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Abstract: The histogram of forces is a quantitative representation of the relative position of two image objects. It is an 
image descriptor, like, e.g., shape descriptors. It is not invariant under similitudes, but can be made invariant 
under similitudes. These are two desirable properties that have been exploited in many applications. Making 
the histogram of forces invariant under similitudes is achieved through a procedure called normalization. In 
this paper, we formalize the concept of normalization, review the existing normalization procedures, introduce 
new ones, and compare all these procedures through experiments involving over 170,000 histogram 
computations or normalizations. 

1 INTRODUCTION 

A relative position descriptor, or RPD, carries 
quantitative information about the spatial 
arrangement of image objects—a feature people 
continuously rely on to understand and communicate 
about space. Several RPDs can be found in the 
literature (Naeem and Matsakis, 2015), but the 
histogram of forces might be the most popular. Its 
applications include human-robot interaction (Skubic 
et al., 2004), geospatial information retrieval (Shyu et 
al., 2007), scene matching (Sjahputera and Keller, 
2007), technical document analysis (Debled-
Rennesson and Wendling, 2010), satellite image 
analysis (Vaduva et al., 2013) and urban land use 
extraction (Li et al., 2016). Many other applications 
(e.g., the classification of skull orbits and sinuses, the 
translation of hand-sketched route maps into linguistic 
descriptions) are referenced in (Matsakis et al., 2010). 
Considerable attention has been paid in literature to 
the invariance of image descriptors under similitudes, 
especially rotations and scalings. The histogram of 
forces is not invariant under similitudes, but it can be 
made invariant under similitudes, and these are two 
desirable properties that have been exploited in many 
applications. 

Consider the problem of locating a set of 
buildings in a map given an approximate description 
of their relative position in the form of a sketch. 
Assume relative positions are represented using 
some RPD. If the north direction is indicated on both 
the map and the sketch, rotating the buildings in the 

sketch amounts to changing the query. For example, 
finding a building to the east of the MoMA in New 
York City is not the same as finding a building to the 
south of it. Rotations should therefore affect the RPD. 
However, if the north direction is not indicated on the 
map or sketch, then rotations should not affect the 
RPD, i.e., it should be considered that the position of 
an object relative to another does not change if the 
same rotation is applied to both objects. Likewise, if 
the scale of the sketch is the same as the scale of the 
map, scalings should affect the RPD; and if the exact 
scale of the sketch is unknown, then scalings should 
not affect the RPD. This illustrates why it is desirable 
for RPDs not to be invariant under similitudes, and 
why it is also desirable for them to be normalizable, 
i.e., to have the ability to become invariant under 
similitudes. 

Various normalization procedures for the 
histogram of forces can be found in the literature 
(Skubic et al., 2004) (Matsakis et al., 2004) (Buck et 
al., 2010) (Buck et al., 2013) (Vaduva et al., 2013) 
(Clement at al., 2016). However, they have not been 
assessed or compared; each procedure was introduced 
as part of a solution to a larger problem and was not 
the focus of the paper addressing that problem; 
invariance under direct similitudes only is actually 
achieved. Also note that the meaning of the term 
normalization varies from one author to another. 

In Section 3, we formalize the concept of 
normalization, review the existing normalization 
procedures, and introduce new ones. Comparative 
experiments are conducted in Section 4. Conclusions 
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and future work are in Section 5. First, in Section 2, 
we say a word about geometric transformations and 
give a brief review of the force histogram and its 
geometric properties. 

2 BACKGROUND 

2.1 Transformations 

We are considering here the Euclidean affine plane 
and its associated vector plane. The origin is an 
arbitrary point of the affine plane. A transformation 
is a bijection from the affine plane to itself. An affinity 
is a transformation that preserves lines and 
proportions on lines. A similitude is an affinity that 
multiplies all distances by the same positive real 
number, which is called the scale factor of the 
similitude. An isometry is a similitude whose scale 
factor is 1. 

A scaling is a similitude that fixes at least one 
point—the center of the scaling—and preserves the 
direction of all vectors. An isometry is a translation, 
a rotation, a reflection or a glide reflection. Any 
similitude is the composition of a scaling and an 
isometry, and any isometry is the composition of 
reflections. 

A similitude is either direct or indirect. A direct 
similitude preserves orientation (e.g., scalings, 
translations, rotations), while an indirect similitude 
reverses orientation (e.g., reflections, glide 
reflections).  

The five sets of all scalings, translations, rotations, 
reflections and glide reflections, whether considered 
alone or in combination, generate six groups under 
the operation of composition of functions: the 
translation group, the scaling-translation group, the 
direct isometry group, the isometry group, the direct 
similitude group, and the similitude group. 

2.2 Force Histogram 

An object is a nonempty bounded regular closed set 
of the affine plane. Consider two objects A and B. We 
may see them as physical plates with negligible 
thickness. Every particle a of A exerts on every 
particle b of B an infinitesimal force from b to a with 
magnitude 1/d 

r, where d is the distance between the 
two particles and r is a constant. For any real number 
, let hr

AB() be the (integral) sum of all the 

infinitesimal forces in direction  (we say that a force 
is in direction  if  is a measure in radians of the 
angle from the positive x-axis to the force). The 

symbol hr
AB  denotes a periodic function from  to  

with period 2; we call it the force histogram—or 
histogram, for short—of the object pair (A,B). It is a 
quantitative representation of the position of A 
relative to B. In practice, histograms are computed 
over a finite number n of evenly distributed 
directions: i =2(i1)/n, with i1..n. See (Matsakis et 
al., 2010). 

2.3 Geometric Properties of the Force 
Histogram 

Let tra be a translation, rot an -angle rotation, ref a 
reflection about a line in direction , and sca a scaling 
with scale factor . We have (Matsakis et al., 2004): 

hr
tra(A)tra(B)()  hr

AB() (1)

hr
rot (A)rot (B) ()  hr

AB()  (2)

hr
ref (A)ref (B) ()  hr

AB(2  )  (3)

hr
sca(A)sca(B)()  3r hr

AB()  (4)
 

These equations show that the force histogram is not 
invariant under similitudes. They can be used, 
however, to normalize the histogram and make it 
invariant under similitudes. See Section 3. There is 
actually a more general equation, which describes 
how the histogram changes when an arbitrary 
affinity is applied to the objects (Ni and Matsakis, 
2010). It is much more complex, however, and 
making the histogram invariant under affinities 
remains an unsolved problem. 

3 NORMALIZATION 

3.1 Normalization Procedure 

Consider a group  of transformations. A 

normalization procedure w.r.t. (with respect to)  is 

a function that maps any force histogram H to a pair 
(tH , H ) , where tH is an element of  called the 

normalizing transformation of H, and H  is a 
histogram called the normalized histogram. 
This function satisfies two properties. If H  hAB  then 
H  htH (A)tH (B) , and the pair (tH (A),tH (B))  is the 

normalized object pair. Moreover, ht (A)t (B)  hAB  for 
any objects A and B and any element t of , i.e., the 

normalized histogram is invariant under . Note that 

a normalization procedure does not have to be a total 
function, i.e., some histograms may not be 
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normalizable. If hAB  is normalizable, the object pair 
(A, B)  is well-behaved; otherwise, it is ill-behaved. 

3.2 Retrieving T from hAB  and ht(A)t(B)  

Consider a group  of transformations, and a 

normalization procedure w.r.t. . Let (A0, B0 )  and 

(A1, B1)  be two well-behaved object pairs. Assume 

there exists an element t of  such that: 
 

A1 = t(A0)  and  B1 = t(B0) (5)
 

It is possible to retrieve t from hA0B0  and hA1B1 . Indeed, 
by definition of a normalization procedure (Section 
3.1), the normalizing transformations t0 and t1 of 
hA0B0  and hA1B1  satisfy: 

 

ht0 (A0 )t0 (B0 )  = ht1(A1 )t1(B1 )  (6)
 

In practical situations, if two histograms are the same 
then the two object pairs they are associated with are 
most likely the same up to a translation (Matsakis et 
al., 2004). In other words, (6) usually implies 
 

t1(A1)  t0(A0)  and  t1(B1)  t0(B0), (7)
 

where  means equality up to a translation. Therefore, 
 

 (8)

and , (9)
 

where ° denotes function composition. In the end: 
 

 (10)
 

Now, assume (5) holds but the transformation t does 
not belong to . Then, (10) does not hold. However, 

the transformation  may be seen as the element 

of  that best approximates t, and the similarity 

between the normalized histograms ht0 (A0 )t0 (B0 )  and 
ht1(A1 )t1(B1 )  can be used to assess the quality of the 
approximation. This will be illustrated in Section 4.  

3.3 Normalization w.r.t. the 
Translation Group 

Let id be the identity transformation. The equations tH 
= id and H  H  define a normalization procedure 
w.r.t. the translation group. All histograms are 
normalizable, and all object pairs are well-behaved. 
These results derive from (1). Note that any 
transformation of the form tra ° tH , where tra denotes 
a translation, could be chosen instead of tH as the 
normalizing transformation of H. This is true with 
any histogram and any normalization procedure, 
whether it is w.r.t. the translation or another group. 

3.4 Normalization w.r.t. the 
Scaling-translation Group 

The scaling-translation group can be generated by the 
set of all scalings. When applying a scaling to a pair 
of objects, the corresponding histogram Hr is shrunk 
or stretched vertically. See (4). To ensure invariance 
under scalings, this effect must be counterbalanced. 
The normalization can be achieved by dividing Hr by 
a particular value, which we are going to call the 
characteristic force of Hr and denote by (Hr): 
 

Hr 
1

(Hr )
Hr  (11)

 

See Fig. 1. The normalizing transformation, tHr , is 
then the scaling with center the origin and with the 
following scale factor:  

1

(Hr )
1

3r

 (12)

 

There are many ways to define the characteristic force 
(Hr). For example, it may be set to the maximum 
value of the histogram. In practice, (Hr) is then 
computed as follows: 
 

(Hr )  maxi1..n Hr (i )  (13)
 

This is the approach used in (Clement at al., 2016). 
An alternative is to set (Hr) to the mean value: 
 

(Hr ) 
1

n
Hr (i )i1..n  (14)

 

This is the approach used in (Matsakis et al., 2004) — 
and it can be expected to be more robust. However, in 
many cases, the majority of the histogram values are 
zero, but the values of interest are the non-zero values. 
Equation (14) may therefore inappropriately pull the 
characteristic force towards 0. A better approach 
might be to set (Hr) to the y-coordinate of the 
centroid of the region defined by the rectangular 
representation of the histogram on an arbitrary 2-
long interval (Fig. 2a). The x-coordinate of the 
centroid depends on the chosen interval, but the y-
coordinate does not, and may be computed as follows: 
 

(Hr ) 
Hr (i )2

i1..n
2 Hr (i )i1..n

 (15)

 

All histograms are normalizable, and all object pairs 
are well-behaved, whether the characteristic force is 
defined by (13), (14) or (15). Moreover: 
 

(Hr )  1 (16)
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3.5 Normalization w.r.t. the Direct 
Isometry Group 

The direct isometry group can be generated by the set 
of all rotations. When applying a rotation to a pair of 
objects, the corresponding histogram H is shifted 
along the x-axis. See (2). To ensure invariance under 
rotations, this effect must be counterbalanced. The 
normalization can be achieved by shifting H to the 
“left” by a particular value, which we are going to call 
the characteristic direction of H and denote by (H): 
 

H ()  H ( (H ))  (17)
 

See Fig. 1. The normalizing transformation, tH, is 
then the rotation about the origin with angle (H). 

There are many ways to define (H). For example, 
it may be set to the direction  in [0, 2) that 
maximizes H(): 
 

(H )  argmaxi H (i )  (18)
 

The approach is used in (Buck et al., 2010). However, 
H is not normalizable if multiple directions maximize 
H(). In practice, this means that the computed 
characteristic direction—and, therefore, the 
normalization procedure—is unreliable when 
multiple histogram values are very close to the 
maximum histogram value. The issue cannot be 
ignored, as many man-made object pairs exhibit 
symmetry and are ill-behaved.  

Consider the centroid of the region defined by 
the rectangular representation of H on an arbitrary 2-
long interval. (H) cannot be set to the x-coordinate 
of that centroid, because it would depend on the 
chosen interval. However, (H) can be set to the 
angular coordinate of the centroid of the region 
defined by the polar representation of H (Fig. 2b): 
 

 3 3( ) atan2 ( ) sin( ) , ( ) cos( )i i i ii i
H H H        (19)

 

where atan2 is the two-argument variation of the 
arctangent function.  

Equation (19) seems overly complicated. A 
similar but simpler approach is to see each pair (, 
H()) as the polar coordinates of a vector and to 
define the characteristic direction (H) as the 
direction of the sum of all these vectors (Fisher, 
1995): 
 

(H )  atan2 H (i ) sin(i )i , H (i ) cos(i )i  (20)
 

The histogram H is not normalizable if the 
arguments of the atan2 function in (20) are both zero. 
In practice, this means that the computed 
characteristic direction is unreliable when the two 

arguments are very close to zero. At any rate, an 
object pair is far less likely to be ill-behaved with (20) 
than with (18). 

To address the issue with (18), we can also replace 
H on the right-hand side with the histogram of 
degrees of truth : 

 

 (21)
 

Assume H represents the relative position of two 
objects A and B, i.e., H=hAB. The value  is the 

degree of truth of the proposition “A is in direction  
of B.” It belongs to [0,1], with 0 for false and 1 for 
true.  is derived from H by categorizing forces into 
contradictory, compensatory and effective forces 
(Matsakis et al., 2001). Its particularity is that, in most 
cases, only one direction maps to the maximum 
degree of truth (Fig. 3). Note that (20) can be revised 
the same way: 

 (22)

 

 

Figure 1: H0: original histogram. H1: after normalization 
w.r.t. the scaling-translation group. H2: after normalization 
w.r.t. direct similitudes. H3: after normalization w.r.t. 
similitudes. Note that: (H1)=(H2)=(H3)=1, 
(H0)=(H1), 
(H2)=(H3)=0, (H0)=(H1)=(H2)=1, (H3)=+1. 

(a)    

(b)    

Figure 2: (a) Region (in grey) defined by the rectangular 
representation of some histogram H on the interval [0,2]. 
(b) Region (in grey) defined by the polar representation of 
the same histogram. 

H 

 0 

H 

 

0

/2 

H0 

H1 

H2 H3 

(H1)

(H0) 
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Whatever the definition of the characteristic 
direction: 
 

(H )  0  (23)
 

Note that (21) (22) are used in (Skubic et al., 2004); 
(Buck et al., 2013), respectively. In these papers, 
however, the authors rely on another histogram of 
degrees of truth, not derived from H alone; the 
described procedures are, therefore, not 
normalization procedures as defined in Section 3.1. 
The procedure described in (Vaduva et al., 2013) is not 
a proper normalization procedure either, since the 
characteristic direction is derived from the objects that 
produce the force histogram, not from the histogram 
itself.  

 

 

 

Figure 3: (a) Two objects A and B. (b) The corresponding 
histogram of forces. (c) The histogram of degrees of truth 
derived from the histogram of forces. 

3.6 Normalization w.r.t. the Isometry 
Group 

The isometry group can be generated by the set of all 
reflections, or by the set of all rotations (which 
generate the direct isometry group) and the reflection 
about the line in direction 0 that passes through the 
origin. When applying an isometry to a pair of 
objects, the corresponding histogram H is shifted along 
the x-axis—see (2)—and mirrored about the y-axis if 
the isometry is indirect—see (3). All this must be 
counterbalanced: first, normalize the histogram w.r.t 

the direct isometry group; then, consider mirroring the 
resulting histogram about the y-axis. In the end: 
 

H ()  H ((H ) (H )), (24)
 

where the characteristic orientation (H) of H is 
either +1 (no mirroring) or 1 (mirroring). See Fig. 1. 
The normalizing transformation, tH, is then the 
rotation about the origin with angle (H), followed, 
if (H) is 1, by the reflection about the line in 
direction 0 that passes through the origin. 

There are many ways to define (H). For 
example, it may be set to +1 if 
 

[0, ] [0, ]
( ( ) ) ( ( ) )i i

i i
H H H H              (25)

 

and to 1 if the other strict inequality holds. Note 
that the left (resp. right) hand side of the inequality is 
the area of the half histogram to the left (resp. right) 
of the characteristic direction. H is not normalizable 
w.r.t. the isometry group if it is not normalizable w.r.t. 
the direct isometry group, or if the characteristic 
orientation is undefined (i.e., neither (25) nor the 
other strict inequality holds). In practice, the latter 
means that the computed characteristic orientation— 
and, therefore, the whole normalization procedure— 
is unreliable when the two halves of the histogram on 
each side of the characteristic direction have about the 
same area. 

Another way to define (H) is to consider the 
characteristic directions of the half histograms 
instead of their areas. In other words, (H) may be set 
to +1 if 

 

(HLEFT) < (HRIGHT) (26)
 

and to 1 if the other strict inequality holds. HLEFT is 
the histogram defined by HLEFT() = H((H)) if 
[0,) and HLEFT () = 0 if [,2). Likewise, 
HRIGHT is defined by HRIGHT () = H((H)+) if 
[0,) and HRIGHT () = 0 if [,2). 

We may also want to consider the characteristic 
forces of the half histograms instead of their areas or 
characteristic directions. In other words, (H) may be 
set to +1 if 

 

(HLEFT) < (HRIGHT) (27)
 

and to 1 if the other strict inequality holds. 
Whatever the definition of the characteristic 

orientation, we have: 

(H )  1 (28)

A 

B 

hAB 

hAB 
~ 

1 

0 

(b) 

(c) 

(a) 
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3.7 Normalization w.r.t. the Direct 
Similitude Group 

The direct similitude group can be generated by 
the set of all scalings (which generate the scaling-
translation group) and rotations (which generate the 
direct isometry group). A normalization procedure 
w.r.t. that group can be obtained as follows: first, 
normalize the histogram w.r.t. the scaling-translation 
group, then normalize the resulting histogram w.r.t. 
the direct isometry group (or vice versa); compose the 
two normalizing transformations (in any order). We 
have:  

H () 
1

(H )
H (  (H ))  (29)

H is not normalizable w.r.t. the direct similitude 
group if it is not normalizable w.r.t. the direct 
isometry group. 

3.8 Normalization w.r.t. the Similitude 
Group 

Refer to Section 3.7: delete the word “direct” 
everywhere, replace “rotations” with “reflections” 
and (29) with (30): 

H () 
1

(H )
H ((H ) (H ))  (30)

4 EXPERIMENTS 

In this section, we conduct various experiments to 
evaluate the performance of and compare the 
normalization procedures discussed in Section 3. The 
objects and histograms considered in the experiments 
are presented in Sections 4.1 and 4.2. The 
experiments themselves are described in Section 4.3. 
The results are shown and analyzed in Section 4.4. 

4.1 Objects 

Two sets of objects were considered in our 
experiments. The first one, B1, is a map of 95 
buildings (from downtown New York City) and the 
second one, B2, is a map of 86 buildings. Both were 
acquired through Google Maps. See Fig. 4. The two 
sets represent cases that are somewhat opposite: the 
distances between neighbour objects are about the 
same in B1, but vary significantly in B2; most objects 
have simple, regular shapes in B1, but have more 
complex and varied shapes in B2. 

One hundred pairs of neighbour objects were 
chosen randomly from each set, with the constraint 
that each object of the set must be in at least one pair. 

4.2 Histograms 

Each histogram computed in our experiments was 
computed using n=360 evenly distributed directions. 
The two most common types of histogram were 
considered: the histogram of constant forces, i.e., 
r=0, and the histogram of gravitational forces, i.e., 
r=2. For the meaning of n and r, see Section 2.2.  

As mentioned in Section 3.2, we need a way to 
assess the similarity between two histograms. In our 
experiments, we used the Tversky index (Pappis and 
Karacapilidis, 1993). See (31). It is a number between 
0 (completely dissimilar) and 1 (completely similar). 
Several similarity measures for the comparison of 
force histograms were examined in (Matsakis et al., 
2004), and the Tversky index appeared to be the most 
appropriate measure for the task. 
 

sim(H , H ) 
min{H (i ), H (i )}i
max{H (i ), H (i )}i

  (31)

4.3 Description of the Experiments 

Many normalization procedures have been presented 
in Section 3. Finding the best ones comes down to 
finding the best ways to define the characteristic 
force, direction, and orientation of a histogram. Three 
experiments were therefore designed. The general 
idea is to find, within a map of buildings, two 
buildings in a given relative position. The position is 
specified by a query, which is like a very small map 
with only two buildings. 

The first experiment relies on the assumption that 
the North is indicated on both the map and the query, 
but the scale of the map, or of the query, is unknown. 
In other words, the normalization procedures 
considered in the experiment are w.r.t the scaling-
translation group, and the aim is to determine the best 
way to define the characteristic force: is it through 
(13), (14), or (15)? 
 

1. For each object pair repeat the following 10 times: 

1.1. Scale the two objects, using a scale factor  
chosen randomly between 1 and 5. 

1.2. For each normalization procedure and type 
of histogram: 

1.2.1. Record the similarity between the normalized 
histograms of the object pair before and after 
transformation. 

1.2.2. Let ' be the retrieved scale factor as per (10). 
Record the scale ratio max{'/, /'} (it is greater 
than or equal to 1). 

Normalization of the Histogram of Forces

635



2. For each normalization procedure and type of 
histogram, derive some statistics from these records (e.g., 
min, max, mean, standard deviation, percentile curves). 

The second experiment relies on the assumption that 
the scale is indicated on both the map and the 
query, but the North is not. In other words, the 
normalization procedures considered in the 
experiment are w.r.t the direct isometry group, and 
the aim is to determine the best way to define the 
characteristic direction: is it through (18), (19), (20), 
(21), or (22)? Steps 1.1 and 1.2.2 above are changed 
to: 

1.1. Rotate the two objects, using a rotation angle  

chosen randomly between 0 and 180. 

1.2.2. Let ' be the retrieved rotation angle (between 
180 and 180). Record the angle deviation 
180|180|'|| (it is greater than or equal to 0).  

The third experiment relies on the assumption that the 
scale is indicated on both the map and the query, but 
the North is not; moreover, the map may have been 
flipped about an arbitrary axis. In other words, the 
normalization procedures considered in the 
experiment are w.r.t the isometry group, and the aim 
is to determine the best way to define the characteristic 
orientation: is it through (25), (26), or (27)?  

1. For each object pair repeat the following 5 times: 

1.1. Rotate the two objects, using a rotation angle 
chosen randomly between 0 and 180. 

1.2. For each normalization procedure and type of 
histogram: 

1.2.1. If the histograms of the object pair before and 
after transformation have both the same characteristic 
orientation, record a true negative (TN). 

2. For each object pair, repeat the following 5 times: 

2.1. Reflect the two objects; the reflection is about a line 
whose direction is chosen randomly.  

2.2. For each normalization procedure and type of 
histogram: 

2.2.1. If the histograms of the object pair before and 
after transformation have different characteristic 
orientations, record a true positive (TP). 

3. For each normalization procedure and type of histogram, 
indicate TN and TP. 

In practice, the querier does not know the exact 
shapes of the two buildings they are looking for; the 
focus is on the relative position of the buildings, not 
on their shapes. This is why each one of the three 
experiments was run three times with the 100 object 
pairs from B1, and three times with the 100 object 
pairs from B2. The second and third times, polygonal 
approximations of the objects—instead of the objects 
themselves—were scaled, rotated or reflected. The 

approximations were computed using Ramer-Douglas-
Peucker algorithm (Ramer, 1972) (Douglas and 
Peucker, 1973), and were rougher the third times. 
See Fig. 5. 

4.4 Results 

Tables 1 and 2 summarize the results for the 
normalization procedures w.r.t the scaling-translation 
group. The bold values in the tables are the best 
results returned (highest average similarity and 
lowest average scale ratio), and the underlined values 
are the second best results. The results are best when 
the characteristic force is defined using the centroid-
based approach; see (15). The similarities are almost 
always the highest, and the scale ratios the lowest 
(i.e., the retrieved scale factor is the most accurate). 
This is true for both maps of buildings and both types 
of histogram. There is no clear winner between the 
max-based approach, (13), and the mean-based 
approach, (14). 

Tables 3 and 4 summarize the results for the 
normalization procedures w.r.t the direct isometry 
group. The results are best (highest similarities and 
lowest angle deviations) when the characteristic 
direction is chosen based on the vector sum of the 
histogram of degrees of truth; see (22). The approach 
based on the vector sum of the force histogram, (20), 
comes very close second; it is the approach we 
would recommend, as it is much simpler and faster. 
The worst way to choose the characteristic direction 
when normalizing a force histogram w.r.t the direct 
isometry group is the argmax-based approach, (18). 

Tables 5 and 6 summarize the results for the 
normalization procedures w.r.t the isometry group. 
When normalizing w.r.t the isometry group, we need 
to first normalize w.r.t the direct isometry group 
(Section 3.6); the characteristic direction was chosen 
based on the vector sum of the force histogram, as 
recommended above (Tables 3 and 4). The question 
then is how to choose the characteristic orientation. 
The results are best (highest numbers of true 
positives and true negatives) with the characteristic 
force approach, (27); the characteristic force was 
computed using the centroid-based approach, as per 
the results above (Tables 1 and 2). The characteristic 
direction approach, (26), comes second. The worst 
way to choose the characteristic orientation is the 
approach based on the areas of the two halves of the 
force histogram, (25). These results stand for both 
maps of buildings and both types of histogram. 
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  B1 

 
B2 

Figure 4: The two sets of objects used in the experiments. 
Note that B1 was recorded as a 15001285 binary image, 
and B2 as a 13061709 image. 

     
                 P0                             P1                              P2 

Figure 5: P0: no polygonal approximation of the objects, 
i.e., original object pair (first run of the experiments with 
B1 or B2). P1: polygonal approximation (second run). P2: 
rougher polygonal approximation (third run). 

Table 1: Results of normalizing the force histogram of type r 
= 0 w.r.t the scaling-translation group. 

B1 B2 
P0 P1 P2 P0 P1 P2

average similarity 
(13) 0.9987 0.9676 0.9532 0.9960 0.9276 0.8924
(14) 0.9988 0.9668 0.9531 0.9964 0.9317 0.8947
(15) 0.9988 0.9682 0.9545 0.9965 0.9315 0.8962

average scale ratio 
(13) 1.0004 1.0210 1.0382 1.0012 1.0238 1.0494
(14) 1.0005 1.0269 1.0478 1.0012 1.0353 1.0571
(15) 1.0004 1.0205 1.0377 1.0010 1.0239 1.0465

Table 2: Results of normalizing the force histogram of type r 
= 2 w.r.t the scaling-translation group. 

B1 B2 
P0 P1 P2 P0 P1 P2

average similarity 
(13) 0.9981 0.9692 0.9509 0.9953 0.9346 0.8866
(14) 0.9983 0.9686 0.9487 0.9958 0.9349 0.8856
(15) 0.9983 0.9701 0.9501 0.9958 0.9368 0.8891

average scale ratio 
(13) 1.0022 1.1026 1.1847 1.0042 1.1329 1.2622
(14) 1.0022 1.1269 1.2347 1.0042 1.1811 1.3210
(15) 1.0019 1.1033 1.1940 1.0036 1.1419 1.2561

Table 3: Results of normalizing the force histogram of type r 
= 0 w.r.t the direct isometry group. 

 B1 B2 
 P0 P1 P2 P0 P1 P2 

average similarity 
(18) 0.9845 0.9145 0.8562 0.9703 0.8735 0.7952 
(19) 0.9887 0.9272 0.8724 0.9741 0.8860 0.8275 
(20) 0.9886 0.9276 0.8738 0.9748 0.8904 0.8330 
(21) 0.9877 0.9256 0.8725 0.9738 0.8859 0.8209 
(22) 0.9884 0.9278 0.8741 0.9755 0.8908 0.8334 

 average angle deviation 
(18) 0.4504 1.3738 2.3920 0.3922 2.1481 4.3300 
(19) 0.3300 0.7292 1.2361 0.3299 1.6419 2.2185 
(20) 0.3366 0.6781 1.0684 0.3216 1.2542 1.7441 
(21) 0.3562 0.8636 1.3523 0.3375 1.5833 2.7246 
(22) 0.3414 0.6875 1.0643 0.3099 1.2095 1.6593 

Table 4: Results of normalizing the force histogram of type r 
= 2 w.r.t the direct isometry group. 

 B1 B2 
 P0 P1 P2 P0 P1 P2 

average similarity 
(18) 0.9771 0.8854 0.8261 0.9643 0.8559 0.7663 
(19) 0.9888 0.8916 0.8346 0.9751 0.8789 0.7884 
(20) 0.9892 0.8922 0.8365 0.9753 0.8812 0.7926 
(21) 0.9896 0.8910 0.8360 0.9762 0.8776 0.7876 
(22) 0.9893 0.8922 0.8367 0.9751 0.8814 0.7929 

 average angle deviation 
(18) 0.7986 1.4829 2.5389 0.5872 3.9653 5.6347 
(19) 0.3547 0.8801 1.3538 0.3481 1.9990 4.0156 
(20) 0.3417 0.8378 1.0093 0.3412 1.4147 3.2392 
(21) 0.3248 0.9016 1.1300 0.3283 1.6755 3.9143 
(22) 0.3378 0.8449 0.9860 0.3380 1.3098 3.1818 
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Table 5: Results of normalizing the force histogram of type r 
= 0 w.r.t the isometry group. 

 B1 B2 
 P0 P1 P2 P0 P1 P2

true negatives 
(25) 402 396 400 416 383 346
(26) 440 436 440 436 406 402
(27) 483 487 470 487 456 421

 true positives 
(25) 420 423 402 424 415 383
(26) 454 440 448 450 415 375
(27) 483 474 460 475 450 417

Table 6: Results of normalizing the force histogram of type r 
= 2 w.r.t the isometry group. 

 B1 B2 
 P0 P1 P2 P0 P1 P2

true negatives 
(25) 393 385 388 392 388 334
(26) 418 427 426 426 393 387
(27) 463 450 448 481 445 380

 true positives 
(25) 382 394 374 385 370 296
(26) 429 413 426 433 387 370
(27) 465 451 458 490 421 353

5 CONCLUSION 

Making the histogram of forces invariant under 
similitudes is achieved through a procedure called 
normalization. Various normalization procedures 
can be found in the literature, but they had not been 
assessed or compared, and invariance under direct 
similitudes only was actually achieved. 

We have shown that the histogram of forces can 
be made invariant under the similitude group or under 
a subgroup of that group, and that any normalization 
procedure to achieve such goal relies on one or more 
of three values derived from the histogram: the 
characteristic force, the characteristic direction, and 
the characteristic orientation. 

We have reviewed the existing procedures, we 
have introduced new ones, and we have shown 
through comparative experiments involving over 
170,000 histogram computations or normalizations 
that many of these new procedures outperform the 
existing ones. 

Making the histogram of forces invariant under 
the affine group remains an unsolved problem, and 
we will tackle it in future work. We will also 
examine normalization procedures for other relative 
position descriptors.  
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