Recognising Actions for Instructional Training using Pose Information:

Keywords:

Abstract:

A Comparative Evaluation

Sean Bruton and Gerard Lacey
Graphics, Vision and Visualisation (GV2), Trinity College Dublin, University of Dublin, Ireland

Action Recognition, Deep Learning, Pose Estimation.

Humans perform many complex tasks involving the manipulation of multiple objects. Recognition of the
constituent actions of these tasks can be used to drive instructional training systems. The identities and poses
of the objects used during such tasks are salient for the purposes of recognition. In this work, 3D object
detection and registration techniques are used to identify and track objects involved in an everyday task of
preparing a cup of tea. The pose information serves as input to an action classification system that uses Long-
Short Term Memory (LSTM) recurrent neural networks as part of a deep architecture. An advantage of this
approach is that it can represent the complex dynamics of object and human poses at hierarchical levels without
the need for design of specific spatio-temporal features. By using such compact features, we demonstrate the
feasibility of using the hyperparameter optimisation technique of Tree-Parzen Estimators to identify optimal
hyperparameters as well as network architectures. The results of 83% recognition show that this approach is

viable for similar scenarios of pervasive computing applications where prior scene knowledge exists.

1 INTRODUCTION

Humans perform many complex tasks with their
hands. These tasks often involve manipulating objects
in a specific manner to achieve a goal. A way in which
humans learn the motor skills necessary to perform
these tasks is by repetition with evaluative feedback
from an expert supervisor (Debarnot et al., 2014; Eri-
csson et al., 1993). A formalised method of this type
of training, known as Direct Observation of Procedu-
ral Skills (DOPS), has proven effective for improving
undergraduate medical skills (Profanter and Peratho-
ner, 2015). This observational training has drawbacks
however. These include the subjectivity and biases of
the supervisor, the logistical requirement of the phy-
sical presence of the supervisor, and the cost associ-
ated with providing supervisors for all students. To
overcome these issues, we wish to develop techniques
to automate the supervisory role in learning physical
tasks. A key challenge of implementing such a sy-
stem is the recognition of the individual actions that
are part of the task being performed. In this work, we
use an example task of preparing a cup of tea in place
of a medical skill to explore methods of constructing
such a system.

Using fixed arrangements for the system allows
greater flexibility in types of camera sensors. The ex-

482

Bruton, S. and Lacey, G.

Recognising Actions for Instructional Training using Pose Information: A Comparative Evaluation.

DOI: 10.5220/0007395304820489

tra depth information available from consumer RGB-
D cameras has been used to significant advantage
in tackling the problem of tracking humans at vari-
ous granularities (Shotton et al., 2013; Tang et al.,
2016). Another area where the availability of depth
data has improved results is object pose estimation
(Hinterstoisser et al., 2012). These continuing ad-
vances could allow for accurate real-time tracking of
objects and people, providing valuable input informa-
tion for a system that determines if a complex object
manipulation task has been performed correctly.

The problem remains, however, of how to use this
information to understand the interactions between
people and objects. In this work, we use recurrent
neural networks to recognise human-object interacti-
ons based on tracked object poses. Training against
compact pose data permits training to be completed
in a reasonable timeframe. We use this property to
perform a hyperparameter search for architectural and
algorithmic parameters, automating the costly process
of identifying an optimal architecture.

As part of our work, we also make available
the dataset used to evaluate this system. This data-
set comprises performances of an activity recorded
with a multi-camera RGB-D set-up, as well as 3D
scans of all the objects used (https://www.scss.tcd.ie/
gerard.lacey).

In Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pages 482-489

ISBN: 978-989-758-354-4

Copyright (© 2019 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

Recognising Actions for Instructional Training using Pose Information: A Comparative Evaluation

[
- -

Fuse and
D segment
A point clouds Estimate object
° (Section 3.1) and arm poses
Input multi- (Sections 3.2, 3.3)
camera
point clouds

Output
frame-level
classification

Classify
Actions
(Section 3.4)

Output
frame-level

pose vectors

Figure 1: The high-level overview of the stages of the action recognition system.

2 RELATED WORK

Our task is to recognise a sequence of human-object
interactions as part of a fixed activity. In the litera-
ture, systems of providing situational support for such
goal-directed activities have been developed. Much
of these systems make use of inertial sensors, such as
accelerometers, attached to the objects in use. Sensor
information has been combined with image features
to train discriminative classifiers, such as random fo-
rests, to recognise actions involved in preparation of
a salad (Stein and McKenna, 2013). A drawback of
sensor-based approaches is that the presence of sen-
sors is less natural for users and may hinder them in
performing the task using their typical technique.

Other methods for recognition of actions as part
of a complex task have focussed on the tracking of
objects and the design of features based on associated
motion patterns. On a dataset of cooking activities,
a number of object tracking methods were tested in
performing fine-grained action recognition (Rohrbach
etal., 2012). It was found that a pose-based descriptor
approach, based on Fourier transform features, under-
performed relative to dense trajectories (Wang et al.,
2011). Other authors (Stein and McKenna, 2017) at-
tempt to recognise component fine-grained actions of
the complex activity of preparing a salad by devising
a custom feature descriptor based on histograms of
tracklets described relative to the object in use.

An alternative to tracking individual objects, ot-
her approaches use global image features to perform
segmentation and recognition across an entire acti-
vity sequence. One recent work (Kuehne et al., 2016)
used a generative framework to segment fine-grained
activities. Similarly based on language and grammar
models, other authors (Richard and Gall, 2016) use a
probabilistic model that models the segmentation and
classification of actions jointly. However, due to these
segmental approaches requiring observation of the en-
tire sequence, it would not be possible to provide su-
pervisory feedback during an activity.

The resurgence of neural networks has seen CNNs

used to produce global image features. A recent work
(Lea et al., 2016) utilised a CNN to extract image
features, and used a 1D convolution over the output
image features to classify fine-grained actions of goal-
directed activities. The authors also utilise a semi-
Markov model to segment a performance video into
actions, however this improves accuracy marginally
for the 50 Salads dataset (Stein and McKenna, 2013).

This variety of approaches shows that there is no
consensus on the best techniques of recognising acti-
ons for situational support systems.

3 SYSTEM DESIGN

Here, we detail the component stages of the entire re-
cognition pipeline. The pipeline itself is illustrated in
Figure 1, with references to the following sections.

3.1 Sensor Fusion

For the task performance, we assume that it can be
performed on the surface of a table. To eliminate
occlusions of salient information for action recogni-
tion we use an array of three RGB-D cameras, arran-
ged as per Figure 2. For each camera, we construct
point cloud representations from each RGB-D frame.

It is necessary to synchronize the point clouds re-
ceived from the different cameras to allow for fusion
into a single merged point cloud. To do so, we asso-
ciate point clouds by inspecting the time differences
between receipt of the data from the different cameras
and determine if the difference is within a specified
threshold.

Interference is an undesirable side effect of using
multiple structured infra-red sensors to observe the
same target. This results in holes and noise in the
depth maps. The “Shake ‘N’ Sense” technique (But-
ler et al., 2012) is used to address this problem.
This technique involves vibration of affected sensors
which causes the patterns of other cameras to appear
blurred relative to its own pattern. The advantages of

483

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

Figure 2: The arrangement of the recording set-up. Top-
left image shows the vibration motor attached to an RGB-D
camera (Asus Xtion). Right image shows the placement of
the cameras in relation to the task table. Bottom-left image
shows a colour image taken from the centre camera during
a recording.

this technique is that it maximises the amount of data
available and has zero computational cost.

To fuse the point clouds, we estimate the rigid
transformation between camera pairs. The pipeline
for the registration, is to detect discriminative local
features in each of the point clouds, find matches
for these features and estimate a registration based
on these matches. Intrinsic Shape Signature (ISS)
keypoints (Zhong, 2009) were determined for each
sensor’s point cloud and Signatures of Histograms
of Orientations (SHOT) descriptors were calculated
(Salti et al., 2014) at these keypoints. To provide
highly discriminative features, a number of target ob-
jects with characteristic geometry were included in
the scene. To calculate the rigid transformation, the
system of linear equations is solved using Levenberg
Marquardt. This alignment is refined using the Gene-
ralised Iterative Closest Point algorithm (Segal et al.,
2009), which estimates a dense registration after the
coarse feature-based registration.

We use the presence of the task table to extract
from the merged cloud all points above the table, iso-
lating interesting points for our purposes. The RAN-
SAC algorithm is used to find the table in the point
cloud (Schnabel et al., 2007). Once the largest plane
has been identified, Euclidean clustering (Rusu, 2010)
is used to isolate the table points from other points
that lie on this 3D plane. To identify all the points
above the table, we construct a convex hull around
the table cluster and check whether a point lies within
a volume extruded above this hull.

3.2 Object Pose Estimation

The technique for estimating object poses is compo-
sed of two stages: estimating the initial pose at the

484

Figure 3: A rendering of scanned objects as meshes.

beginning of a video; and tracking the object through
the remainder of the video. The first stage identifies
an object on the task table using the Linemod techni-
que (Hinterstoisser et al., 2012). This technique com-
bines colour gradients and surface normals to gene-
rate templates for known objects which can be effi-
ciently searched. This technique has the benefit of
working for objects that may have little surface tex-
ture, or are partially occluded. The templates are col-
lected by performing three dimensional scans of the
objects, and calculating the templates of the objects
at different possible poses.

The second stage tracks an object as the video pro-
gresses. As a result of the merging and segmenting
of the point clouds, we have isolated all points that
should only belong to either objects or subject’s arms.
Based on the understanding that objects move small
distances between frames, poses are registered frame
to frame using the Generalised Iterative Closest Point
(GICP) algorithm (Segal et al., 2009). This algorithm
uses a probabilistic model for a point to point cost
function, which has been shown to be more robust to
incorrect correspondences than other iterative closest
point algorithms. Point clouds of scanned versions of
the objects, for example those in Figure 3, are used for
registration. To ensure consistent densities of points
across the source and target point clouds, the points
are filtered using a voxel grid of fixed cell dimensi-
ons.

Given the initial pose of the object, estimated
using the Linemod algorithm, and the incremental po-
ses, found via registration of the scanned version of
an object transformed to the previous pose, a series of
poses for each object for a set of merged point clouds
will be produced. The poses are encoded as a transfor-
mation matrix, T : R* — R*. In homogeneous form,
this transformation matrix is composed of a rotation,
R:R3? — R3 and a translation t € R3, T = [R, ;07 , 1].
A more dimensionally compact representation of a
transformation can be found by using unit quaterni-
ons to encode the rotation. Thus each pose is encoded
as [t,a,b,c,d], where the rotation is encoded by the
unit quaternion z = a+ bi+cj+dKk, a,b,c,d € R.

Recognising Actions for Instructional Training using Pose Information: A Comparative Evaluation

Figure 4: Left, a cluster centroid, q, and the three eigenvec-
tors, e, ey and e3, is shown for an arm cluster. Right, the
centroid is subtracted and the eigenvectors are axis-aligned.
The centres of the two axis-aligned bounding box faces per-
pendicular to the principle axis, p{ and p9, are used as the
two end effectors for the arm pose.

3.3 Arm Pose Estimation

To estimate an arm pose, we use the segmented mer-
ged point cloud to identify arm points. Using the esti-
mated object poses, we remove points that lie within
a threshold distance of any points of the transformed
object point clouds. Due to noise and slight misalig-
nments of objects, it is necessary to perform further
segmentation. Under the assumption that arm points
all lie within a certain distance of each other, Eucli-
dean clustering (Rusu, 2010) is used to identify the
two largest clusters of the remaining points. A lower
bound on possible cluster size ensures that only clus-
ters large enough to be arms are selected.

We estimate the arm poses from the cluster in-
formation. We denote a candidate arm cluster as
Q={q;eR%i=1,2,...}. Werepresent a pose using
three components: a; € R?, the inner arm point in the
task area; a, € R3, a point representing the position
of the subject’s wrist; and r € R, the width of the sub-
ject’s arm as it appears to the central camera sensor.
To calculate these features, the extents of an oriented
bounding box over the cluster set Q are examined.

To determine these bounding box extents, Princi-
ple Component Analysis (PCA) is used. The centroid,
q, is subtracted from each point, q; in a candidate
cluster. A data matrix, X is constructed, with each
row representing a mean subtracted point. The eigen-
values of the matrix X7 X, are calculated along with
the corresponding eigenvectors, e, e; and e3, repre-
senting the principle components of the cluster set.
These eigenvectors can be composed into an ortho-
gonal rotation matrix that transforms the three prin-
ciple axes of greatest variance to the Cartesian axes,
R = [e] el el]. The new data matrix, Y" = RX,
facilitates the determination of the bounding box ex-
tents. The maximal and minimal extents along each
row of this matrix define the axis-aligned bounding
box for the set of transformed arm points. The centres
of the two faces perpendicular to the principle axis

(see Figure 4), p{ and p9, can thus be found. Thus,
the inverse transformation, a; = RTpf.’ +q, can be ap-
plied to these points, to transform them back to the
original arm cluster, to get the desired end effectors.
The final feature component is the width of the obser-
ved arm cluster, r, corresponding to the bounding box
width.

To distinguish between a left and right arm, the
two clusters centroids are inspected. If a single clus-
ter is detected, geometrical rules based on the position
of the centroid and the angle of the arm are used to de-
termine handedness. The threshold position and angle
for these rules are defined based on the known scene
arrangement.

3.4 Action Recognition

Given the individual feature components descri-
bed in Sections 3.2 and 3.3, the feature vector is
defined as the concatenation of the object featu-
res, [t;,a;,b;,¢;,d;] for each i € {cup, pot,bowl, jug},
and the arm features, [aj,,a2,,7,] for each o €
{left,right}. Here, a) ,, a5, and r, represent the in-
ner point, outer point and width of the estimated pose
of arm o, respectively. To capture temporal dynamics,
a sequence of pose features is used for classification.

In the area of natural language processing, recur-
rent neural networks (RNNs) have proven useful in
performing tasks such as machine translation and in-
formation modelling. More recent work, has looked
at utilising recurrent neural networks to learn from se-
quences of image features extracted from videos (Do-
nahue et al., 2016).

Long Short Term Memory Networks (LSTM) are
an RNN structure designed to overcome the vanis-
hing gradient problem (Hochreiter and Schmidhuber,
1997) by allowing for old (potentially useless) infor-
mation to be forgotten and new (useful) information
to be recorded in the cell state.

The LSTM cells are used as part of a larger neu-
ral network architecture to perform classification of
sequences of pose features. The recognition perfor-
mance is dependent upon the architecture. Decisions
include whether to train LSTM cells on forward se-
quences or both forward and reverse sequences, illus-
trated by the ‘reverse sequence’ operation in Figure 5.
Other decisions include the number of LSTM layers
to use and the number of cell units per layer. These
decisions are made using an automated procedure of
identifying an optimal architecture, which will be dis-
cussed in Section 4.3.

In our architectures, the output of the LSTM lay-
ers undergoes further transformations via a series of
fully connected layers. The output of the layers un-

485

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

nput Sequence

Inp
Reverse
|’ | I‘ Sequence |H| ‘ |
LSTM LSTM
Batch Norm. Batch Norm.
Concatenation
LSTM b LSTM

Output label distribution

Figure 5: An example architecture used to classify sequen-
ces of pose information into action labels.

dergo an activation function, with intermediate dense
layers outputs undergoing a Rectified Linear Unit
(ReLU) activation. The outputs of the final layer un-
dergo a softmax activation to produce an output dis-
tribution across the possible label classes.

Dropout is applied to the inputs of each of the
dense layers for regularisation purposes. For the
LSTM cells, a variant of dropout for recurrent neu-
ral networks is used, known as recurrent dropout (Gal
and Ghahramani, 2016), whereby the dropout mask is
identical across each of the timesteps in a sequence.
An £, loss is added based on the weights of the dense
layers to prevent over dependence on singular neu-
rons for classifications. Finally, batch normalisation
is used between the layers of the network.

4 EXPERIMENTAL SET-UP

4.1 Dataset Collection

To evaluate our system, a dataset was collected of
RGB-D videos of people performing the task of pre-
paring a cup of tea. The dataset is composed of 24
samples recorded using three Asus Xtion Pro Live
RGB-D cameras. A total of eight subjects were recor-
ded performing the task three times. There were no
restrictions imposed on how they prepared the cup of
tea. The videos were all manually labelled with one

486

of the five actions for each frame: ‘pour tea’; ‘pour
milk’; ‘add sugar’; ‘stir’; and ‘background’. A total of
25,913 frames were recorded, equating to an average
video length of 38 seconds.

4.2 Training

We train each candidate neural network architecture
to recognise the actions in this dataset. Given a se-
quence of pose features for a time 7, (X;—p,...,X;),
where n € N and x € RY, and d is the length of
the pose feature vector, we wish to estimate the
output probability mass function, py(y), where y €
C, the set of action labels. Each neural network
we train is a nonlinear differentiable function of
the inputs, parametrised by the weights, py(y) =
F (Xt—ns---, % {W;}), where {W,} is the set of weig-
hts contained in the network.

To train the network, back propagation is used.
We minimise a loss function based on the categori-
cal cross entropy, for each minibatch. The stochas-
tic optimisation technique of Adam was used for this
purpose.

Each network is trained for 250 epochs, with a mi-
nibatch size of 1024. The weights of the dense layers
and LSTMs in the network were initialised with Xa-
vier uniform initialisation, and the offset biases were
initialised with zeros. The Tensorflow deep learning
framework was used for implementation. We utilise
a leave-one-subject-out cross validation, testing on an
individual subject for each fold. This has the bene-
fit of characterising the performance of the system for
an unseen subject, identifying cases which the system
may find challenging to classify correctly.

4.3 Hyperparameter Optimisation

The selection of optimal algorithm parameters can be
time-consuming and involve expert knowledge that is
difficult to convey. Due to elongated training times of
neural networks, techniques such as grid search and
random search can be infeasible. However, there ex-
ist methods of hyperparameter searching that can re-
duce the number of search iterations required. One
approach utilises Tree-Structured Parzen Estimators
(TPE) to model the target function, whereby each of
the sampled points is represented with a Gaussian dis-
tribution in the hyperparameter space (Bergstra et al.,
2011).

The next sample point is selected based on Ex-
pected Improvement. This can be defined as the ex-
pectation, under some model M of a fitness function
f: X — R, that f(x) will negatively exceed some
threshold y*,

Recognising Actions for Instructional Training using Pose Information: A Comparative Evaluation

El(x) := [ZmaX(y*—y,O)pM(yIX)dy- (1)

In our case, as well as model parameters, we wish
to find optimal architectural parameters, such as num-
ber of LSTM layers, and whether to additionally train
on reversed sequences (i.e. bidirectionally). Other hy-
perparameters searched over are shown in Table 1 as
well as the prior distributions for each. The HyperOpt
library (Bergstra et al., 2011) was utilised to perform
this hyperparameter search.

Table 1: The prior distributions selected for the hyperpa-
rameter searches. U (x,y) denotes the uniform distribution
between x and y. Uniform distributions are used in all of
the other discrete cases. These distributions are chosen ba-
sed on a number of initial tests runs.

Parameter Prior

Stride 1,2 o0r4
Sequence Length 8, 16,32 or 64
Recurrent Units 64 or 128
Number LSTM layers 1,20r3
Reverse sequences True or False
Dense Kernel £2 U(0.0001,0.01)
LSTM input dropout rate U(0.0,0.3)
LSTM recurrent dropout rate | U(0.0,0.3)
Softmax dropout rate U(0.0,0.5)
Initial learning rate U (0.0001,0.01)

4.4 Performance Benchmarking

To compare our recurrent neural network recogni-
tion approach, benchmark recognition algorithms are
selected to compare against. These algorithms are
Random Forest (Breiman, 2001) and Gradient Boos-
ted Decision Trees (Friedman, 2001). These are se-
lected due to their performance on high-dimensional
recognition tasks (Shotton et al., 2013; Tang et al.,
2016) and their use in related works (Stein and Mc-
Kenna, 2017). The hyperparameter optimisation
technique is also used to optimise the parameters of
these classifiers. The hyperparameters that were se-
arched over in the optimisation schedule were: the
sequence stride; the sequence length; the number of
tree estimators to use; and the maximum depth of the
individual trees. In each optimisation, we maximise
the F} score, calculated across all of the splits. This is
calculated as the weighted harmonic mean of the pre-
cision and recall. For each classifier, fifty hyperpa-
rameter search iterations were performed, with each
iteration tested using the cross-validation scheme.

S RESULTS AND DISCUSSION

5.1 Object Pose Estimation

To evaluate the object pose estimation, a qualitative
analysis is performed. We analyse the estimated po-
ses and determine correctness based on their corre-
spondence to the perceived object pose, from images
as per Figure 6. Overall, the object pose estimation
performs reliably under this analysis. Of the 24 re-
cordings, with four objects tracked in each recording,
there are two instances of an object’s pose tracking
being irrecoverably lost. In each instance, the object
briefly becomes fully occluded during the performan-
ces by a combination of the subject’s arms and other
objects. There are four further instances where the
alignment of an object’s pose is perceptively incorrect
for a portion of the recording. During the task perfor-
mance, the cup is filled with tea which changes the
perceived shape of the object, causing the registration
algorithm to incorrectly identify correspondences. A
potential method to overcome this issue would be to
introduce a classification stage to determine whether
the cup has become filled, and once it has, switch to
registering an object scan of a filled cup.

5.2 Arm Pose Estimation

Similarly to the evaluation of object pose estimation,
ground truth data for the arm pose estimation techni-
que is unavailable and so we adopt a qualitative as-
sessment methodology. Overall, the arm poses are
estimated to an acceptable level for the majority of
the performance videos. As the technique relies on a
single merged cloud, errors do not accumulate. Ob-
served errors include confusion between arms and in-
clusion of object parts or other body parts in the pose
estimation, as shown in Figure 6. Much of these er-
rors are caused by upstream errors in the object pose
estimation stage. Other errors occur due to incorrect
segmentations due to subjects moving arms close to
their bodies.

5.3 Action Recognition

The optimal LSTM network uses temporal stride of a
a single frame and a sequence length of 64. It contains
one LSTM layer with 64 units for each sequence or-
der. It performs better than the benchmark classifiers
by a significant margin, as can be seen in Table 2.
The accuracy is 82.9% calculated over all of the test
splits. The F; metric, which we optimised against,
is 81.72%, which is 8% above the other classifier re-
sults. The classifier also has a smaller standard devia-

487

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

Table 2: The classification metrics for the tested classifiers.

Classifier Accuracy Precision Recall Fj score

Random Forest 76.21 82.54 £17.13 | 71.11 £ 20.59 | 73.55 + 14.91
Gradient Boosting 75.68 85.06 £ 18.12 | 70.45 £20.94 | 73.23 + 13.89
LSTM 82.90 81.46 £8.65 | 8220 +£7.62 | 81.72+7.49

Confusion Matrix Random Fcheslt0

Confusion Matrix Gradient Boostin

Confusion Matrix LSTM

1.0
Background 001 0.04 0.02 0.01 Background 0.01 0.02 0.02 0.01 Background 0.09 0.07 0.06 0.03
0.8
2 Pour Milk g m 0.0 0.0 @ Pour Milk 0.28 0.0 0.0 0.0 @ Pour Milk 0.05 0.0 0.03 0.0
2 2 2 0.6
EREITISICEIE 0.5 | 0.0 |0.46(0.04 2 Place Sugar 0.0 |04 0.04 0.0 2 Place Sugar {URENERY 0‘05 0.01
] g g 0.4
E BUarCLy0.45 0.0 0.080.47 = SURCER0.44 0.0 0.02 0.0 = Stir Tea (UKL 017 0.0
0.2
LT -ER 0.09 0.0 0.01 0.0 Pour Tea {EER KR} arEE 0.11 0.0 0.0 0.0
0.0
> & F 2 X > & T > o T
§§ &8 F§& g & &
§ & o0& & £ I8 § s 98 3
*9 qc’ & i QD ‘39 qo & “ QO ‘kg qc’ & “ QD
e & & & & &
Lo < &£ e &

Predicted Actions

Predicted Actions

Predicted Actions

Figure 7: Confusion matrices for the three tested classification techniques. The LSTM classifier has more even distribution of
correct predictions over all of the classes than the Random Forest or Gradient Boosting classifiers.

Figure 6: Pose estimation results for different sample recor-
dings. In the first three rows, hand pose and object poses
are estimated reliably. In the fourth row, object pose esti-
mation errors are shown. These are due to misalignments
of the cup due to changing topology and tracking losses due
to complete occlusions. In the final row, arm pose estima-
tion errors are shown. These errors are due to incorrect seg-
mentation of left and right arm clusters when the hands are
close together, and incorrect estimation based on inclusion
of points from the subject’s body.

tion across the action classes, indicating that it learns
to discriminate actions more evenly.

The results indicate that the LSTM network is able
to represent the dynamics of the human-object inte-
ractions to determine the current action. Analysing
the confusion matrices, as shown in Figure 7, we ob-
serve that the actions ‘Background’, ‘Place Sugar’

488

and ‘Stir Tea’ are mistakenly predicted for each ot-
her. This may be more difficult to disambiguate as the
arm pose dynamics present in these action are more
subtle and do not necessarily involve the movement
of an object.

To gain a deeper understanding of where the
LSTM underperforms, we inspect its performance for
individual test splits and observe that there is a large
difference between the maximum F; score (93%) and
minimum F; score (60%) for the splits. The worst
performing splits contain the most significant pose es-
timation errors, as detailed in Sections 5.1 and 5.2.
As such, improvements to these upstream methods
should result in better performance for these splits.

6 CONCLUSIONS AND FUTURE
WORK

In this work, we demonstrated a system that can clas-
sify human-object interactions for a goal-directed task
to a high degree. For the classification method, we
proposed the use of an optimised neural network ar-
chitecture involving LSTMs. Analysing the results,
we identified areas for further improvement in the pi-
peline and proposed potential methods to overcome
these weaknesses. We release the multi-camera RGB-
D video dataset of all task performances, including
3D scan data for each of the objects used. The system
could potentially be applied to numerous real-world
problems that require the understanding of human-
object interactions, such as smart assembly line mo-
nitoring. We intend to further develop this system to

Recognising Actions for Instructional Training using Pose Information: A Comparative Evaluation

handle more complex interactions, such as those in-
volved in procedural medical skills, as part of an au-
tomated instructional training system.

ACKNOWLEDGEMENTS

This research has been conducted under an Irish Rese-
arch Council Enterprise Partnership Scholarship with
Intel Ireland.

REFERENCES

Bergstra, J. S., Bardenet, R., Bengio, Y., and Kgl, B.
(2011). Algorithms for hyper-parameter optimization.
In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pe-
reira, F., and Weinberger, K. Q., editors, Advances
in Neural Information Processing Systems 24, pages
2546-2554. Curran Associates, Inc.

Breiman, L. (2001). Random forests. Machine Learning,
45(1):5-32.

Butler, D. A., Izadi, S., Hilliges, O., Molyneaux, D., Hod-
ges, S., and Kim, D. (2012). Shake’n’sense: Reducing
interference for overlapping structured light depth ca-
meras. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI *12, pa-
ges 1933-1936, New York, NY, USA. ACM.

Debarnot, U., Sperduti, M., Di Rienzo, F., and Guillot, A.
(2014). Experts bodies, experts minds: How physi-
cal and mental training shape the brain. Frontiers in
Human Neuroscience, 8:280.

Donahue, J., Hendricks, L. A., Rohrbach, M., Venugo-
palan, S., Guadarrama, S., Saenko, K., and Darrell,
T. (2016). Long-term recurrent convolutional net-
works for visual recognition and description. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence.

Ericsson, K. A., Krampe, R. T., and Tesch-Romer, C.
(1993). The role of deliberate practice in the acqui-
sition of expert performance. Psychological Review,
100(3):363-406.

Friedman, J. H. (2001). Greedy function approximation: A
gradient boosting machine. The Annals of Statistics,
29(5):1189-1232.

Gal, Y. and Ghahramani, Z. (2016). A theoretically groun-
ded application of dropout in recurrent neural net-
works. In Lee, D. D., Sugiyama, M., Luxburg, U. V.,
Guyon, L., and Garnett, R., editors, Advances in Neu-
ral Information Processing Systems 29, pages 1019—
1027. Curran Associates, Inc.

Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab,
N., Fua, P,, and Lepetit, V. (2012). Gradient response
maps for real-time detection of textureless objects.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(5):876-888.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computing, 9(8):1735-1780.

Kuehne, H., Gall, J., and Serre, T. (2016). An end-to-end
generative framework for video segmentation and re-
cognition. In 2016 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pages 1-8.

Lea, C., Reiter, A., Vidal, R., and Hager, G. D. (2016).
Segmental spatiotemporal cnns for fine-grained action
segmentation. In Computer Vision - ECCV 2016, Lec-
ture Notes in Computer Science, pages 36-52. Sprin-
ger, Cham.

Profanter, C. and Perathoner, A. (2015). Dops (direct ob-
servation of procedural skills) in undergraduate skills-
lab: Does it work? analysis of skills-performance and
curricular side effects. GMS Zeitschrift fr Medizinis-
che Ausbildung, 32(4).

Richard, A. and Gall, J. (2016). Temporal action detection
using a statistical language model. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 3131-3140.

Rohrbach, M., Amin, S., Andriluka, M., and Schiele, B.
(2012). A database for fine grained activity de-
tection of cooking activities. In 2012 IEEE Confe-
rence on Computer Vision and Pattern Recognition,
pages 1194-1201.

Rusu, R. B. (2010). Semantic 3d object maps for every-
day manipulation in human living environments. KI -
Knstliche Intelligenz, 24(4):345-348.

Salti, S., Tombari, F., and Di Stefano, L. (2014). Shot: Uni-
que signatures of histograms for surface and texture
description. Computer Vision and Image Understan-
ding, 125:251-264.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient
ransac for point-cloud shape detection. In Computer
Graphics Forum, volume 26, pages 214-226. Wiley
Online Library.

Segal, A., Haehnel, D., and Thrun, S. (2009). Generalized-
icp. In Robotics: Science and Systems, volume 2.
Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finoc-
chio, M., Blake, A., Cook, M., and Moore, R. (2013).
Real-time human pose recognition in parts from single

depth images. Commun. ACM, 56(1):116-124.

Stein, S. and McKenna, S. J. (2013). Combining embed-
ded accelerometers with computer vision for recogni-
zing food preparation activities. In Proceedings of the
2013 ACM International Joint Conference on Perva-
sive and Ubiquitous Computing, UbiComp ’13, pages
729-738, New York, NY, USA. ACM.

Stein, S. and McKenna, S. J. (2017). Recognising complex
activities with histograms of relative tracklets. Com-
puter Vision and Image Understanding, 154:82-93.

Tang, D., Chang, H., Tejani, A., and Kim, T. K. (2016).
Latent regression forest: Structured estimation of 3d
hand poses. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PP(99):1-1.

Wang, H., Klaser, A., Schmid, C., and Liu, C.-L. (2011).
Action recognition by dense trajectories. In 2011
IEEE Conference on Computer Vision and Pattern Re-
cognition (CVPR), pages 3169-3176.

Zhong, Y. (2009). Intrinsic shape signatures: A shape des-
criptor for 3d object recognition. In 2009 IEEE 12th
International Conference on Computer Vision Works-
hops (ICCV Workshops), pages 689—696.

489

