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Abstract: In the last years, Brazil has been passing through some significant changes into its electricity matrix, where 

natural gas, wind power and other renewables sources are increasing its share on power generation. Those on 

going changes represent a challenge to power generation dispatch, demanding improvements and major 

changes on its management and optimization, especially due to growing levels of wind power generation. 

From the power demand perspective, the use of too optimist power demand forecasts for energy planning and 

dispatch optimization purposes affects it directly. This article intends to address those two issues, as it 

proposes an alternative model to forecast electricity demand and conceives a procedure to integrate wind 

power generation on the power dispatch model currently used in Brazil. The article study the Brazilian 

Northeast region as it is where most of the wind power farms are located. Power demand forecasts are obtained 

via electricity consumption forecasts made using Autoregressive Distributed Lag – ADL models, considering 

macroeconomics perspectives to estimate it. To integrate wind power integration on the actual dispatch model, 

the Markov Chain Monte Carlo method – MCMC was used to simulate wind power generation and calculate 

the net power demand, which was considered in the dispatch model.  

1 INTRODUCTION 

In the last years, Brazil has been passing through 

some significant changes into its electricity matrix 

which itself represents a challenge to the dispatch 

management and optimization. Renewables like wind 

and solar generation are gaining space and 

improvements into the actual dispatch model are 

necessary to produce results that are more reliable. 

Challenges also exists from the power demand point 

of view to better represent the future perspective of 

this variable, which also, indirectly, affects the 

dispatch optimization and management. Those are the 

two main issues considered in this article: provide an 

alternative to the actual electricity demand forecasts 

applied into the dispatch model and conceive a 

procedure to introduce wind power generation into 

the dispatch model.  

 

 

 

1.1 Dispatch Optimization 

Brazil has one of the cleanest electricity matrix in the 

world, but aiming to better diversify it and due to 

other environmental issues, other renewables (besides 

from the hydropower generation) are gaining space 

and thermal generation is migrating to natural gas. 

Figure 1 presents power generation matrix in 2017, 

where around 42,3 thousand gigawatts are generated 

through wind, being responsible for 7.39% of the 

electricity generation (ONS, 2018). In 2015, wind 

power had a share of just 3.90% of the electricity 

generation. Observing the wind power generation and 

its installed capacity numbers, for the last 10 years, it 

possible to notice its constant growth, where in 

January 2018, reached a total installed capacity of 12 

GW (Figure 2).  

Moreover, in the newer future, wind power tends to 

keep increasing both its share in the Brazilian 

electricity matrix (installed capacity) and its 

generation share. Therefore, the actual power 
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dispatch model used in Brazil must be adapted to be 

able to better represent this new configuration and to 

produce more reliable results.  

 

Source: Brazilian Power System Operator (ONS) 

Figure 1: Brazilian Power Generation Matrix – 2017. 

 

Source: Brazilian Power System Operator (ONS) 

Figure 2: Wind Power Installed Capacity and Generation. 

When it comes to wind power plants localization, 

most of them are located on Brazilian northeast 

region, where the environmental conditions are most 

suitable (ANEEL). Figure 3 presents the installed 

capacity per region and it is possible to notice that 

almost 82.44% is located on the northeast and that´s 

the main reason why our study focus the analysis in 

this region.  

 

Source: Brazilian Regulatory Authority (ANEEL)  

Figure 3: Wind Power Farms Sites. 

It is also important to mention that in Brazil, wind 

power generation has a regime that is complementary 

with hydroelectric generation. Therefore, in the dry 

season wind power generation is able to fulfill the gap 

left by hydropower generation decrease. This benefits 

countries like Brazil that have most of its power 

provided by hydropower. It also helps the country to 

fulfill its greenhouse gas emissions targets.  

As one of the article main purposes is to provide a 

procedure to introduce wind power generation on the 

Brazilian dispatch model, might be important to give 

a brief overview of the power dispatch optimization 

decision-making occurs. To manage the Brazilian 

power sector, the system operator have to decide 

whether to use all the water available in the present 

moment or to save it for the future (Oliveira, 2015). 

In other words, it is mainly a decision between 

dispatching hydroelectric or thermal plants.  

As can be seen in Figure 4, wind power generation is 

not considered in the decision-making process. 

Actually, to consider wind power generation in some 

way, the system operator discounts the amount of 

wind power generation forecasted deterministically 

from the power demand considered in the decision-

making process. Therefore, the dispatch model uses a 

net demand (power demand discounted the amount of 

wind power generation forecasted), estimated 

deterministically. In the article, we propose the use of 

stochastic wind power simulations, calculated via 

Markov Chain Monte Carlo (MCMC), as an 

alternative method to estimate the net demand. This 

represents the first step towards the conception of a 

hydrothermal-wind dispatch model.  

 

Figure 4: Power Dispatch Optimization. 

1.2 Power Demand Modelling  

As mentioned in Subsection 1.1, the net demand is 

obtained taking from the power demand forecasted 

the amount of wind power generated. Therefore, 

power demand forecasts also have considerable 

impacts on the results obtained during the decision-

making and the dispatch optimization process. Thus, 

the more accurate the forecasts considered the better. 

Inaccurate forecasts might give wrong price signals 
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or power dispatch signalizations to stakeholders 

(Oliveira, 2015).    

Nowadays, the Brazilian dispatch model consider 

deterministic power demand forecasts instead of 

probabilistic forecasts or even scenarios forecasts.  

This article provides power demand scenarios using 

electricity consumption forecasts conceived using 

Additive Distributed Lags – ADL models. The use of 

ADL models enables the use of explanatory variables 

into the model. Three alternative scenarios (baseline, 

optimist and pessimist) are elaborated.    

1.3 Article Structure  

The article has four sections including the 

introduction. The second section contains the 

methodology used both to the power dispatch 

modelling and to the power demand forecasting. 

Section 3 presents the results derived from the power 

demand forecasting, wind power simulation and net 

demand forecasts. It also contains the dispatch 

optimization results considering both the actual 

model used by the system operator and four 

alternative scenarios. Section 4 contains the major 

conclusions derived from both analyses. 

2 METHODOLOGY 

2.1 Load Forecasting 

Monthly power demand scenarios were conceived 

using monthly electricity consumption forecasts, 

which were elaborated using Autoregressive 

Distributed Lag - ADL modelling. The forecasts were 

made by subsystem, on a monthly basis, for four years 

ahead. The following mathematical equation 

represents the ADL model:  

 

𝑌𝑡= ∑ 𝛽𝑖(𝐿)𝑋𝑖,𝑡

𝑘

𝑖=1

+
1

𝑎(𝐿)
𝜀𝑡 (1) 

Where:  

𝑌𝑡: Dependent variable; 

𝑋𝑖,𝑡: Explanatory variables; 

𝛽𝑖(𝐿) =
𝑏𝑖(𝐿)

𝑎(𝐿)
 and 𝑎(𝐿),𝑏1(𝐿), … , 𝑏𝑘(𝐿) are finite 

order lag polynomials with degree 𝑟, 𝑠1, … , 𝑠𝑘; 
𝜀𝑡: White noise.  

 

ADL enables to model relationship between 

independent and dependent variables and, in this 

article, variables like income, gross domestic product 

- GDP, retail sales, tariffs, temperature and rainfall 

were used as explanatory variables. The electricity 

consumption forecasts were made for each consumer 

class; thus, a procedure was used to obtain power 

demand forecasts scenarios from the electricity 

consumption forecasts scenarios. 

Figure 5 contains a flowchart of the procedure. 

Initially, network losses are added on the monthly 

consumption forecasts, generating monthly 

electricity load forecasts. Then the monthly electricity 

load forecasts are transformed into monthly power 

demand forecasts.  

 

Figure 5: Power Demand Scenarios Calculation. 

The power demand forecasts and the official forecasts 

(named NEWAVE) are evaluated via Mean Absolute 

Percentage Error – MAPE to verify if the scenarios 

conceive provides more accurate forecasts than the 

ones considered by the system operator.  

2.2 Wind Power Generation and Net 
Demand 

Before presenting the wind power generation 

forecasts method and net demand estimation, a brief 

overview is given of how wind power generation is 

considered nowadays on the dispatch model. 

The dispatch model considers wind power generation 

together with, the so-called, non-simulated plants, 

which are power plants that power generation are 

added into the dispatch model deterministically. All 

of them are taken into account on the dispatch model 

through the net demand. The net demand is the 

demand to be fulfilled in the dispatch optimization 

and corresponds to the difference between the total 

demand to be attended and the non-simulated plants 

generation. 

 

𝑁𝑒𝑡 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐷𝑒𝑚𝑎𝑛𝑑 − (𝑛𝑜𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑙𝑎𝑛𝑡𝑠) (2) 

To estimate the wind power generation, stochastic 

simulation is used and then these results are used to 

calculated the net demand. This represents a different 

where the net demand is calculated using historic wind 
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power generation data.  

In our study, an analytical method of frequency and 

duration is applied to combine wind power generation 

and power demand to estimate the net demand. The 

analytical method uses Markov chain and discrete 

convolution techniques. This procedure was 

conceived based on Almutairi et al (2016) study.  

Figure 6 presents a procedure based on three steps 

(historical data, MCMC model and Net Demand 

Model) elaborated to treat wind power generation on 

a stochastic manner.  

 

Figure 6: Procedure Step by Step. 

2.2.1 Historical Data 

Papaefthymiou and Klöckl (2008) understand that a 

stochastic model based on wind power generation is 

more reliable and have more advantages than models 

based on wind speed data. Therefore, in this study, 

historical data of wind power generation is used. 

Historical data for wind speed was obtained through 

the Climate Forecast System Reanalysis - CFSR 

(Saha et al., 2011) and as it enables the data gathering 

by geographic coordinates (using a spatial resolution 

between 0.25º to 0.25º), it was possible to associate a 

wind speed data to each wind farm located on the 

northeast region. 

The wind speed data gathered was transformed into 

wind power generation using turbine parameters from 

each wind farm. The following parameters were 

considered: turbine model, number of turbines, 

average height and wind power load curve. More 

information about this data is available at the 

Regulatory Authority - ANEEL, the System Operator 

- ONS and manufactures website.  

Height correction errors were considered to relate the 

wind speed gathered with each wind farm. The 

correction is made using the following equation. 

𝐻𝐹𝑖 =
log(𝐻𝑇𝑖)

log (𝐻𝑀𝑖)
 (3) 

Where: 

𝐻𝐹𝑖: Height correction factor; 

𝐻𝑇𝑖: Turbine height; 

𝐻𝑀𝑖: Measurement height associated with the wind 

farm 𝑖.  
Wind power load curve associates a wind power to a 

certain wind speed, therefore using the height 

correction factor is possible to transform the wind 

speed data (𝑊𝑆ℎ,𝑑,𝑚) on wind power using the wind 

power load curves. 

2.2.2 Markov Chain Monte Carlo Model 

The Markov Chain Monte Carlo - MCMC modelling 

is divided into seven steps, explained below.  
 
1. Aplication of k-means clustering techniques 
(MacQueen, 1967) to transform the wind power data 
(𝑊𝑃ℎ,𝑑,𝑚)  into a finite number of states (𝑊𝑃𝑆ℎ,𝑑,𝑚): 
it is important to emphasize the in the end of the k-
means clustering the wind power calculated is 
replaced by the centroids from the clusters where they 
belong; 
2. Calculates Markov Chain transition matrices 
(𝑃𝑖𝑛𝑑) where each row ends with 1: the transition 
matrices are calculated for each month and have 𝑘 ×
 𝑘 dimension; 
3. Calculate the cumulative probability transition 
matrices where each row ends with 1: calculate the 
transition probability (𝑝(𝑖,𝑗)) from the state 𝑖 to the 
state 𝑗, for all the matrix elements;  
4. Select the initial state i randomly; 
5. Produce a random value between 0 and 1 by 
uniform random number generator; 
6. Select the next state by comparing the value of a 
random number with the elements of the ith row of 
the cumulative probability transition; 
7. Repeat steps 5 and 6 until the required hourly 
wind power data is simulated. 

2.2.3 Net Demand 

To add the wind power generation into the Brazilian 
hydrothermal dispatch model, it is crucial to have all 
the data from the wind farms available. Consider that 
there are 𝑛 wind farms on a certain database, each one 
of them with a certain installed capacity (𝐼𝐶𝑖, 𝑖 =
 1, … , 𝑛). The wind farm 𝑖 share is calculate dividing 
the wind farm installed capacity by the wind power 
installed capacity considering all wind power 
producers.  

𝑆ℎ𝑎𝑟𝑒𝑖=

𝐼𝐶𝑖

∑ 𝐼𝐶𝑖𝑖

𝜀𝑡 (4) 

For example, if a certain wind power generator starts 

its operation at day 𝑑, month 𝑚 and year 𝑦, all the 

wind power generation simulated before this data 

must be discounted from 𝑆ℎ𝑎𝑟𝑒𝑖.Concerning the ca- 
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pacity and availability factor, as there is no 

information about this matter for each wind farm, 

historical data for one-year monthly generation is 

used to calibrate the forecasted values. In other 

words, for a month 𝑚, o correction factor 𝐶𝐹𝑚 is 

calculated as following. 

𝐺ℎ,𝑑,𝑚,𝑦 = 𝑊𝑆𝐼𝑀ℎ,𝑑,𝑚,𝑦 × (1 − ∑ 𝑆ℎ𝑎𝑟𝑒𝑖,ℎ,𝑑,𝑚,𝑦
𝑖

) × 𝐶𝐹𝑚 (5) 

To start the net demand calculation, data from hourly 

power demand forecasts are necessary. Due to the 

lack of official information about hourly load curves 

for Brazil, a standard load curve (𝐿𝑃𝑚,ℎ) was 

conceived and used to transform the monthly power 

load forecasted (𝑀𝐿𝑚,𝑦) (on section 2.1) into hourly 

power load data (𝐿ℎ,𝑑,𝑚,𝑦 = 𝐿𝑃𝑚,ℎ × 𝑀𝐿𝑚,𝑦.). 

Once again, k-means clustering was applied to   

discrete wind power generation and transform the 

series into states (𝐿𝑆ℎ,𝑑,𝑚,𝑦  and 𝐺𝑆ℎ,𝑑,𝑚,𝑦). In 

addition, the Markov Chain transition matrices were 

calculated, for each month, following the same steps 

presented on subsection 2.2.2. Then, the steady state 

probabilities associated with each load data and load 

generation data is estimate, for each month and year 

(𝐿𝑆𝑆𝑃𝑚,𝑦 and 𝐺𝑆𝑆𝑃𝑚,𝑦). 

As the net demand can be characterized as the 

difference between load and generation (𝑁𝐷 = 𝐿 −
𝐺), the last procedure in this methodology combines 

the load and generation model parameters to obtain 

states and probabilities for the net demand (𝑁𝐷𝑆𝑚,𝑦 

and 𝑁𝐷𝑆𝑆𝑃𝑚,𝑦) (Leite da Silva, Melo e Cunha, 1991). 

In the last step of this method, expected values 

between states and the probability associated with 

each net demand are estimated, generating an amount 

of net demand for each month and year (𝑁𝐷𝑚,𝑦 =

∑ 𝑁𝐷𝑆𝑚,𝑦 × 𝑁𝐷𝑆𝑆𝑃𝑚,𝑦𝑤 , where 𝑤 is the number of 

states of 𝑁𝐷𝑆𝑚,𝑦). 

3 RESULTS 

3.1 Power Demand Forecasts 

As already mentioned on subsection 2.1, the power 

demand forecast initiates with the monthly electricity 

consumption forecast scenarios conception for each 

subsystem and consumer classes, considering four 

years horizon. 

To generate electricity consumption forecasts, the 

following data was used: electricity consumption per 

consumer class and subsystem, since January-2013. 

provided by Energy Research Office - EPE; income 

and GDP historical data; industrial production per 

sector; retail sales; temperature; rainfall; electricity 

tariffs and number of dwellings, per class and 

subsystem (provided by the Regulatory Agency - 

ANEEL); and number of business days.  

 

Figure 7: ADL Model Explanatory Variables. 

The explanatory variables mentioned above are tested 

for each one of the models. Figure 7 presents the 

explanatory variables considered significant, for each 

consumer classes. In all consumer classes, tariff, as 

expected, was considered a significant variable to 

explain electricity consumption. Depending on the 

consumer classes, a different proxy represents 

income: industrial production for energy intensive 

sectors for the industrial sector; income itself for 

residential, others and commercial; and agricultural 

GDP for rural class. Also for Residential, 

commercial, rural and others, temperature plays an 

important role on electricity consumption forecasts. 

Especially for rural sector, rainfall was considered. 

After adding losses and transforming it on power 

demand, the forecasts scenarios presented on Figure 

8 were obtained. The load forecast scenarios 

presented on Figure 8 contains only data related with 

the northeast subsystem and is the load to be attended 

in the dispatch model. Figure 8 also presents the load 

to be attended considering the forecast provided by 

the System Operator, here named as NEWAVE. The 

forecasted period ranges from July/2017 until 

November/2021. 

Table 1 presents power demand growth rates 

considering the System Operator official forecast 

(NEWAVE), the Energy Research Office – EPE 

power demand forecasts and the three scenarios build 

in this article. Through Table 1, it is possible to notice 

that System Operator forecasts (NEWAVE) and the 

Energy Research Office forecasts (PEN) are more 

Electricity Consumption Forecasts

Residential

Number of  
Dwellings

Tariff

Income

Temperature

Commercial

Number of 
Bussiness Days

Income

Retail Sales

Tariff

Temperature

Industrial

Extractive 
Industry 

Production

Process 
Industry 

Production

Tariff

Rural

Income

Agricultural 
GDP 

Tariff

Temperature

Rainfall

Others

Income

Number of 
Dwelings

Tariffs

Temperature
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optimist than the ones presented on the baseline 

scenario. 

 

Figure 8: Load Forecasting: System Operator Forecast 

versus Alternative Scenarios. 

Table 1: Power Demand Growth Rates. 

 

Figure 9 presents the forecasting accuracy analysis, 

considering the System Operator official forecasts 

and the three scenarios build in this article. This 

analysis was made considering scenarios forecasts 

conceived by the authors in the last four years (11 

times in total) as well as official forecasts made 

available by the system operator (NEWAVE). 

It is possible to observe that, on average, the baseline 

scenario (the scenario with the highest probability of 

occurrence) presents the lowest MAPE followed by 

the pessimistic scenario and then the System Operator 

official forecasts (NEWAVE).  

 

Figure 9: Load Forecasting - System Operator versus 

Alternative Scenarios. 

Through this analysis, it is possible to notice that the 

baseline scenario obtained via ADL model perform 

better than the official model. The next step in the 

analysis is to use the demand load forecasts aligned 

with the simulated wind power generation to get 

estimations for energy storage and thermal generation 

forecasts.   

3.2 Wind Power Generation  

This subsection applies the method described on 

subsection 2.2.2 to simulate wind power generation 

on the northeast subsystem for the period between 

July/2017 and December/2021. The study uses 2016 

as the base year, therefore all the daily wind speed 

extracted from Climate Forecast System Reanalysis - 

CFSR and hourly load curves (provided by the 

Syatem Operator - ONS) comprehends the period 

between 1st January and 31st December/2016. In 

July/2017, according to the Regulatory Authority - 

ANEEL, there were, in the northeast, 362 wind farms 

operating, 144 wind farms being constructed and 127 

authorized to be constructed. Therefore, in total 597 

wind farms are considered in the analysis, using the 

starting operation data to define its generation amount 

per month. 

To transform the monthly power load forecasts into 

hourly power load forecasts the monthly load curves 

presented on Table 2 were used. 

Table 2: Hourly Load Profile per Month. 

 

Figure 10 presents the wind power generation 
obtained after executing all the steps presented on 
subsection 2.2.2. The System Operator forecasts 
(NEWAVE) and the wind generation simulated in 
this article is shown on Figure 10 and it is possible to 
observe that, on average, wind power generation 
provided by the System Operator is higher than the 
one simulated, especially on peaks and valleys. 

Besides of that, both have the same trend and behavior 

 Jan Fev Mar Abr Mai Jun Jul Ago Set Out Nov Dez 

Hora 1 1.06 1.05 1.03 1.02 1.01 1.00 1.00 1.00 1.01 1.03 1.05 1.07 

Hora 2 1.02 1.01 0.99 0.98 0.97 0.96 0.96 0.96 0.96 0.99 1.01 1.03 

Hora 3 0.98 0.97 0.95 0.95 0.94 0.93 0.93 0.92 0.93 0.96 0.98 0.99 

Hora 4 0.96 0.94 0.93 0.92 0.92 0.91 0.91 0.90 0.91 0.93 0.94 0.96 

Hora 5 0.94 0.92 0.91 0.91 0.91 0.90 0.90 0.89 0.90 0.92 0.92 0.94 

Hora 6 0.92 0.91 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.91 0.91 0.93 

Hora 7 0.92 0.89 0.85 0.85 0.85 0.85 0.86 0.85 0.83 0.86 0.89 0.91 

Hora 8 0.85 0.85 0.84 0.85 0.85 0.85 0.86 0.86 0.85 0.84 0.83 0.84 

Hora 9 0.86 0.87 0.92 0.93 0.93 0.93 0.93 0.93 0.94 0.89 0.85 0.86 

Hora 10 0.93 0.95 1.00 1.00 1.00 1.01 1.00 1.01 1.01 0.97 0.93 0.93 

Hora 11 1.00 1.01 1.03 1.03 1.03 1.04 1.03 1.04 1.04 1.02 1.01 1.00 

Hora 12 1.03 1.03 1.05 1.05 1.05 1.06 1.05 1.06 1.06 1.05 1.04 1.03 

Hora 13 1.05 1.05 1.05 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.05 

Hora 14 1.04 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.04 1.05 1.04 

Hora 15 1.02 1.04 1.07 1.06 1.06 1.06 1.05 1.07 1.07 1.05 1.03 1.03 

Hora 16 1.05 1.07 1.08 1.07 1.07 1.07 1.06 1.08 1.08 1.07 1.07 1.06 

Hora 17 1.06 1.07 1.06 1.05 1.05 1.06 1.05 1.06 1.06 1.06 1.08 1.07 

Hora 18 1.04 1.04 1.01 1.01 1.02 1.02 1.02 1.03 1.02 1.04 1.06 1.04 

Hora 19 1.00 0.99 0.97 1.04 1.07 1.07 1.06 1.04 1.05 1.04 1.02 1.00 

Hora 20 0.96 0.98 1.06 1.07 1.08 1.08 1.10 1.09 1.08 1.06 1.02 0.97 

Hora 21 1.08 1.06 1.04 1.05 1.05 1.05 1.06 1.06 1.05 1.06 1.07 1.06 

Hora 22 1.07 1.06 1.05 1.05 1.05 1.04 1.05 1.05 1.04 1.05 1.05 1.05 

Hora 23 1.06 1.07 1.09 1.09 1.08 1.08 1.08 1.08 1.08 1.06 1.05 1.04 

Hora 24 1.09 1.09 1.07 1.06 1.05 1.05 1.05 1.05 1.05 1.06 1.08 1.08 
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Figure 10: Wind Generation: System Operator versus 

Simulation. 

The load to be attended (Figure 7) is higher on the 

basic scenario than on the System Operator Forecast 

(with wind power simulation abatement) and on 

System Operator Forecasts itself. The optimist 

scenario is the one with the highest load to be 

attended. 

Considering the data from the load to be attended in 

all scenarios (Figure 7), it is possible to evaluate, 

using the hydrothermal dispatch model, which would 

be the system behavior according with the power 

demand forecasts and wind power generation 

simulated. 

Figure 11 presents the Storage Energy and Figure 12 

contains the Thermal Generation for each scenario 

conceived. From Figure 11 it is possible to notice that 

the energy stored considering the System Operator 

Forecasts is higher than the basic scenario and the 

optimist scenario, but lower than the pessimist 

scenario. Comparing the System Operator Forecasts 

(with wind power simulation abatement) and the 

System Operator Forecasts itself, it is possible to 

notice that the energy stored in this case is lower than 

in the traditional model.        

 

Figure 11: Energy Storage. 

For the thermal generation, only the optimist scenario 

demands higher thermal generation. On average, the 

baseline scenario demands a little bit less thermal 

generation than the NEWAVE scenarios.   

 

Figure 12: Thermal Generation. 

4 CONCLUSIONS 

The study contains a nouvelle approach to introduce 

wind power generation on the Brazilian Dispatch 

model, using MCMC to simulate wind power 

generation instead of using the traditional historical 

monthly wind power generation. Additionally, 

additive distributed lags - ADL models were 

conceived to estimate power demand forecast per 

month, by subsystem. All the analysis in the article 

was done applying both approaches in the Brazilian 

northeast subsystem, considering de forecast period 

between July/2017 and December/2021. Concerning 

the power demand forecasts, one can notice that the 

baseline scenario provide more accurate forecasts 

than the System Operator forecasts, which has 

accuracy lower than the pessimist scenario. Changing 

the power demand forecasts for more accurate 

approaches would provide better price signals and 

dispatch signalizations to the system operator.    

The introduction of wind power generation using 

stochastic simulation and therefore a new approach to 

estimate the net demand, showed little impact on the 

thermal energy generation, but generated 

considerable differences when it comes to the load to 

be attended and energy storage. For the future, the 

idea is to introduce probabilistic demand forecasts on 

the dispatch model and to make further improvements 

on the way wind power and solar energy would be 

considered on the dispatch model.  
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