
Behavioral Biometric Authentication in Android Unlock Patterns
through Machine Learning

José Torres1, Sergio de los Santos1, Efthimios Alepis2 and Constantinos Patsakis2

1Telefónica Digital España, Ronda de la Comunicación S/N, Madrid, Spain
2Department of Informatics, University of Piraeus, Karaoli & Dimitriou 80, Piraeus, Greece

Keywords: Android, Authentication, Biometrics.

Abstract: The penetration of ICT in our everyday lives has introduced numerous automations, and the continuous need
for communication has made mobile devices indispensable. As a result, there is an ever-increasing deployment
of services for which users need to authenticate. While the use of plain passwords is the default, many applica-
tions require higher standards of security, such as drawn patterns and fingerprints, used mostly to authenticate
users and unlock their smart devices. In this work we propose a biometrics-based machine learning approach
that supports user authentication in Android to augment native user authentication mechanisms, making the
process more seamless and secure. Our evaluation results show very high rates of success, both for authenti-
cating the legitimate user and also for rejecting the false ones. Finally, we showcase how the proposed solution
can be deployed in non-rooted devices.

1 INTRODUCTION

Smartphones have radically changed the way of mod-
ern living providing communication to users at any
time and place, as well as access to an unlimited num-
ber of services and online applications. As a result,
these smart devices store and process vast amounts
of sensitive information, ranging from personal, to fi-
nancial and professional data. Despite the introduc-
tion, by a significant number of software companies
and also from the mobile OSes, of several biometric-
based authentication mechanisms such as fingerprints
and face recognition, only a small fragment of users
actually uses them. The reasons behind this lack of
adoption can be attributed to several factors including
skepticism regarding who may process this “unique”
and personal data, the impact of this data been leaked,
as well as their usability and efficiency. As a result,
the vast majority of smartphone users are still using
the well-known PIN/Pattern authentication method,
with the “pattern” method being the most used user-
authentication method for smartphone unlocking to
date (Malkin et al., 2016).

An important aspect that has to be considered in
this direction is that due to their use, this authentica-
tion method has several drawbacks. The most obvious
one is that since users have to continuously authen-
ticate to the device, quite often the PIN/Pattern that
users tend to have is relatively “easy”. Moreover, due
to the way that users have to perform the authentica-

tion, shoulder surfing cannot be avoided. Even by ex-
cluding shoulder surfing attacks, other methods could
be utilized in order for an attacker to gain informa-
tion about the victim’s pattern, such as malicious apps
with ”drawing over other apps” permissions and ana-
lyzing finger traces on smartphone screens attacks.

Towards this direction, smartphone locking and
consequently unlocking is an issue that has drawn
much attention from all over the world, since it in-
volves private user data and consequently affects user
rights. Indeed, back in 2016, in the “Apple - FBI en-
cryption dispute”, (Wikipedia, 2018), the FBI asked
Apple to create and electronically sign new software
that would enable the FBI to unlock a work-issued
iPhone 5C, which was recovered from one of the
shooters of the San Bernardino terrorist attack in De-
cember 2015, in California. Nevertheless, it has to
be outlined that modern smartphones have increased
their security and may now wipe the device once
many failed authentication attempts are made.
Main Contributions. This paper focuses on provid-
ing a robust solution that utilizes user behavioural
biometrics through Machine Learning to improve
smartphone locking solutions. This approach can be
adapted to a variety of other use cases, such as smart-
phone app and resource locking and two-factor au-
thentication. The presented evaluation study not only
provides proof about the significance of our proposed
approach but also gives evidence about the protection
levels of specific lock patterns that are frequently used

146
Torres, J., Santos, S., Alepis, E. and Patsakis, C.
Behavioral Biometric Authentication in Android Unlock Patterns through Machine Learning.
DOI: 10.5220/0007394201460154
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 146-154
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

by users. Moreover, contrary to related work we de-
tail how the proposed mechanism can be deployed in
stock Android devices without the need to root the
device.
Organisation of This Work. The rest of this work is
structured as follows. In the next section, we present
the related work regarding locking pattern in smart-
phones. Section 3 details the problem setting and the
use case that this paper addresses, while Section 4 il-
lustrates our proposed solution. Then, in Section 5
we detail the Machine Learning core of the developed
system. Section 6 presents the evaluation experiment
that was conducted, along with its results. Finally,
Section 7 summarises our contributions and proposes
future work.

2 RELATED WORK

In what follows we provide a brief overview regarding
research on smartphone protection through its lock-
ing mechanisms and more specifically using the lock-
ing pattern. The authors have included works that
reveal this topic’s scientific significance, in terms of
user statistics, studies on the theoretic security level
of the mechanism in question, as well as attacks fo-
cusing on bypassing secure pattern lock screens.

As stated in (Malkin et al., 2016), to prevent unau-
thorized access to smartphones, their users can enable
a “lock screen” which may require entering a PIN or
password, drawing a pattern, or providing a biomet-
ric, such as users’ fingerprints. In the survey con-
ducted by (Malkin et al., 2016), involving more than
8.000 users from eight different countries, the prevail-
ing method for locking a smartphone is considered the
smartphone pattern, used in almost half of all users of
the survey (48% of all locking mechanisms).

Nevertheless, in (Aviv et al., 2010), the authors
examine the feasibility of “smudge” attacks on touch
screens for smartphones and focus their analysis on
the Android lockscreen pattern. Alarmingly, their
study concludes that in the vast majority of settings,
partial or complete patterns are easily retrieved. In-
deed, the authors of (Aviv et al., 2010) managed to
partially identify 92% of Android patterns and fully
in 68% of their attempts, using camera setups.

As stated in (Aviv et al., 2017), Android unlock
patterns are considered as the most prevalent graphi-
cal password system to date. The same researchers ar-
gue that human-chosen authentication stimuli, such as
text passwords and PINs, are easy to guess and there-
fore investigate whether an increase in the unlock pat-
tern grid size positively affects the security level of the
mechanism in question.

In (Meng, 2016) two user studies were conducted
with a total of 45 participants to investigate the impact
of multi-touch behaviours on creating Android unlock
patterns. While focusing mainly on the issue of us-
ability, the author proposes increasing the number of
touchable points and improving the rules of unlock
pattern creation.

As shown in (Kessler, 2013), a mathematical for-
mula for the exact number of patterns is not known
yet, even for the simplest case of the unlock patterns,
namely, the 3x3 grid. The authors of (Lee et al., 2017)
and (Lee et al., 2016) respectively calculated in their
works the lower and upper bounds of Android unlock
patterns, thus providing a theoretical estimation of the
unlock patterns’ corresponding security level.

In (Canfora et al., 2016) readers will find a very
interesting approach where the authors propose a con-
tinuous and silent monitoring process based on a
set of user specific features, namely device orien-
tation, touch and cell tower. Other kinds of pro-
tection techniques regarding user authentication in-
clude the works of (Nicholson et al., 2006) where
the authors propose authentication token-based mech-
anisms to identify legal users, (Dunphy et al., 2010)
where graphical password systems are utilized and
(Luca et al., 2012) where the authors propose a novel
application, where the user draws a stroke on the
touch screen as a input password utilizing touch pres-
sure, touch finger size and speed. While this work is
the most similar to our work, our experiments have
much higher percentages of accuracy, while our ap-
proach is based on finger movements on the screen.
Arguably, only a very limited number of smartphone
devices to date support finger pressure data calcula-
tions.

After a thorough investigation of the related scien-
tific literature, we have come up with the conclusion
that even though there is a growing interest towards
the direction of securely locking, and consequently
unlock attacks to, smartphones, we did not find signif-
icant scientific attempts, other that (Luca et al., 2012),
in the direction of improving the already adopted un-
lock mechanism of the smartphone pattern utilizing
machine learning and behavioral biometric user data,
as described in this paper.

3 PROBLEM SETTING

As already discussed, smartphone locking is very
common to the majority of smartphone users to date.
In this section, we further analyze the problem of
securing sensitive personal data that involve smart-
phones, going a step further than the actual access to

Behavioral Biometric Authentication in Android Unlock Patterns through Machine Learning

147

a physical device. We argue that modern smartphone
users not only want to secure their mobile device but
in many cases, there are also specific applications and
data that need to be strongly secured. In order to un-
derstand this argument, a use case is described.

Let us assume that Alice has an Android device
which has several applications, some of which re-
quire strong authentication, e.g. banking applica-
tions. Moreover, Alice may often share her device
with daughter Carol to let her play or browse the In-
ternet. Android may support more than one users.
However, this feature is not often used due to usabil-
ity issues and because in the case of Carol, shoulder
surfing cannot be avoided.

Due to her job, Alice comes in contact with many
people on a daily basis, and quite often she has to un-
lock her device in front of them. Therefore, Alice
fears that her unlock PIN/pattern (and possibly other
credentials) may have been disclosed through shoul-
der surfing. Moreover, Alice would like to have con-
trol of some web pages and apps to avoid possible
issues, from posting something inappropriate on a so-
cial network to messing with her bank account.

Based on the above, Alice wants to be able to au-
thenticate on a device easily, avoiding shoulder surf-
ing attacks. Additionally, Alice wants to be able to
share her device with Carol, yet lock some apps and
possibly web pages so that her daughter cannot access
them. In terms of implementation, we opt for a light
solution so that the device must not be rooted but use
existing and native mechanisms.

We argue that the above could be solved by pro-
viding some context awareness to an app that controls
access to the device. In this case, context awareness
refers to the ability of an app to infer:

• Which user has authenticated.

• Which are the running apps.

• Which web page the user wants to browse.

From the questions above, only the first one can be
answered. Regarding running applications, Google
has removed the getRunningTasks method of
ActivityManager as of API level 21 to avoid apps
surveying users and more importantly to prevent
malicious apps from timely overlaying other apps
(e.g. banking) and harvesting credentials. While
in the literature there are several ways to determine
the foreground app (Chen et al., 2014; Bianchi
et al., 2015; Alepis and Patsakis, 2017), yet all
of them have been deprecated in AOSP. Never-
theless, Google as of Android Lollipop, allows
developers to use two methods to get usage statis-
tics or detect the foreground app. More precisely,
they may either use the UsageStatsManager API

which requires the PACKAGE_USAGE_STATS system
permission and allows an app to collect statistics
about the usage of the installed apps, or use the
AccessibilityService API which requires the
BIND_ACCESSIBILITY_SERVICE system permission.
Notably, both these permissions are “more than
dangerous” permissions. In the first case though,
Android does not allow apps to derive anything
else apart from aggregated statistics about the us-
age of the installed apps. In this regard, an app
that has been granted this permission may collect
aggregated usage data for up to 7 days for daily
intervals, up to 4 weeks for weekly intervals, up to
6 months for monthly intervals, and finally up to
2 years for yearly intervals, always depending on
the chosen interval. In the second case, using the
AccessibilityService, which includes handling
the onAccessibilityEvent() callback and check-
ing whether the TYPE_WINDOW_STATE_CHANGED
event type is present, one may determine when the
current window changes. It is important to note that
Google has warned developers about this permission,
that she will remove apps from the Play Store if
they use accessibility services for “non-accessibility
purposes” (Android Police, 2017).

Finally, regarding web pages, it is worthwhile
to notice that since Nougat apps may not access
any content of /proc/ beyond /proc/[pid]/ where
[pid] is their own pid. Therefore, access to
/proc/net/tcp6 is not possible which would allow
an app to infer the domain that another app tries to ac-
cess. Hence, the only available ways to intercept the
network usage seem to be by re-routing the network
traffic through a local proxy or a VPN. Either of these
cases introduces its own security and trust constraints.
For instance, the use of a local proxy implies that self-
signed certificate must be installed with the latter trig-
gering a security notification in Android and implying
further trust issues. In both cases (local proxy/VPN)
one has access to all the user’s unencrypted traffic.

4 PROPOSED SOLUTION

In this section, we describe our proposed solution re-
garding the resulting application. It should be noted
that the backend of our app implements a specific
use case of our online service, also called “SmartPat-
tern”, which works as an authorization/authentication
mechanism of a service that allows protecting any ex-
ternal resource through “Smart Patterns” (using an
API, Oauth2 or JWT). At present, the app focuses
on securely locking specific apps inside the Android
ecosystem. The OS itself could adopt the described

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

148

underlying approach and use it for locking the An-
droid devices more “securely”. Indeed, we have de-
veloped an Android app that once installed and initial-
ized, can be used as a “locking” mechanism, allow-
ing access to smartphone owners in specific resources
inside their smartphone and correspondingly denying
access to fake ones.

All resources inside the Android OS are han-
dled through corresponding OS apps or third-party
apps. In this sense, private resources can also be
present within specific apps, such as file-managers,
chat applications and photo gallery applications.
Our approach utilizes the provided by the OS
UsageStatsManager API and handles it to recognize
the foreground app successfully. Then, after the app’s
initialization, its users may choose from a list of in-
stalled and pre-installed apps, in their device, that they
need to be securely locked.

More precisely, through the UsageStatsManager
API, we have managed to successfully recognize the
foreground app, contrary to Android documentation
that states that this API is used only for “Usage data
that is aggregated into time intervals: days, weeks,
months, and years”, (Developers Android, 2018). In
our approach, we check for newly created lists of
UsageStats in regular time intervals, taking only
the latest INTERVAL_DAILY records into considera-
tion. Then, looping through the retrieved list, the
most recent record in terms of the timestamp is kept
which corresponds to the foreground app’s package
name. Using this approach, we manage to “segregate”
the initially “aggregated” results and detect the user’s
foreground application.

Then, our app starts working in the background,
as a service, silently monitoring each launched app.
Whenever the service recognizes a launched app that
is selected by the user to be securely locked, our app
presents a full-screen Android activity, “hiding” it,
and thus protecting the app in question. This “protect-
ing” screen can only be bypassed if the user authenti-
cates himself, through our novel smart pattern mech-
anism. As it will be further analyzed in the follow-
ing section, the pattern mechanism not only checks
whether the correct pattern is being drawn, but also
whether the user who is drawing the pattern can be
authenticated from his behaviour while drawing the
pattern, through the machine learning core underly-
ing module.

The secure screen provided by our app cannot be
bypassed, since even when it is minimized or closed,
the running service will continuously keep on re-
launching it, having detected a “protected” app in the
foreground. A possible attack on our app could be an
attempt to uninstall it. This can also be easily pro-

tected, by additionally monitoring the “settings” of
the device through our application, denying access to
the app uninstallation panel.

Our proposed secure locking/unlocking mecha-
nism has been designed to be as much “lightweight”
and “robust” in using it as possible. Both for sup-
porting user experience (UX) and also for providing
the end user with a mechanism that is very close to
the one that he is used to. Indeed, after some run-
ning several experiments with real hardware devices
(not emulators) our results have shown that the entire
authentication process, after the user has drawn a pat-
tern in the app, is completed on an average of 100-180
milliseconds, clearly not “slowing down” the authen-
tication process.

In each case, the work presented in this paper
does not focus only to the app being the final “prod-
uct”, but to the underlying approach, which has been
made to further secure smartphones and sensitive re-
sources from malicious users. As a result, the pro-
posed solution could be used in an increasing number
of even more use cases, such as two-factor authentica-
tion with increased levels of security. Thus, its eval-
uation results, presented in the following sections are
also considered as of great importance in terms of its
scientific contribution.

5 MACHINE LEARNING CORE

To work with drawn patterns, we need to initially es-
tablish an encoding of the associated data. Besides,
this encoding must include information about how the
user enters the pattern; not only the drawing path, that
would enable the Machine Learning (ML) system to
learn about a set of pattern inputs and allow for suc-
cessful predictions.

5.1 Pattern Design and Encoding

To encode the information provided by the unlock
pattern, we have established an enriched pattern path
(pattern + times) as an array of vectors (one by each
existing point in the pattern). According to that, the
representation of the resulting, “enriched” pattern will
meet the following structure:

[(X1,Y1, t1),(X2,Y2, t2), ...,(Xn,Yn, tn)]

where Xi represents the row number of the point re-
garding the virtual matrix where the pattern is en-
tered, Yi represents the column number and ti the time
elapsed since the last point was reached (it will be 0
for the first point). Clearly, (Xi,Yi) 6= (Xi+1,Yi+1)∀i ∈

Behavioral Biometric Authentication in Android Unlock Patterns through Machine Learning

149

Figure 1: Example of a pattern input.

(1,n−1). According to this encoding, the pattern pre-
sented by Figure 1 will be encoded as follows:

[(1,1,0),(2,2, tAB),(1,3, tBC),(2,3, tCD),(3,3, tDE)]

5.2 ML Algorithms Selection and
Specifications

Once the enriched pattern representation is defined, it
should be possible to generate a model for each user to
predict whether each one of the future patterns intro-
duced in the application actually belongs to the “gen-
uine” user. Therefore, and after checking the shape
of the pattern, the next step focuses mainly on ex-
act “timing” extraction of the drawn pattern, generat-
ing a feature vector composed by each point’s times-
tamp representation in the drawn pattern. Continuing
with the same above example, we could have different
valid inputs for the pattern shown by Figure 1 such as:

[(1,1,0),(2,2,0.22),(1,3,0.15),(2,3,0.43),(3,3,0.50)]

[(1,1,0),(2,2,0.17),(1,3,0.15),(2,3,0.41),(3,3,0.57)]

[(1,1,0),(2,2,0.20),(1,3,0.12),(2,3,0.40),(3,3,0.54)]

[(1,1,0),(2,2,0.21),(1,3,0.16),(2,3,0.40),(3,3,0.53)]

[(1,1,0),(2,2,0.23),(1,3,0.14),(2,3,0.42),(3,3,0.53)]

After extracting only the time values, the corre-
sponding result will be the following:

[0,0.22,0.15,0.43,0.50]

[0,0.17,0.15,0.41,0.57]

[0,0.20,0.12,0.40,0.54]

[0,0.21,0.16,0.40,0.53]

[0,0.23,0.14,0.42,0.53]

Using this known and valid pattern features vec-
tors, it is then possible to generate a dataset to build
a ML model, able to predict whether an entered pat-
tern belongs to the real user or not. In this case, it
seems not straightforward to implement a supervised
strategy, mainly because it is not possible to learn in-
correct pattern inputs. However, it is possible to use
some One Class Supervised algorithms (such as One
Class Support Vector Machine, SVM) or another un-
supervised ML approaches like clustering. In our case
and for the purposes of this study, we have used both,
namely a One Class SVM and also the Clustering ap-
proach through an implementation of the K-means al-
gorithm.

5.2.1 One Class SVM Implementation

Using the One Class SVM algorithm, we have found
it possible to learn how to distinguish the valid en-
riched patterns from other, invalid ones, using a train-
ing dataset only composed by valid samples (only one
class). As output, the algorithm will return a binary
result (usually 1 and -1), although the result may vary
depending on the implementation, language, etc., de-
pending on the sample that has been classified as valid
(similar to valid samples used to train the model) or
invalid.

5.2.2 K-means Implementation

In this case, after a dimensionality reduction using
PCA, we have used different configurations for the
K-means algorithm. Nevertheless, after analyzing the
results, we have come up with the findings that the
best results have been obtained using 3 and 5 clusters
in number respectively. The method used for identi-
fying the most representative pattern for the user con-
sists of clustering the training set samples and then
selecting the main cluster, that is the one that contains
more samples. During the algorithm’s final step we
have been able to predict whether an enriched pattern
belongs to the user by checking whether it has been
positioned into the main cluster of the trained model.

Figure 2 illustrates both the training and the test-
ing phase, where the main cluster is “C1”.

6 EVALUATION EXPERIMENT

In this section, we describe the settings of the exper-
iment that has been conducted to evaluate the effec-
tiveness of the resulting app. The experiment involved

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

150

Figure 2: Clustering samples at test (top) and training (bot-
tom) phase.

64 users, as well as 6 supervisors in a total of 70 par-
ticipants, including 2 phases of evaluation. The first
phase involved 54 users and the 6 supervisors, while
the second phase involved 10 users and the same su-
pervisors of phase 1.

Specifically, 54 of the evaluation users tested the
app’s effectiveness of the smart-pattern approach, not
being able to be “broken” by other users. Respec-
tively, 10 of the evaluation users tested the app’s user-
friendliness and focused in its efficiency by consider-
ing interaction complexity and minimum false posi-
tives.

At this point we should make a short discussion
about the different types of user patterns both in terms
of complexity that translates into the number of points
the users’ use and also in terms of complexity that
translates in differentiations while drawing the actual
pattern, namely quick or slow finger movements and
also intended “strategic” pauses of the user in spe-
cific parts of the pattern. Our experiment revealed that
these criteria are quite significant since both the num-
ber of points of the patterns and also the timings in-
volved affect both the effectiveness of the underlying

algorithm to reject the false users, but also the sys-
tem’s effectiveness in minimizing false positives of
real users. Indeed, as expected, a smart pattern be-
comes more effective in terms of security as the num-
ber of points increases, while users’ atomic timings
while drawing their patterns is of equal or even greater
importance in terms of app safeguarding.

The following figures illustrate some drawn pat-
terns that have been used for the evaluation of the
smart pattern app. More specifically, Figures 3a and
3b represent the initial, simple patterns of the exper-
iment. Of course, the actual patterns that take the
timings of the drawn patterns into consideration can-
not be visualized in any figure, since for this purpose,
video files should be utilized. Figures 4a and 4b illus-
trate screenshots while using the resulting app.

(a) Pattern without direction
data.

(b) Pattern with direction
data.

Figure 3: Simple patterns used in the first two steps of the
evaluation study.

(a) App settings (b) Drawing Pattern

Figure 4: Screenshots from the app.

Behavioral Biometric Authentication in Android Unlock Patterns through Machine Learning

151

6.1 First Phase of the Experiment (54
Users)

Settings: The experiment included a tablet and a
smartphone for each evaluator user. The tablet was
displaying the instructions and corresponding videos
for the users. The smartphone had the app installed to
be tested. A supervisor was also monitoring the whole
process, both for helping and most importantly not-
ing the evaluation results of the experiment. The su-
pervisor was noting for each phase and user attempt,
whether the users’ attempts were successful (allow-
ing access to the user) or not (denying access to the
user). All the supervisors’ results were afterwards
transferred to a database for further processing and
visualization.

Steps: This experiment phase involved 5 steps,
each one corresponding to the 4 levels of smart-
pattern complexity within the evaluation experiment,
while there was a fifth step where the users had more
“help” to pass the smart pattern test successfully. In
each one of the 5 steps, each user made 10 subsequent
attempts to pass the corresponding smart pattern chal-
lenge. More specifically, step 1 involved an experi-
ment with the user trying to pass the pattern screen
successfully by only seeing an image of the correct
pattern, having no motion directions. Step 2 involved
the user trying to pass the smart pattern screen suc-
cessfully by only seeing an image of the correct pat-
tern, accompanied with small arrows in the image,
indicating the correct direction. However, the users
had no indication of the “way” the real users’ fin-
gers moved, trying to pass the pattern screen. Step
3 involved the user trying to pass the pattern screen
successfully by watching a video of the pattern be-
ing drawn by the actual real users of the smartphone,
using a common, yet of medium complexity, pattern.
Step 4 involved the user trying to successfully pass the
pattern screen by watching a video of the pattern be-
ing drawn by the actual real users of the smartphone,
using a difficult (of higher complexity) pattern. Fi-
nally, step 5 was almost identical to the fourth step
of the evaluation, while there was additional help to
the users by giving them the opportunity to watch the
video of unlocking the screen one more time to mem-
orize the correct pattern even better.

6.2 Second Phase of the Experiment (10
Users)

Settings: This phase involved 10 users using their
own mobile, android powered smartphone, where
they downloaded, installed and consequently used the
app. The app was downloaded from a web link. A su-

pervisor was also monitoring the whole process, both
for helping purposes and also to note down the results
of the evaluation experiment. All the supervisors’ re-
sults were transferred to a database for further pro-
cessing and result visualization.

The users followed instructions about how to cre-
ate their personal pattern and subsequently “train” the
model. After successfully creating their patterns the
users made 10 subsequent attempts to unlock the app.
The supervisor noted the number of successful un-
locks by each user.

6.3 Results of the Evaluation
Experiment

The collected results were merged and analyzed to
produce the core of our evaluation experiment. As
described above, each user in the first phase made in
total 50 attempts to successfully pass each one of the
five smart pattern challenges. As for the evaluation
results, the 54 evaluation users of the first phase made
2700 attempts in total. After the analysis of the re-
sults, from the total of 2700 user attempts, 2530 of
them were unsuccessful, meaning that our proposed
system had 93.7% success in denying access to unau-
thorized users. Respectively, in the second phase of
the experiment, 10 users made 10 attempts to unlock
the app using their own personal trained model of the
smart pattern app. In total, they made 100 attempts,
where 86 of them have been successful. As a result,
our proposed approach reached a percentage of 86%
in successfully “recognizing” the app’s genuine user
and consequently accepting his/her access to the app.

For each basic pattern attempt for the attacker, the
SmartPattern app blocked the attempts illustrated in
percentages in Figure 5. As a next step of analyz-
ing the results of the evaluation study, each one of
the five steps is also discussed. We may easily note
that the percentage of the SmartPattern app’s secu-
rity increases, the more “complex” the drawn pat-
tern is. This result might seem expected, however,
in our study the complexity level could be translated
not only in terms of “more points” but also in terms
of “timing pauses”, meaning that if the real user had
a more “unique” way of drawing the pattern, then this
would increase its security level. Another very in-
teresting observation deriving from our study is that
malicious users having knowledge only for the “final
drawing” and not of the way, in terms of consequent
points, that it was drawn did not have much success
in “guessing” the correct way of unlocking the pat-
tern. Finally, another significant result of the study is
that in the cases of the more complex drawn patterns
and consequently their more complex involved tim-

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

152

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5
0

20

40

60

80

100 98
.0
0

96
.4
0

71
.0
8

97
.9
2

99
.0
6

97
.0
0

35
.0
0

65
.0
0

6
0
.0
0

9
3
.0
0

83
.0
0 90
.0
0

76
.0
0

93
.0
0

59
.0
0

B
lo
ck
ed

at
te
m
p
ts

K means 5 clusters K means 3 clusters One class SVM

Figure 5: Attempts blocked by SmartPattern when other
users try to unlock the mobile phone.

ing biometrics, even when the “attackers” had more
“help” by watching the pattern being drawn more
times in videos, their unlock attempts where still un-
successful in their vast majority. These results have
been quite encouraging, indicating that our research
pointed in a good direction, actually providing im-
provements in the smartphones’ unlocking mecha-
nisms.

7 CONCLUSIONS

In this paper, a novel locking mechanism for Android
smartphones that utilizes Machine Learning and user
biometric data has been presented. Our approach can
be incorporated in many application domains, rang-
ing from providing more security to mobile devices
when locking them, to specifically securing targeted
“sensitive” resources and also improving 2FA with-
out the need to root the device. The evaluation results
have shown a 93.7% success rate in denying access to
unauthorized users and a 86% success rate in allowing
access to the real users of the app. This little “lower”
success percentage of the resulting app can be justi-
fied since it was the authors’ primary objective, when
calibrating the ML backend, to maximize user protec-
tion, even if this resulted in lower “user friendliness”
level.

Our evaluation experiments have provided us with
strong evidence that our approach is very success-
ful in “distinguishing” genuine and malicious users
through the way they draw lock screen patterns. The
paper’s results also provide the scientific literature
with valuable evidence about the efficiency of com-
mon patterns in securely protecting the smartphones.

In the future we plan to develop apps correspond-

ing to other use cases, such as the implementation
of an app for 2FA purposes using our ML biometric
backend, to further improve the protection level of the
smartphone users.

ACKNOWLEDGMENTS

This work was supported by the European Commis-
sion under the Horizon 2020 Programme (H2020), as
part of the OPERANDO project (Grant Agreement no.
653704) and the University of Piraeus Research Cen-
ter.

REFERENCES

Alepis, E. and Patsakis, C. (2017). Trapped by the ui:
The android case. In International Symposium on
Research in Attacks, Intrusions, and Defenses, pages
334–354. Springer.

Android Police (2017). https://www.androidpolice.com/
2017/11/12/google-will-remove-play-store-apps-
use-accessibility-services-anything-except-helping-
disabled-users/.

Aviv, A. J., Gibson, K. L., Mossop, E., Blaze, M., and
Smith, J. M. (2010). Smudge attacks on smartphone
touch screens. In Miller, C. and Shacham, H., edi-
tors, 4th USENIX Workshop on Offensive Technolo-
gies, WOOT ’10, Washington, D.C., USA, August 9,
2010. USENIX Association.

Aviv, A. J., Kuber, R., and Budzitowski, D. (2017). Is big-
ger better when it comes to android graphical pattern
unlock? IEEE Internet Computing, 21(6):46–51.

Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y.,
Kruegel, C., and Vigna, G. (2015). What the app
is that? deception and countermeasures in the an-
droid user interface. In Proceedings of the 2015 IEEE
Symposium on Security and Privacy, pages 931–948.
IEEE Computer Society.

Canfora, G., Notte, P. D., Mercaldo, F., and Visaggio, C. A.
(2016). Silent and continuous authentication in mo-
bile environment. In Callegari, C., van Sinderen,
M., Sarigiannidis, P. G., Samarati, P., Cabello, E.,
Lorenz, P., and Obaidat, M. S., editors, Proceedings of
the 13th International Joint Conference on e-Business
and Telecommunications (ICETE 2016) - Volume 4:
SECRYPT, Lisbon, Portugal, July 26-28, 2016., pages
97–108. SciTePress.

Chen, Q. A., Qian, Z., and Mao, Z. M. (2014). Peeking into
your app without actually seeing it: Ui state inference
and novel android attacks. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 1037–1052,
San Diego, CA. USENIX Association.

Developers Android (2018). https://developer.android.com/
reference/android/app/usage/UsageStatsManager.

Behavioral Biometric Authentication in Android Unlock Patterns through Machine Learning

153

Dunphy, P., Heiner, A. P., and Asokan, N. (2010). A closer
look at recognition-based graphical passwords on mo-
bile devices. In Cranor, L. F., editor, Proceedings of
the Sixth Symposium on Usable Privacy and Security,
SOUPS 2010, Redmond, Washington, USA, July 14-
16, 2010, volume 485 of ACM International Confer-
ence Proceeding Series. ACM.

Kessler, G. C. (2013). Technology corner: Calculating the
number of android lock patterns: An unfinished study
in number theory. JDFSL, 8(4):57–64.

Lee, J., Seo, J. W., Cho, K., Lee, P. J., Kim, J., Choi,
S. H., and Yum, D. H. (2016). A visibility-based up-
per bound for android unlock patterns. IEICE Trans-
actions, 99-D(11):2814–2816.

Lee, J., Seo, J. W., Cho, K., Lee, P. J., and Yum, D. H.
(2017). A visibility-based lower bound for android
unlock patterns. IEICE Transactions, 100-D(3):578–
581.

Luca, A. D., Hang, A., Brudy, F., Lindner, C., and Huss-
mann, H. (2012). Touch me once and i know it’s you!:
implicit authentication based on touch screen patterns.
In Konstan, J. A., Chi, E. H., and Höök, K., editors,
CHI Conference on Human Factors in Computing Sys-
tems, CHI ’12, Austin, TX, USA - May 05 - 10, 2012,
pages 987–996. ACM.

Malkin, N., Harbach, M., Luca, A. D., and Egelman, S.
(2016). The anatomy of smartphone unlocking: Why
and how android users around the world lock their
phones. GetMobile, 20(3):42–46.

Meng, W. (2016). Evaluating the effect of multi-touch be-
haviours on android unlock patterns. Inf. & Comput.
Security, 24(3):277–287.

Nicholson, A. J., Corner, M. D., and Noble, B. D. (2006).
Mobile device security using transient authentication.
IEEE Trans. Mob. Comput., 5(11):1489–1502.

Wikipedia (2018). https://en.wikipedia.org/wiki/FBI\%E2\
%80\%93Apple_encryption_dispute/.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

154

