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Abstract: Multi-view environments provide different views of software systems optimized for different stakeholders.
One way of ensuring consistency of overlapping and inter-dependent information contained in such views is
to project them “on demand” from a Single Underlying Model (SUM). However, there are various ways of
building and evolving such SUMs. This paper presents criteria to distinguish them, describes three archety-
pical approaches for building SUMs, and analyzes their advantages and disadvantages. From these criteria,
guidelines for choosing which approach to use in specific application areas are derived.

1 INTRODUCTION

Due to the ever growing complexity of modern
software-intensive systems single developers are no
longer able to understand all aspects of a system as
a whole. View-based development methods are there-
fore needed to separate system descriptions into in-
dividual parts that are relevant to the concerns and
responsibilities of single developers. However, the
resulting fragmentation of system descriptions leads
to redundancies and dependencies between the infor-
mation shown in different views, which are difficult
and time consuming to manage manually. Automa-
ted approaches for ensuring the holistic consistency
of multi-view system descriptions are therefore nee-
ded.

View-based approaches can be synthetic or pro-
jective (ISO/IEC/IEEE, 2011), depending on where
information is stored. In synthetic approaches, the
description of the system is spread over all the indi-
vidual views, whereas in projective approaches, the
description is contained in a Single Underlying Mo-
del (SUM) (Atkinson et al., 2010), and views are pro-
jected from this central store of information as nee-
ded. As with all models in model-driven develop-
ment, a SUM conforms to its metamodel, the Single
Underlying MetaModel (SUMM).

The goal of this paper is to illuminate diffe-
rent strategies for supporting projective approaches
to view-based software engineering and to highlight

their pros and cons. The common underlying property
of all projective approaches is that views are conside-
red to be correct by construction and thus inherently
consistent with each other as long as they are consis-
tent with the SUM. The problem of maintaining inter-
view consistency therefore becomes the problem of
maintaining the internal consistency of the SUM and
the correctness of SUM-to-view projections. To des-
cribe the different approaches in a uniform way and
analyze their pros and cons systematically, this pa-
per classifies the different fundamental strategies for
constructing SUMs and their corresponding SUMMs,
and identifies criteria for evaluating them. More spe-
cifically, three existing approaches for constructing
SUM(M)s are compared in terms of how they fulfill
the identified criteria. Finally, we analyze how the
fulfillment of the identified criteria by the different
approaches affects their suitability for specific situ-
ations.

The insights presented in this paper will allow
researchers to classify new approaches for SUM(M)
constructions and help developers to choose projecti-
onal view-based approaches for their specific project
situations using the identified selection criteria.

After introducing a running example and termino-
logy used in this paper in Section 2, classification cri-
teria for SUM approaches are described in Section 3.
The three SUM approaches OSM (Section 4), VI-
TRUVIUS (Section 5), and MOCONSEMI (Section 6)
are presented subsequently and are classified using
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the criteria in Section 7. From this classification, gui-
delines for deciding which approach to choose when
are derived in Section 8. After discussing related
work in Section 9, Section 10 summarizes the findings
of this paper.

2 TERMINOLOGY & RUNNING
EXAMPLE

To motivate the use of several interconnected views in
the development of a system, we introduce a highly
simplified running example describing the require-
ments, architecture and implementation of a system.
These three views are expressed in languages based
on metamodels that define the elements (e.g., classes,
attributes etc.) that can appear in models. We depict
those metamodels in Figure 1. This section also clari-
fies the terminology used in this paper.

Requirements are represented by natural language
sentences (package Req). Each Requirement within
a RequirementsSpecification is identified by a
unique id, which contains the requirement’s sentence
as simple text, and is written by an author.

The architecture is described by simplified class
diagrams, which represent system modules as classes
(package UML). ClassDiagrams contain Classes with
their className and unidirectional Associations.

The implementation realizing the architecture and
requirements is represented by source code develo-
ped in simplified Java (package Java). The JavaASG
contains ClassTypes, which in turn contain Methods
with their caller/callee relations.

These three languages describe different (not ne-
cessarily all) facets of the system under development
and thus represent three overlapping viewtypes. Ac-
cording to Goldschmidt et al. (2012), a viewtype is
the metamodel of a view, while a view is a model
that projects information from another model (here:
the SUM) for a specific purpose. Since all views
share information about the system under develop-
ment, they are semantically interconnected and con-
tain dependent information, which requires updates of
other views if one is changed. The interdependence of
information can be explicitly defined in consistency

rules, which define the relations that have to hold be-
tween instances of metamodels.

We define two exemplary consistency rules for the
running example: While Consistency Rule 1 covers a
situation where existing redundant information needs
to be kept consistent, Consistency Rule 2 addresses
a different problem of introducing additional infor-
mation depending on other information. We consi-
der these consistency rules representative, since inte-
grating different views usually refers to merging con-
cepts or introducing additional associations.
Consistency Rule 1: Classes can be defined in the ar-
chitecture view and in the implementation view: One
concrete class can be defined either only in the im-
plementation (Java.ClassType), or in both imple-
mentation and the architecture (UML.Class) if it re-
presents a module. In the latter case, this class has
to be kept consistent in the implementation and archi-
tecture, e.g., in the case of renaming this class. The-
refore, the implementation and architecture are only
consistent if the architecture contains a subset of the
classes in the implementation.

Consistency Rule 2: Since requirements define
goals that the implementation should fulfill, the de-
velopment progress can be measured by counting the
requirements that are supported by the current imple-
mentation. Therefore, Requirements must be lin-
ked to the implementing Methods. We thus require
that each Method has to be automatically linked to
those Requirements that contain the Method’s name
in their text. This additional information between re-
quirements and implementation has to be stored and
kept consistent. Since this is a simplified example for
this paper, different rules can be specified instead.

These two consistency rules and three languages
are used to motivate criteria for SUM approaches in
Section 3. SUM approaches define how SUMs as well
as their SUMMs are constructed and are designed by
platform specialists, who develop platforms that sup-
port SUM-based development. Three such platforms
are presented in Sections 4–6 and applied to this run-
ning example by a methodologist, who uses a SUM
platform to define a concrete SUMM to support a par-
ticular view-based method (Atkinson et al., 2010).

Depending on the approach, to create the SUMM
the methodologist either reuses the existing metamo-

RequirementsSpecification

Requirement

id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

JavaASG

ClassType

name : EString [1]

Method
name : EString [1]

ClassDiagram

Class
className : EString [1]

Association
name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

container [1]

content [∗]

asg [1]

classes [∗]

class [1]

methods [∗]

calledBy [∗] calling [∗]

diagram [1]

classes [∗]

class [1]

associations [∗]

type [1]
usedBy [∗]

Req JavaUML

Figure 1: Simplified Metamodels for Requirements (left), Class Diagrams (middle), and Java Source Code (right).
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dels in Figure 1 or defines a new metamodel for the
described concepts. After that, the developer instan-
tiates that SUMM defined by the methodologist to
develop a software system through views projected
from the SUM. The methodologist can also specify
new viewtypes to provide new views corresponding to
the specific concerns of the developer.

3 CLASSIFICATION CRITERIA

In this section, we identify two groups of criteria for
classifying SUM approaches according to how they
can be designed once (i.e., the nature of the con-
struction process and resulting SUM(M)) and how
they should be selected for various applications (i.e.,
which approach is best in which context). This list
of criteria is the first contribution of this paper. By
applying them to different SUM approaches, we eva-
luate indicators for their appropriateness in Section 7.

3.1 Design Criteria

Design criteria distinguish SUM approaches from
each other at conceptual level regarding the structure
of created SUM(M)s and their construction process.
These criteria are independent from technical design
decisions. The goal of this set of criteria is to span the
complete solution space of possible SUM approaches.
The criteria are not evaluative but rather distinguis-
hing. In other words, the fulfillment of a criterion by
an approach does not have implications on whether it
is favorable over another approach. They inform plat-
form specialists about the possible conceptual degrees
of freedom when designing a SUM approach.

Criterion C1 (Construction Process) covers the
process of creating a SUM(M) depending on the star-
ting situation. In a top-down development approach, a
new SUM, and especially its SUMM, is created from
scratch. A bottom-up approach starts with already ex-
isting models and metamodels, which have to be com-
bined into a SUMM and initial SUM.

Criterion C2 (Pureness) relates to the absence of
internal redundancy in the SUM under construction.
An essential SUM is “completely free of any internal
redundancy” (Atkinson et al., 2015) and dependen-
cies by design. A pragmatic SUM contains redundant
information (e.g., because it contains different meta-
models that define concepts more than once) that has
to be interrelated and kept consistent, and thus only
behave as if it was free of dependencies due to inter-
nal consistency preservation mechanisms. Pragmatic
SUMs require additional information to wire the in-
ternal models together and thus involve more complex

consistency rules than equivalent essential SUMs.
While C1 focuses on the starting point of the

SUM construction process, C2 focuses on the results.
Together they allow SUM approaches to be compared
at conceptual level.

3.2 Selection Criteria

Selection criteria support the selection of the most ap-
propriate SUM approach for a particular project. This
set of criteria addresses the conceptual preconditions
and requirements that favor one SUM approach over
another in a specific situation. These criteria help met-
hodologists to compare different SUM approaches for
the same application scenario. For example, if exis-
ting metamodels need to be reused, it is best to select
and apply a SUM approach that simplifies the reuse
of existing metamodels. The fulfillment of those cri-
teria by a specific SUM approach is affected by the
allocation of design criteria for that approach.

Criterion E1 (Metamodel Reusability) determi-
nes whether concepts to be represented in the SUMM
are already available within predefined metamodels
and should be reused in the new SUMM. If so, the
SUM approach has to accommodate these legacy me-
tamodels by combining them into an initial SUMM.
This can either be done directly without additional
work or indirectly by providing strategies for migra-
ting the legacy metamodels into the SUMM. Since
lots of languages, metamodels and tools with fixed
viewtypes are usually already available, approaches
fulfilling this criterion support their reuse. Reusing
metamodels usually implies a bottom-up approach ac-
cording to C1.

Criterion E2 (Model Reusability) establishes
whether already existing artifacts (i.e., existing in-
stances of the metamodels to be integrated) need to
be incorporated in an initial version of the SUM. If
so, the SUM approach has to import these models.
This can be done either directly without additional
work or indirectly by providing a strategy for migra-
ting the legacy models into views of the SUM or di-
rectly into the SUM by some kind of model-to-model
transformations. It requires the reuse of the corre-
sponding initial metamodels according to E1 and usu-
ally requires a bottom-up strategy according to C1.
Reusing models may require that models have to be
consistent according to the consistency relations be-
tween the integrated metamodels before they are in-
tegrated into the SUM. This requires additional ma-
nual effort to ensure consistency beforehand, in con-
trast to SUM approaches which offer strategies to
handle inconsistent information during their integra-
tion into the SUM. Existing artifacts developed wit-
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hout a consistency-preserving SUM approach usually
do not initially fulfill the consistency relations, which
is why this criterion also checks whether those incon-
sistencies can be handled automatically during inte-
gration.

Criterion E3 (Viewtype Definability) focuses
on the task of specifying new types of views on a
SUMM. This involves the creation of new viewtype
definitions, focused on specific concerns (e.g., mana-
ging the traceability links from Consistency Rule 2)
whose instances can be used by developers to change
the related information in the SUM. Supporting the
definition of customized, role-specific viewtypes is
an essential capability of view-based development ap-
proaches, so the level of difficulty involved has a
strong impact on the usability of an approach.

Criterion E4 (Language Evolvability) focuses
on the task of maintaining the SUMM in the face of
evolved language concepts represented in their me-
tamodels, changed consistency rules, and the integra-
tion of new viewtypes. Changes in the metamodel can
require corresponding changes in the model (i.e., mo-
del co-evolution (Herrmannsdoerfer et al., 2011)) as
well as the creation or adaptation of consistency ru-
les. Since languages are subject to change (e.g., new
version of Java are regularly introduced) the difficulty
of updating the SUMM and its instances after evolu-
tion of the integration languages is a relevant crite-
rion, whose importance depends on the probability of
languages to evolve in a concrete setup.

Criterion E5 (SUMM Reusability) focuses on
the question of whether only a subset of the integra-
ted metamodels and their consistency rules from one
project can be reused to construct a SUMM for other
projects, or if a SUMM can only be reused as a whole.
Additionally, this criterion addresses the amount of
effort involved in adding new metamodels to an alre-
ady existing SUMM. Although this criterion does not
target reuse at the model level, it is important since,
for example, there are many software development
projects that use slightly different languages or con-
sistency rules, which need to be managed.

4 ORTHOGRAPHIC SOFTWARE
MODELING

Orthographic Software Modeling (OSM) is a view-
based approach, initially developed to support multi-
perspective software development (Atkinson et al.,
2010) but can be applied to other domains like en-
terprise architecture modeling (Tunjic et al., 2018) to
support methods like Zachman (Zachman, 1987).

ClassUseClass
name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

Class
name : EString [1]

Method
name : EString [1]

Requirement

id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

fullfills [∗]

fulfilledBy [∗]

class [1]

methods [∗]

class [1]

classUseClass [∗]

type [1]
usedBy [∗]

calling [∗]calledBy [∗]

SUMM

Figure 2: Exemplary Metamodel for SUM in OSM.

4.1 Main Ideas

The OSM approach is inspired by the orthographic
projection technique used to visualize physical ob-
jects in CAD systems. OSM utilizes this principle
to define “orthogonal” views on a system under de-
velopment that present each stakeholder, such as soft-
ware engineers, with the data he needs in a domain-
specific notation. Although stakeholders can only
see and manipulate the system via views, the actual
description of the system is stored in a SUM. The
views are defined to be as “orthogonal” as possible
through independent dimensions (i.e., concerns) ran-
ging from behavioral properties and feature specifi-
cations to architectural composition. Ultimately, the
system description in the SUM can be made formal
enough to be automatically deployed and executed on
appropriate platforms, thus allowing automatic rede-
ployment when changes occur. In order to support
the complete life-cycle of a system, ranging from re-
quirements analysis to deployment, the internal struc-
ture of the SUM must be able to store all required
data in a clean and uniform way. The data in the
SUM should thus be free from dependencies and cap-
ture all relationships between its inner elements in a
redundancy-free way using approaches like Informa-
tion Compression and Information Expansion (Atkin-
son et al., 2015).

Figure 2 shows an example of an OSM-oriented
SUMM corresponding to the information presented
in Figure 1. Since a fundamental tenet of the OSM
approach is to have a pure and optimized SUMM, it
is usually created manually from scratch based on the
needed viewtypes and concerns of the involved stake-
holders. Figure 2 is a reduced version of Figure 1 in
which all redundant information, and thus the corre-
spondences that connect duplicate stores of data, have
been manually removed. Thus, for example, the two
equivalent elements ClassType and Class have been
compressed into one concept Class in Figure 2. This
is possible because although the two concepts define
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their own properties for their own contexts, and use
different names (i.e., name and className), they are
in fact equivalent and can be combined. Both attribu-
tes are therefore mapped to the single attribute name in
the SUMM. The two dependencies are distinct, howe-
ver, and are hence both added to the Class element:
The first enables Classes to have Methods, while the
second describes dependencies between two Class
elements (Consistency Rule 1).

Consistency Rule 2 is modelled through a relati-
onship between Requirement and Method, denoting
that the requirement is being fulfilled by the method.
In order to allow developers to create instances of the
relationship, a new view can be defined, which at le-
ast contains the concepts Requirement, Method and
the relationship between these two.

The data structure shown in Figure 2 is simpler
and more optimized than the disparate representation
in Figure 1. This is achieved by the unified names
for dependent concepts (ClassType vs. Class) and
usage of names with more meaning (Association
vs. ClassUseClass). Although the SUMM is built
from scratch in the presented example, in principle it
is possible to import existing artifacts into the envi-
ronment using model-to-model transformations.

4.2 Process of Application

In order to make use of OSM, an environment has
to be developed which realizes its goals and princi-
ples. Both steps, i.e., the definition of the approach
and the implementation of a framework which sup-
ports the concepts of the approach, are performed
by a platform specialist. The work involves the de-
velopment of a framework which can be customi-
zed for the used methodology (e.g., KobrA (Atkin-
son, 2002), MEMO (Frank, 2002), ArchiMate (Iacob
et al., 2012)) and targeted domain (e.g., software en-
gineering, enterprise architecture modeling). The dif-
ferent configurations can be reused for projects in the
same domain and the same methodology. Tunjic et
al. (2018) present a metamodel which is used by the
current prototype implementation to support the con-
figuration of OSM environments. In particular, it faci-
lities the configuration of the SUMM and viewtypes,
and their integration in a dimension-based view navi-
gation approach using hyper-cubes of the kind used in
OLAP (Codd et al., 1993) systems.

The customization of the environment for a speci-
fic domain and methodology is performed by a soft-
ware engineer playing the role of a methodologist. In
order to be able to configure and customize the envi-
ronment according to the requirements, the methodo-
logist must have knowledge of the involved domain

and the OSM environment. In particular, he is re-
sponsible for defining the SUMM and the viewtypes
in a way that adheres to the principles of redundancy-
freeness and minimality. Defining a viewtype invol-
ves the definition of a suitable metamodel as well as a
model transformation that maps the concepts from the
SUM to those in a view and vice versa. The resulting
configuration can be stored in the tooling environment
in order to be reused in other projects.

Once a complete configuration of an OSM envi-
ronment has been defined by the methodologist, one
or more developers can use it to develop a specific sy-
stem specification. To this end, either an empty SUM
is created to start a project from scratch, or existing
content is imported into the SUM using model-to-
model transformations from external artifacts. When
using the OSM platform to develop a system, deve-
lopers are able to access views using the dimension-
based view navigation approach and use them to see
and update information from the SUM.

5 VITRUVIUS

The VITRUVIUS approach (Kramer et al., 2013) assu-
mes the existence of metamodels that are reused and
integrated into a so called virtual SUMM (V-SUMM)
rather than the development of a new SUMM from
scratch. In other words, it focuses on building a prag-
matic SUMM in a bottom-up fashion.

5.1 Main Ideas

The VITRUVIUS approach is based on the projectio-
nal SUM idea of the OSM approach. The whole sy-
stem description is encapsulated in a SUM and only
projectional views can be used to modify informa-
tion in the SUM. Instead of creating a completely
new SUMM without dependent information, howe-
ver, VITRUVIUS follows a pragmatic approach by
coupling existing metamodels using consistency pre-
servation rules (CPRs), which define how consistency
is preserved after modifications. The CPRs use and
modify correspondences, which reference model ele-
ments that represent dependent information and can
be seen as a trace model. The set of metamodels
with their CPRs defines a virtual SUMM (V-SUMM),
while instances of them with an actual model of cor-
respondences are denoted as V-SUMs. These CPRs
make dependencies between metamodels explicit and
ensure that after modifications in one model, all ot-
her dependent models are updated consistently. As
a consequence, a V-SUM behaves completely like an
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VT1

VT2 VT3
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consistency
preservation
rule

VT viewtype

view trans-
formation

Figure 3: Example V-SUMM in VITRUVIUS.

ordinary SUM since it provides the same guarantees
regarding information consistency.

An exemplary V-SUMM for the metamodels from
Figure 1 is depicted in Figure 3. It consists of the
reused metamodels with CPRs defined between them.
For Consistency Rule 1, a CPR defines the creation of
a Java class ClassType in reaction to the creation of
a UML class Class. It is up to the methodologist to
specify the behavior in the other direction, i.e., whet-
her a UML class is created for a Java class or if the
developer shall be asked what to do. Additionally,
it propagates all changes on the name or className
to the respective other model. The additional requi-
rements traces in Consistency Rule 2 can be expres-
sed by identifying matching requirements and met-
hods after adding or modifying methods as well as
requirements, and by storing them as appropriate cor-
respondences in the existing trace model. Alternati-
vely it is possible to define an additional metamodel
that defines links between requirements and methods,
which is modified whenever they are changed.

Two types of projectional viewtypes can be defi-
ned on a V-SUMM. First, the original viewtypes de-
fined for the existing metamodels, such as a textual
editor for Java or a graphical editor for UML, can be
reused. In Figure 3, these viewtypes are V T1, V T2 and
V T3, which represent the original metamodels from
Figure 1. Second, it is also possible to define addi-
tional viewtypes that may combine information from
different metamodels and their relations defined in the
CPRs. Figure 3 contains V T4, which displays the trace
information for Consistency Rule 2 by extracting in-
formation from the Java and the requirements model,
as well as from the correspondences generated by the
CPR. Concretely, this viewtype could, for example,
show the Java code with annotations attached to the
methods that show the requirements they fulfill. Ne-
vertheless, for defining such viewtypes, specialized
languages that support the projection from, and com-
bination of, different metamodels is required. In VI-

TRUVIUS, those can be expressed with the ModelJoin
language (Burger et al., 2014).

Consistency preservation in VITRUVIUS is perfor-
med in a delta-based manner. In contrast to state-
based consistency preservation, edit operations are
tracked instead of comparing two model states, which
results in less information loss (Diskin et al., 2011).
For example, a state-based approach can distinguish
the deletion and creation of an element from its rena-
ming only using heuristics, whereas delta-based ap-
proaches track the correct operations. To define such
delta-based consistency preservation, specific consis-
tency preservation languages have been developed
(Kramer, 2017). Initial investigations into consistency
preservation in VITRUVIUS have been made on a case
study of component-based architectures, Java code
and code contracts (Kramer et al., 2015).

5.2 Process of Application

The development of frameworks such as VITRUVIUS
first involves a platform specialist who defines an
abstraction representing the interface of a V-SUM,
implements the logic for executing CPRs and defi-
nes or selects specific languages or at least an inter-
face to define CPRs. The current implementation of
the VITRUVIUS approach (http://vitruv.tools)
uses Ecore and contains a Java-based definition of V-
SUMs and provides two languages for defining con-
sistency preservation on different abstraction levels.

The methodologist then selects a set of metamo-
dels and defines or reuses existing CPRs for the se-
lected metamodel to define a V-SUMM of these ar-
tifacts. Finally, the developer can instantiate the V-
SUMM, derive views according to existing or ne-
wly defined viewtypes, and perform modifications of
them. Modifications in a view are recorded as sequen-
ces of atomic change events (creation, deletion, inser-
tion, removal and replacement) and then sequentially
applied to the V-SUM. For each of these changes, the
responsible CPRs are executed to restore consistency
after each modification, which results in an inducti-
vely consistent V-SUM.

6 MOCONSEMI

MOCONSEMI (MOdel CONSistency Ensured by
Metamodel Integration, (Meier and Winter, 2018))
combines major features of the other two SUM ap-
proaches, i.e., creating one SUM by operator-based
transformations with reusing existing (meta)models
as starting point.
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6.1 Main Ideas

MOCONSEMI is a SUM approach which starts
with existing initial models and conforming metamo-
dels (exemplarily shown in Figure 1) and creates a
SUM(M) suggested by Atkinson et al. (2010). In

practice, many models and metamodels already
exist in form of DSLs and tools with fixed data sche-
mas. To reuse them even in integrated form, these
initial models and metamodels are reused for the inte-
gration and the models are kept in sync as views.

The integration of initial (meta)models from the
running example in Figure 1 into a SUM(M) resulting
in Figure 5 is described by a chain of operators, as
depicted in Figure 4. To form the SUM(M) out of
the initial (meta)models, theses operators change the
current (meta)model in a step-wise way. Starting
with the initial model and metamodel representing
Requirements , the initial (meta)models for Java and
ClassDiagrams are included technically at 1 and
3 , which require ProjectData and its compositions

as container without any contentwise integration.
The first operator AddAssociation is used to ful-

fill Consistency Rule 2. To enable the desired tracea-
bility links between requirements and methods, a new
association between Requirement and Method is re-
quired and created by the operator. In the model, links
can be added for this new association. This is also
done by the operator corresponding to a decision to
control this model change. This ensures that a met-
hod is linked with those requirements that contain the
name of the method in their requirements text.

Consistency Rule 1 is realized in MergeClasses
5 → 6 after the operator ChangeMultiplicity is

applied twice 5 as preparation, because the two clas-
ses Class (from UML) and ClassType (from Java)
are merged into one single class representing data
classes both in UML and Java at the same time.
The instances are merged in the same way suppor-
ted by the model decision that the same instances are
identified by same values for Class.className and
ClassType.name specified by the methodologist. As
a result of this merge, redundant information is re-
moved from the current (meta)model. The opera-
tor MergeAttributes is a follow-up treatment, af-
ter which the methodologist decided that the integra-
tion is done. The last stable model and metamodel
are used as the SUM(M) , for which Figure 5 marks
the contentwise changes in red compared to the initial
metamodels in Figure 1.

Summarizing, each operator performs small chan-
ges on the current metamodel (e.g., adds a new associ-
ation) controlled by metamodel decisions (e.g., mul-
tiplicities, source and target class of the new associa-

tion). The operator also changes the current model to
keep it consistent to the changed metamodel for mo-
del co-evolution (Herrmannsdoerfer et al., 2011). De-
grees of freedom of this change are influenced by mo-
del decisions, which allow consistency rules to be ful-
filled (e.g., specify, when new links should be added).
Result is one valid intermediate model conforming to
one valid metamodel represented by i . To keep the
initial models up-to-date, changes in the SUM have
to be propagated back to them, which requires ope-
rators to be executed backwards. Therefore, each
operator is combined with an inverse operator, e.g.,
DeleteAssociation for AddAssociation.

In the end, the same operator chain describes the
SUMM by collecting the metamodel changes, creates
the initial SUM by executing the operators at model
level reusing the initial models, and ensures consis-
tency between all models by executing operators in
both directions. The SUM and SUMM both exist and
the SUM is directly usable as a first new view for de-
velopers. The SUM is used as a single point-of-truth,
from which all initial and new views can be generated.

6.2 Process of Application

The approach and a supporting framework are deve-
loped once by the platform specialist. This includes
the design and the implementation of the operators
(currently 20 including inverse ones). The frame-
work is under development using Java and a subset
of Ecore, reusing parts of Eclipse EDapt (Herrmanns-
doerfer, 2010), and extending some coupled opera-
tors (Herrmannsdoerfer et al., 2011).

After that, the methodologist creates a chain of
operators like in Figure 4 individually for each pro-
ject by reusing the provided operators and configuring
them regarding the specific consistency rules. Additi-
onally, the operators can be used to define new view-
types on top of the SUMM.

Since the initial (meta)models are “migrated”
to view(type)s on the SUM(M), the developer can
change them as well as the SUM and the newly de-
fined views. These changes are propagated automa-
tically to all other models by executing the operator
chain in forward and backward directions, which en-
sures consistency to the developer’s model decisions.

7 CLASSIFICATION OF
APPROACHES

This section classifies the three presented SUM ap-
proaches regarding the criteria presented in Section 3
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Figure 4: Chain of Configured Operators for Integrating Textual Requirements, Class Diagrams, and Java into a SUM(M).

RequirementsSpecification
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id : EString [0..1]
author : EString [0..1]
text : EString [0..1]

JavaASG

ClassType

name : EString [1]
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name : EString [1]

ProjectData

ClassDiagram

Association
name : EString [1]
lowerBound : EInt [0..1]
upperBound : EInt [0..1]

container [1]
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asg [0..1]
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class [1]
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calledBy [∗] calling [∗]
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containsJavaASG [∗]
integrator [0..1]

fulfilled [∗]

fulfilledBy [∗]

integrator [0..1]

containsClassDiagram [∗]

classes [∗]diagram [0..1]

class [1]

associations [∗]

type [1]
usedBy [∗]

SUMM

Figure 5: SUMM with Integrated Textual Requirements, Class Diagrams and Java.

as second contribution of this paper. The classifica-
tion serves both as a comparison of the three appro-
aches, as well as an indicator of the appropriateness
of the developed criteria to distinguish SUM approa-
ches. Table 1 summarizes the classification.

7.1 Design Criteria

The overall development strategy, top-down vs.
bottom-up (C1), relates to whether existing models
and metamodels are used as starting point. OSM
works top-down by creating an essential SUM(M),
which, although technically independent, may be con-
ceptually based on existing (meta)models. VITRU-
VIUS and MOCONSEMI, on the other hand, operate
bottom-up, because they are able to reuse initial mo-
dels and metamodels. While VITRUVIUS keeps them
unchanged inside the modular SUM(M), MOCON-
SEMI transforms them into an essential SUM(M).

All approaches can lead to either an essential or
pragmatic SUM(M) in terms of C2. OSM is desig-
ned to have an essential SUM(M) without any internal
dependencies. VITRUVIUS is designed to use a prag-
matic SUM(M), since it incorporates all initial models
with overlapping and, in general, dependent informa-
tion. MOCONSEMI starts pragmatically, combining
all initial models into one, but gradually moves to-
wards an essential SUM(M) by removing dependent
information or keeping them consistent through ope-
rator application. In special cases, this can lead to an
essential SUM(M) without dependent information.

7.2 Selection Criteria

Metamodel Reusability (E1) requires that a preex-
isting set of metamodels and tools is reused to ge-

nerate the SUMM. OSM supports this feature only
conceptually (“hard”), because engineers can always
informally draw upon the information contained in
existing metamodels when constructing the essential
SUMM, either manually or by model-to-model trans-
formations, but this is not a formal part of the ap-
proach. VITRUVIUS supports this feature directly
(“easy”), because it reuses and keeps the initial meta-
models as internal parts of the modular SUMM, but
depends on additional logic that builds the consis-
tency preservation mechanisms. MOCONSEMI sup-
ports this feature by using the initial metamodels as
the starting point for the subsequent transformati-
ons into a purer SUMM (“easy”). In general, only
bottom-up approaches (C1) can easily fulfill E1, be-
cause in top-down approaches a new metamodel has
to be defined, which hampers metamodel reuse.

Model Reusability (E2) requires preexisting mo-
dels to be incorporated into the initial SUM. OSM
supports this feature in a semi-automatic way (“hard”)
by importing data from existing models into the ne-
wly constructed SUM using model transformations.
Although models do not need to be initially consis-
tent, the transformations have to be defined such that
they generate consistent output. VITRUVIUS supports
this feature partially (“middle”), because it reuses and
keeps the initial models as internal parts of the modu-
lar SUM. Nevertheless, this requires the reused mo-
dels to be consistent according to the consistency ru-
les between the metamodels. This can require high
manual effort for the initial integration. MOCON-
SEMI supports this feature by using the initial mo-
dels as the starting point for subsequent transformati-
ons that create a purer SUM (“easy”). Even if models
are not consistent before, the application of operators
to integrate the models can handle and fix inconsis-
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Table 1: Comparison of the three Approaches regarding Design Criteria and Selection Criteria.

Criterion OSM VITRUVIUS MOCONSEMI

C1 Construction Process top-down bottom-up bottom-up
C2 Pureness essential pragmatic pragmatic→ essential

E1 Metamodel Reusability hard easy easy
E2 Model Reusability hard middle easy
E3 Viewtype Definability easy hard middle
E4 Language Evolvability middle easy middle
E5 SUMM Reusability middle easy middle

tencies. In general, only bottom-up approaches (C1)
can easily fulfill E2, but the effort for reuse highly
depends on the necessity to have initially consistent
models.

Viewtype Definability (E3) deals with the speci-
fication of new viewtypes for the SUMM by metho-
dologists. OSM eases viewtype definition (“easy”),
because it provides an essential SUMM containing
all concepts in an integrated, redundancy-free way.
VITRUVIUS makes viewtype definition more difficult
(“hard”), because information is spread across meta-
models and has to be combined referring to the de-
fined consistency relations or using specialized lan-
guages. MOCONSEMI eases viewtype definition in
contrast to VITRUVIUS, but requires slightly more ef-
fort than OSM, especially if the SUMM is not essen-
tial (“middle”). Rather than arbitrary transformations
usable in the OSM approach, the operators for inte-
gration are also used for specifying new viewtypes.
In general, E3 is directly influenced by the pureness
of an approach (C2), as pragmatic approaches always
have to deal with the problem of fragmented informa-
tion, whereas essential approaches provide the neces-
sary information in a minimalistic way.

Language Evolvability (E4) deals with maintai-
ning the SUMM in the face of changes to the inte-
grated metamodel elements or the consistency rules.
OSM simplifies SUMM evolution, since it is free of
redundant information, but has to check that the chan-
ges keep the SUMM essential. However, the trans-
formations that generate views to the SUM have to
be updated manually to stay up-to-date with SUMM
changes (“middle”). VITRUVIUS simplifies metamo-
del evolution, since the initial metamodels are kept
unchanged as sub-parts of the modular SUMM. The-
refore, metamodels can evolve directly (“easy”). Ad-
ditionally, the consistency preservation rules targeting
the changed metamodel have to be checked and fixed
if required, as well as the defined viewtypes which
depend on the effected metamodels. MOCONSEMI
supports metamodel evolution, but the effort depends
strongly on the kind of change (“middle”), which is
true also for the other approaches to some less degree.

If changes in the initial metamodels can be realized
by describing the difference between the old and new
metamodel version by a chain of operators, the exis-
ting operator chain must only be extended by them.
The same applies for changed consistency rules. In
all other cases, some of the existing operators have
to be changed. In general, metamodel evolution is ea-
sier to realize in pragmatic approaches (C2), since the
SUMM is constructed out of existing metamodels, le-
ading to a formal relation between them. A drawback
of having dependencies is that their consistency must
be preserved after language evolution. On the other
hand, in essential approaches the relations between
the existing artifacts and the SUMM only exist con-
ceptually. Thus, changes in existing languages must
be manually transferred to the SUMM ensuring its
redundancy-freeness and minimality, leading to high
effort and error potential.

SUMM Reusability (E5) addresses the challenge
of adding new metamodel elements to or removing
some of the already integrated metamodels from the
existing SUMM to reuse the SUMM in a different
context. Therefore, no models are reused and model-
co-evolution is not needed here. OSM makes it easy
to add new concepts to an existing SUMM, since
they can be inserted directly into the existing struc-
ture where they are needed. However, redundancy-
freeness must be preserved and removing parts of the
SUMM requires related concepts to be checked to en-
sure consistency (“middle”). VITRUVIUS makes it
easy to add a new metamodel “as is” by adding it to
the modular SUMM and specifying its consistency to
the already integrated metamodels (“easy”). Remo-
ving an integrated metamodel works vice versa. Reu-
sing subsets of a SUMM (i.e., a subset of the used
metamodels) is easy, since selected parts of metamo-
dels along with their consistency preservation rules
can simply be reused. MOCONSEMI makes it easy
to add new metamodels by defining a new operator
chain that starts with the current SUMM and reuses
all existing operators. Removing an already integra-
ted metamodel requires all operators between the me-
tamodel in question and the SUMM to be removed

Single Underlying Models for Projectional, Multi-View Environments

125



or fixed (“middle”). Generally, pragmatic approaches
(C2) allow to easily add or remove metamodels, since
these operations are performed on the level of the me-
tamodel as a whole. Additionally, they tend to lead
to SUMMs that reflect the structure of the original
metamodels, making them easier to remove later. On
the other hand, essential approaches can easily fine-
tune metamodels to the needs of the project, since the
SUMM can be manipulated at the level of individual
model elements. However, the absence of dependen-
cies intertwines information and makes the bounda-
ries between the different metamodels less clear.

The application of the classification criteria to the
three approaches has shown that all criteria distin-
guish different properties of SUM approaches, be-
cause none of the criteria is fulfilled by all approaches
in the same way. Nevertheless, correlations between
the reusability of metamodels and models, as well as
between the evolution of languages and the reusabi-
lity of SUMM can be seen, as they all arise from the
same conceptual criteria regarding pureness and con-
struction process. From this application of the crite-
ria, it cannot be said that the list of criteria is complete
and especially it is unclear whether those presented
criteria are the most relevant for selecting an appro-
priate SUM approach. Nevertheless, we have argued
that all these criteria are relevant for certain situati-
ons (e.g., whether metamodels shall be reused or not,
whether languages can be expected to evolve), which
gives an initial indicator for the appropriateness of the
criteria.

8 GUIDELINE FOR APPROACH
SELECTION

We defined criteria for selecting a SUM appro-
ach that is most suitable for a specific situation in
Section 3.2, which are derived from the design criteria
in Section 3.1. Since the three presented approaches
fulfill these selection criteria differently, each fits well
for different situations as discussed in the following as
third contribution of this paper.

If there are no legacy tools or metamodels descri-
bing the system under development to be reused (E1
and E2), the OSM approach is the most suitable. As
there is no pressure to reuse existing metamodels, mo-
dels or tools, defining a new metamodel that is free
of implicit dependencies provides the purest solution
for describing the system. This makes it most easy to
define new viewtypes for specific roles (E3). The ap-
proach is also the most attractive when dependencies
to external tool vendors should be avoided.

If, on the other hand, existing metamodels and

tooling are available for reuse, the top-down OSM
approach is less suitable in contrast to bottom-up ap-
proaches (C1) like VITRUVIUS and MOCONSEMI,
because they preserve existing viewtypes, compatibi-
lity to existing tooling and potentially complete deve-
lopment environments including all instances. More-
over, they achieve this without the need to remodel all
dependency-free information and without the corre-
sponding loss of compatibility to existing viewtypes
and tooling. VITRUVIUS is the most suitable appro-
ach if there are no existing models to be integrated
for reuse, because it provides the highest reusability
of SUMMs (E5) and the best support for evolution
(E4), since the initial (meta)models are contained in
the SUM(M) as separated artifacts. This also allows
the modular specification of CPRs by domain experts,
their reuse across projects, and the project-specific se-
lection of used metamodels and CPRs.

However, VITRUVIUS is less suitable than MO-
CONSEMI when existing models need to be reused,
for example, in a re-engineering case, as it requires
the reused models to be consistent according to the
consistency rules (E2). When models do not follow
these consistency rules, which is especially the case
when they are less obvious than those between Java
and UML, they have to be adapted initially. The MO-
CONSEMI approach is most suitable in this case, be-
cause it is able to handle inconsistencies in the exis-
ting models and resolves them during integration.

Summarizing, if the reuse of existing tools and
metamodels is not required, creating an essential
SUM(M), as in OSM, is the most suitable solution.
If metamodels are to be reused, pragmatic approaches
are more suitable. Depending on whether existing in-
stances shall be reused, VITRUVIUS or a combined
approach such as MOCONSEMI should be taken. Ta-
ble 2 summarizes the main advantages and applica-
tion areas of the different approaches.

9 RELATED WORK

The explicit use of views or perspectives in software
engineering can be traced back to the VOSE method
in the early 1990s (Finkelstein et al., 1992), which
strongly advocated a synthetic approach to views gi-
ven the state-of-the-art at the time. Most “view-
based” software engineering methods that have emer-
ged since then, such as by Kruchten (1995) or the
Unified Process (Larman, 2004), assume that views
are supported in a synthetic way, although this is usu-
ally not stated explicitly (the actual distinction bet-
ween synthetic and projective approaches to views
was first clearly articulated in the ISO 42010 stan-
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Table 2: Main Advantages and Disadvantages of the three Approaches with Exemplary Application Areas.

dard (ISO/IEC/IEEE, 2011)). To our knowledge, no
general purpose software engineering method availa-
ble today is based exclusively on the notion of pro-
jective views driven by a SUM. However, there are
approaches that address the more specific problem of
keeping multiple views on a database consistent (Da-
yal and Bernstein, 1982), or that support a synthetic
approach to modeling in a limited context like multi-
paradigm modeling (Vangheluwe et al., 2002).

The discipline in which the idea of using views to
provide different perspectives on large, complex sy-
stems is the most mature is Enterprise Architecture
(EA) modeling, characterized by approaches such
as Zachman (Zachman, 1987) and TOGAF (Haren,
2011). These all define some kind of “viewpoint fra-
mework” defining the constellation of views available
to stakeholders and the kind of “models” that should
be used to portray them. Some of these, like RM-ODP
(Linington et al., 2011), adopt an explicitly synthe-
tic approach, while others such as ArchiMate (Iacob
et al., 2012) and MEMO (Frank, 2002) make no com-
mitment. However, again no EA modeling platform
available today explicitly advocates, or is oriented to-
wards the use of projective views.

Therefore, the criteria presented in this paper help
to design and select appropriate SUM construction
approaches. Additionally, the three sketched SUM
approaches under development show the feasibility of
projectional, multi-view environments.

10 CONCLUSION

Ensuring holistic consistency in system development
is a growing challenge as systems become larger and
more complex. In this paper, we introduced a uni-
fying terminology and developed criteria for classi-
fying approaches that allow to construct single under-
lying models (SUMs) as solutions to that consistency
problem. Based on those criteria, we identified the
main conceptual differences between possible solu-
tions, which are the construction process to build a
SUM and its metamodel, and their pureness, i.e., the

absence of redundancy. We derived five selection cri-
teria, which help to select an appropriate approach
for a specific situation, depending on the necessity to
reuse existing metamodels and models, the expected
evolution of integrated languages, the need for defi-
ning new viewtypes, as well as the required reusabi-
lity.

We presented three existing approaches, which are
OSM, VITRUVIUS and MOCONSEMI, which cover
the conceptual solution space for SUM approaches
spanned by the criteria construction process and pu-
reness. On the one hand, OSM creates a pure SUM
in a top-down way, while on the other hand, VITRU-
VIUS leads to a pragmatic SUM by bottom-up reuse
of existing (meta)models explicitly keeping depen-
dent information consistent. Between these two ends
of the spectrum, MOCONSEMI operates in a bottom-
up way like VITRUVIUS, but removes redundant in-
formation leading to an improved, possibly essential
SUM. There is no known top-down approach that uses
pragmatic SUMs. By applying the identified crite-
ria to these different approaches, we were able to give
a reasonable indicator for the appropriateness of those
criteria, as they are distinguishing for the approaches.

OSM especially replaced the paradigm of refine-
ment of models by model transformation chains by
the new paradigm to project models only as views on
the complete interconnected information of the whole
system. It is the initiator for the idea of constructing
SUM that are only defined via projectional views.
Based on that idea, VITRUVIUS and MOCONSEMI
contribute concrete pragmatic strategies for building
SUMs according to this paradigm.

An interesting possibility is to combine the appro-
aches by nesting SUMs developed with different ap-
proaches, so that one SUM contains other SUMs by
using their provided viewtypes. This, for example,
would allow an essential SUM defined for a specific
concern of a system to be combined with existing me-
tamodels in a pragmatic SUM using VITRUVIUS or
MOCONSEMI. Finally, it also offers the construction
of pragmatic SUMs, which can easily become com-
plex when they contain lots of metamodels, to be hier-
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archically decomposed (i.e. nested).
As future work, we plan to define a community

case study that describes metamodels, models, and
consistency rules in the application area of software
development. Its realization by the three approaches
will help to evaluate, compare and improve the appro-
aches, their technical realizations and provided tool-
ing using technical criteria to be proposed.

These criteria and derived evaluations of the three
SUM approaches are developed by three groups of
SUM researchers. This paper results from that col-
laboration including discussions from three internal
workshops and will be continued with developing the
community case study and its application to all three
SUM approaches for evaluation in practice.
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