blems maximizing the utility measured in that specific

contexts and within their own limitations. Maximi-

zation utility is usually addressed as a multi-criteria

decision problem, where enriched methodologies are

used, implying the selection of the best compromise

solution that usually depends on the preferences of

the decision-maker (Tomic et al., 2011). In SIM-

SEA, agents modelling human behaviour use a multi-

criteria decision-making mechanism. Moreover, to

increase the diversity of behaviours, it was decided

to adopt the concept of risk aversion/ risk seeking

as a way to express agents with different behaviours

and characterize their profiles as optimistic vs. pes-

simistic. Several authors have been considering these

same concepts as a way to describe how agents’ be-

liefs have consequences in their behaviour. In particu-

lar, in a financial crisis scenario, an optimistic behavi-

our corresponds to an agent that overestimates their

information and capacities (Said et al., 2018). Ot-

her authors use the risk aversion perspective to create

agents with different behaviours (Magessi and Antu-

nes, 2013). In this case, they may have a high pre-

disposition for risk, called a risk-demander, or a low

predisposition for risk, a risk-fearful.

3 MODELS ARCHITECTURE

SIMSEA is intended to simulate fishing activity. The

architecture is organized in three layers where each

one is associated to different entities with specific pur-

poses. The rationale behind the creation of the three

layers is the following:

• The bottom layer refers to the geo-physical en-

vironment with information gathered from geo-

graphic information systems (GIS). This data is

fixed along the simulation.
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Figure 1: Different layers in SIMSEA architecture: The bottom layer corresponds to physical features (e.g. bathymetry, water
temperature, etc); the mid layer includes the bio-dynamic features (eg. fish biomass index) and identifies fishing areas; the
top layer includes fixed (i.e. fishing grounds and ports) and moving agents (e.g. vessels).

• The mid layer corresponds to fishery resources,

attributing a value of available fish biomass for

each fishing ground. This data can be obtained

from the biology and behaviour of the species

considered in the model or from other type of ex-

perts’ data related to the amount of resources in

the different fishing areas of the scenario.

• The top layer includes the static and moving

agents (e.g. fishing grounds, ports and vessels)

and their (economic and social) interaction.

Agents in the model have different levels of com-

plexity. For example, vessels movements are the re-

sult of fishermen decision-making and, so, it must

be added decision-making capabilities to these agents

whereas fishing grounds are just reactive agents to-

ward constraints imposed to the model i.e. closing

a fishing ground to the fishing activity. As depicted

in figure 1, constraints to the agents’ behaviours with

respect to the bio-dynamics (e.g. stock more or less

abundant) and the interaction between agents (e.g. a

port closes with adverse weather conditions) are also

part of the model.

3.1 Simulated Environment

The simulated environment corresponds to the bottom

and mid layers in the model. At the bottom layer it is

defined the geo-referenced physical area for the sce-

nario where data on bathymetry, mean temperature,

etc, may be allocated. The mid layer adds biological

information related to the fishery resources, e.g. fis-

hing stock for different species and the variation of

recruitment for the species captured (Bastardie et al.,

2013).

Table 1: High level description of agents using Backus-
Naur Form.

Agent ::=

< agentType,agentFeatureSpace,agentDecisionSpace >

agentType ::=

V ESSEL|FISHGROUND|PORT

agentFeatureSpace ::=

V ESSELFeatureSpace |FISHGROUNDFeatureSpace|

PORTFeatureSpace

agentDecisionSpace ::=

V ESSELDecisionSpace|FISHGROUNDDecisionSpacePORTDecisionSpace

V ESSELFeatureSpace ::=

< geoRe f Local,velocity,workingPeriodMax,workingPeriodMin,

restingPeriod,catchRate, f ishingDistanceMax, f ishingDistanceMin

f ishingPriceMax, f ishingPriceMin, f ishingCostMax, f ishingCostMin,

size,registeredPort, portOrigin, portDestination vector,

f ishingGround vector, pro f ile vector >

V ESSELDecisionSpace ::=

< DECISIONportDestination,DECISION f ishingGround >

PORTFeatureSpace ::=

< geoRe f Local,state,constraintDestination,destination vector >

PORTDecisionSpace ::=

< DECISIONportState,DECISIONconstraintDestination,

DECISIONconstraintQuota,DECISIONconstraintFishing >

FISHINGGROUNDFeatureSpace ::=

< geoRe f Local,state,biomassIndex >

FISHGROUNDDecisionSpace ::=

< DECISIONFishGroundState >

3.2 Agency Model

Agents main properties are summarized as follow (ta-

ble 1):

• Agents make decisions supported by a set of fea-

tures, some related to their own properties, others

as a result of environment perception.

• Each agent can be of the type VESSEL,

FISHGROUND or PORT:
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(a) VESSEL and PORT types model human beha-

viours.

(b) FISHGROUND type is used to model the dyn-

amics associated to fishing on a specific fishing

ground.

• Feature space contains the set of features for each

agent type in the model.

• Decision space has a set of higher level functions

defined in the decision-making context as multi-

criteria decision-making mechanism or as con-

straint decisions based on rules applied to some

scenario.

Table 2 describes the details of the features as-

sociated to each agent. Agents are implemented

through finite-state machines (Adam et al., 2017) and

the decision-making functions are called in specific

agents’ states. In the example discussed in section 4,

only the decision-making function related to getting

to the fishing ground is implemented. The other ty-

pes are the ones that result from rules imposed to the

scenario. These rules model decisions concerning the

management of resources by local government autho-

rities 1.

FISHGROUND and PORT types can be on a open

or closed state. The decision to open or close a port

can be autonomous (e.g. weather conditions) while

the decision to close or open a fishing area may occur

from constraints defined in the scenario to be studied.

Destination constraints are imposed by rules (e.g. De-

mersal fishing activity restricted 3 nm from shore).

FISHGROUND type uses an index of relative abun-

dance of fish (biomass index) which determines the

catch for each vessel in that specific area.

Table 2: Lower level description of agents using Backus-
Naur Form.

velocity ::= nm/h

workingPeriod ::= #hours-at-fishing

restingPeriod ::= #hours-at-port

f ishingMaxDistance ::= max-distance

f ishingMinDistance ::= min-distance

size ::= size A|size B

portDestination vector ::= [] |[portDestination1, portDestination2, ...]

f ishingGround vector ::= [] |[ f ishingGround1, f ishingGround2, ...]

catchRate ::= kg/h

DECISIONportDestination ::=

multi criteria decision f unction(portDestination vector)

DECISION f ishingGround ::=

multi criteria decision f unction()

DECISIONportState ::= multi criteria decision f unction()

DECISIONconstraintDestination ::=

constraint decision f unction( f ishingGround vector)

1In future models, these rules can be modelled as part of
governance agents.

3.3 Decision-making

Two main concerns guided the implementation of

decision-making. First we needed to use a decision

mechanism with enough complexity to tackle a simu-

lation where agents model human decision-making.

Secondly, we were looking for a way to identify dif-

ferent profiles among agents that took decisions, ex-

pecting that these agents’ behaviours could be biased

to a more or less aversion to risk behaviour. Based

on these two concerns, we decided to follow a multi-

criteria approach with the following components:

• A set o a1 . . .ak alternatives (options) for each

agent’s decision.

• A set of criteria, ci, . . .cn, defined for each alter-

native;

• A set of weights wi . . .wn which represents the re-

lative importance each criterion has for the agents;

• A set of f1, . . . fn evaluation criteria.

Naturally, each criterion has a possible different

domain from the other criteria and care should be ta-

ken in eliminating the scaling-effects of the used cri-

teria.

More formally, we define a multi-criteria problem

as:

decision= argmaxai∈A{ f1(c1,ax), ... fn(cn,ax)|ax ∈A}
(1)

where A is a finite set of alternative actions, ci, i =
1, . . . ,n are n criteria, wi, i = 1. . . . ,n are the associa-

ted weights denoting the relative importance of each

criterion and f1,. . . , fn are the evaluation criteria for

each ax. This means that as an output of the decision,

the option based on the evaluation of multiple criteria

applied to each alternative in A must be the best op-

tion that maximizes the result.

Each fi(ci,ax) is calculated as follows:

• Vci
(ax) is calculated for each criterion ci, i ∈

{1, . . . ,n}

• fi(ci,ax) = sgn(ci)∗Vci
(ax), sgn(ci) ∈ {−1,1}

To make the final decision, an utility function is

calculated for each ax, x ∈ {1, . . . ,k} as depicted in

equation 2.

U(ax) =< w1,w2, ...,wn > ∗

< f (c1,ax), f (c2,ax), ..., f (cn,ax)>
T

(2)

The option ax with highest utility is, then, selected.

Note that sgn(ci) expresses the signal of the criteria,

maximizing or minimizing the contribution of ci to

the utility.

As mentioned before, the output of the function

Vci
must be a universal comparable value. One possi-

bility is to consider the value of a cost/gain for each
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Vci
e.g. the cost in euros/km of a vessel’s trip. This

was the solution that was tested in the simulation (see

section 4). However there are other options like the

ones that use preference functions that sum up the

contribution of the option ax that represents the inten-

sity of a preference when compared to the other opti-

ons (Tomic et al., 2011). In this case the contribution

to utility is the result of comparison with other options

instead of having an universal comparable value. This

option is expected to be tested in future experiments.

Finally, selecting from a set of options ax can also

be constrained by rules specifying which set of opti-

ons can be considered. So, for each decision, a con-

straint should be taken into account following the ru-

les which are applied to the original set of options ax,

returning a sub-set of options (equation 3).

New A = constraints(A), New A ⊂ A (3)

4 IMPLEMENTATION OF

SIMSEA IN NetLogo

NetLogo (Tisue and Wilensky, 2004) is a free soft-

ware platform founded in multiagent programming

language and modelling environment for simulating

complex natural and social phenomena. With Net-

Logo the modeller can give instructions to hund-

reds or thousands of independent agents specifying

how they should behave and interact with one anot-

her. NetLogo is being used to build an endless vari-

ety of simulations, allowing to explore the behaviour

of individuals under various conditions and the pat-

terns that emerge from their interactions. The mo-

ving agents are called turtles and move over a two-

dimensional grid of patches which may also execute

instructions and interact with turtles and other pat-

ches. The execution cycle of instructions in NetLogo

is made by calling all the agents in the model by a su-

pervisor agent called the observer. NetLogo includes

a tool for running the simulation experiments, dubbed

Behaviour Space, that allows parameter sweeping i.e.

systematically testing the behaviour of a model across

a range of parameter settings.

Netlogo have been considered as one of the tools

that supports simulation at a medium-scale of scalabi-

lity (Abar et al., 2017). The fact that the development

effort is easy and that the high level language used

to model the agents facilitates the interaction between

researchers with different backgrounds, led us to im-

plement a first prototype in NetLogo. The following

features were used in the model tested:

• The scenario of the experiment is the archipelago

of Azores, NE Atlantic;

• A multi-criteria decision-making mechanism is

used to select a fishing ground for vessels of a spe-

cific size, located at ports in one of the archipelago

islands;

• Two criteria for selecting a fishing ground are ap-

plied: the distance from the port of origin and the

fish biomass index;

• A profile is defined by weighting the two criteria

differently.

A description of the environment and how the

vessels make decisions is explained in the following

sections.

4.1 Environment

The environment is defined by the combination of a

geo-referenced physical area, the bathymetry and a

biomass index. Depth was obtained as bathymetric

data composite using multiple sources: GEBCO 08,

grid (MOMARGIS v2, DOPUAz), multi-beam sur-

veys (GMRT grids), point and contour data digitized

from nautical charts in the vicinity of the islands.

In the SIMSEA model geo-referenced physical

area of the scenario represents the archipelago of the

Azores and respective fishing areas within the Exclu-

sive Economic Zone (EEZ). A value of bathymetry

is added to each cell of the grid (corresponding to an

area 0.14km2) used in the scenario.

The biomass index is a measure of relative bio-

mass of fish, and the model use it to represent the

biomass of fish in the different fishing areas. In the

present model it is assumed that the value is static for

each simulation. A range of values from 1 to 9 was

arbitrarily attributed to the index, and randomly asso-

ciated to each fishing area.

Vessels moving in the environment know both the

bathymetry of each patch and the location of the dif-

ferent fishing grounds. In the simulation, it was consi-

dered the fishing of the most valuable commercial fish

species in the Azores, the blackspot seabream Pagel-

lus bogaraveo (Menezes et al., 2013).

4.2 Agent’s Decisions

The decision-making mechanisms were modelled

only for agents of the VESSEL type when they select

a specific fishing ground.

U(a f g) = wd ∗ f (cd ,a f g)+wb ∗ f (cb,a f g) (4)

Two criteria cd and cb, are used to calculate the

utility for each fishing ground option (see equation 4).

The first corresponds to the distance from port origin

to the fishing ground, measured as a mean distance
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between the closest patch and the most distant patch

of a specific fishing ground area from the port. It has

a negative contribution to the final result as depicted

in equation 5. The second criterion is the index of

biomass of the fishing ground area and has a positive

contribution as depicted in equation 6. The maximum

value corresponds to the patches where it is expected

to capture more fish.

f (cd ,a f g) =

−Vcd
(a f g) =− f uel price∗ distance(a f g)

(5)

f (cb,a f g) =

+Vcb
(a f g) = + f ish price/kg ∗ biomass index(a f g)

(6)

With the help of the equation 4, three different

profiles are identified, based on the risk aversion con-

cept (Mandrik and Bao, 2005). The first one, optimis-

tic, assumes that it will always be rewarding to select

the spot with the highest biomass index discarding the

distance from the port. In this case, the weight wb =

1, meaning that it takes into account only the index

of biomass criterion. The second one, pessimistic, se-

lects the closest spot, because it assumes that it will

be never captured enough fish to compensate the trip

cost. In this case, the weight wd = 1. Finally, the

middle profile corresponds to the fisherman that weig-

hts equally the two criteria evaluating the cost of long

distances versus the gains of fish catches.

5 RUNNING THE EXPERIMENT

To test SIMSEA model, two experiments were run

with different fishing price i.e. the Exp. 1 with lower

price and the Exp. 2 with a higher price. An expe-

riment comprised four simulations, each one with a

random distribution of biomass index and with a set

of profiles covering all the possible types of fishermen

behaviour. Moreover, each simulation was run for dif-

ferent sets of optimistic vessels, pessimistic vessels,

middle vessels and for a set of half of vessels optimis-

tic and a half pessimistic (mixed).

The experiment intended to test the capabilities of

the model. The values used for the different parame-

ters are not yet validated and some of them are only

reference values.

5.1 Input Variables

Table 3 describes the input variables tested in the sim-

ulation. Each experiment had four simulations, each

one setting a random distribution of biomass index.

A simulation run for a time limit of 240 hours, cor-

responding to 10 days and was repeated 25 times for

each profile. The moving agents representing vessels

were divided in two categories according to vessel

length, namely size A to simulate vessels with 0-9 m

in length and size B to simulate vessels with size su-

perior to 9 m. The variables fuel price and working

and resting period, had different values according to

the vessel type.

The two categories of boats were proscribed to

fish within 3 nautical miles from shore and size A bo-

ats were also prohibited to travel beyond 30 nautical

miles.

The vessels move along a grid of patches and cap-

ture quantities of fish proportional to the fish biomass

present in a given area.

Table 3: Input variables tested in the SIMSEA.

Experiment Exp. 1 Exp. 2

N.o simulations 4 4

N. runs
by profile

Optimistic 25 25

Pessimistic 25 25

Mixed 25 25

Middle 25 25

Working Period (h)
A (6-12)
B (12-120)

A (6-12)
B (12-120)

Resting Period (h)
A (10)
B (8)

A (10)
B (8)

Fuel price (euros/nm)
A (4)
B (7)

A (4)
B (7)

Fish price (euros/kg) 8 15

Biomass index Random Random

The profile is related to the choices made by fis-

hermen to select a specific fishing area. The profi-

les optimistic, pessimistic and middle were present in

both experiences. The choice of fishing grounds was

dependent on the evaluation made within each profile.

The simulation run for the cases where all vessels

A and B were optimistic (wb=1), pessimistic (wd=1),

middle (wb=0.5 and wd=0.5) or mixed (half of the

vessels pessimistic, the other half optimistic). Such

behavioural diversity was expected to represent the

different behaviours of fishermen.

Fuel price per nautical mile (nm) was determined

for each vessel type according to the vessels charac-

teristics. Fuel price was calculated by multiplying the

vessel speed by the vessel consumption per mile and

this value by the current fuel price for fisheries in the

region (0.58 Euros). The price of the fish was esta-

blished according to the annual average value in the

auction for blackspot seabream.
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5.2 Experimental Results

Figure 2 and 3 shows cost vs. gain of fishing resulting

from the simulation, for both Vessel A and B types.

In both figures it is possible to observe that Vessel A

has the points restricted to a specific range cost. This

result may be related to the fact that A are prohibi-

ted to travel beyond 30 nautical miles. Nevertheless,

vessels of both types reach the break even in the two

experiments, showing that restrictions do not rule out

the possibility of vessels having profit. It is also worth

of notice the higher gain variability from experiment

2, with higher fish prices when compared with expe-

riment 1, as expected.

0

10000

20000

30000

40000

10000 20000 30000 40000 50000

Cost

G
a

in

vessel_size

A

B

Figure 2: Cost vs gain for Vessel A (black dot) and Vessel
B (grey dots) types. Gains are calculated from the sale of
the captured fish using the lowest fish sale price.
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Figure 3: Cost vs gain for Vessel A (black dot) and Vessel
B (grey dots) types. Gains are calculated from the sale of
the captured fish using the highest fish sale price.

The estimation of mean profit for the types of

agent profile and fish biomass distribution index led to

major differences in values, as demonstrated in figure

4. This figure shows the importance of distribution

of biomass for the final results of the experiments. It

also shows that the different profiles have significant

differences in revenue outcomes, providing an insight

of the sensitivity of the model towards these two pa-

rameters
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Figure 4: Mean profit per agents profile on experiment 2.
The four colors distinguish the biomass scenarios.

These experiments confirm the complexity of the

simulation model and the high influence of results for

the controlled factors as agent’s profile, vessel type

and fish biomass distribution.

6 CONCLUSION

In this paper we present SIMSEA, a multiagent simu-

lation system to support decision management related

to fishing activity. A three layer architecture aggre-

gates the data from GIS and the data from fishing re-

sources to feed the agents, representing the entities in

the simulated context.

The NetLogo implementation provided insights

on how the model reacts to the diversity of data. The

experiment used profiles and a randomized set of ini-

tial parameters to study the output patterns. These

features and data were responsible for a diversity of

outputs for each category of vessel’s size and for the

different profiles. As a first approach testing the mo-

del, it is possible to identify that fishing profit may be

influenced by agent profile and the variability associ-

ated to the distribution of biomass index. As expected

the profiles that target fishing areas with higher bi-

omass index are those that obtain a higher revenue,

even when they ignore the cost associated to the dis-

tance.

Further work must be done to improve the de-

cision model. Improvements can be obtained by

adding a dynamic fishing stock model, by increa-

sing the space of decision in the VESSEL and PORT

agents’ types and, at the same time, testing other

multi-criteria decision-making mechanisms, such as

the ones based on comparing preferences.
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