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Abstract: This paper focuses on designing data-driven models to learn a discriminant representation space for face re-

cognition using RGB-D data. Unlike hand-crafted representations, learned models can extract and organize the

discriminant information from the data, and can automatically adapt to build new compute vision applications

faster. We proposed an effective way to train Convolutional Neural Networks to learn face patch discrimi-

nant features. The proposed solution was tested and validated on state-of-the-art RGB-D datasets and showed

competitive and promising results relatively to standard hand-crafted feature extractors.

1 INTRODUCTION

With the increase demand of robust security systems

in real-life applications, several automated biometrics

systems for person identity recognition are developed,

where the most user-friendly and non-invasive moda-

lity is the face. Face recognition using 2D images

was well treated but still affected by imaging conditi-

ons. Thanks to the 3D technology progress, the recent

research has shifted from 2D to 3D (Bowyer et al.,

2006; Abbad et al., 2018). Indeed, three-dimensional

face representation ensures a reliable surface shape

description and add geometric shape information to

the face appearance. Most recently, some resear-

chers used image and depth data capture from low-

cost RGB-D sensors like MS Kinect or Asus Xtion

instead of bulky and expensive 3D scanners. In ad-

dition to color images, RGB-D sensors provide depth

maps describing the scene 3D shape by active vision.

With the availability of cost-effective RGB-D sensors,

many researchers proposed and adapted feature ex-

traction operators to the raw data for different compu-

ter vision applications like gait analysis (Wu et al.,

2012), lips movement analysis (Rekik et al., 2016;

Rekik et al., 2015b; Rekik et al., 2015a), and gender

recognition (Huynh et al., 2012). Hand-crafted or en-

gineered feature extractors such as LBP, Local Phase

Quantization(LPQ), HOG were mainly used to deal

with RGB-D data for face recognition. The main be-

nefits of these feature extractors is that they are rela-

tively simple and efficient to compute. Alternatively,

learned features, for example with Convolution Neu-

ral Networks (CNNs), achieve a very prominent per-

formance in many computer vision tasks (e.g., object

detection (Szegedy et al., 2013), image classification

(Krizhevsky et al., 2012) etc.). The basic idea behind

is to learn data-driven models that transform the raw

data to an optimal representation space leading to ap-

propriate features without manual intervention.

In this context, this paper focuses on the feature

extraction part in our face recognition pipeline. A gi-

ven face is represented by a set of patches extracted

from image and depth data. We propose to learn dis-

criminant local features using data-driven represen-

tation to describe the face patches before feeding a

Sparse Representation Classification (SRC) algorithm

to attribute the person identity.

The rest of this paper is organized as follows.

First, an overview on the most prominent RGB-D face

recognition systems is given in section 2. Then, we

detail our proposed system in section 3. Section 4

summarizes the performed experiments and the obtai-

ned results to validate our proposed system. Finally,

we conclude this study in section 5 with some obser-

vations and perspectives for future work.
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2 RELATED WORKS

In this overview, we focus mainly on the feature ex-

tractors for face recognition using RGB-D sensors.

Actually, many other aspects can be discussed like

the pre-processing techniques, or the overall classi-

fication schemes. In (Li et al., 2013), the nose tip

is manually detected and the facial scans are aligned

with a generic face model using the Iterative Closest

Point (ICP) algorithm to normalize the head orienta-

tion and generate a canonical frontal view for both

image and depth data. A symmetric filling process is

applied on the missing depth data specifically for the

non frontal view. For image data, Discriminant Co-

lor Space (DCS) operator is used as feature extractor.

Then, obtained depth frontal view and DCS features

are classified separately using SRC before late fusion

to get the person identity.

(Hsu et al., 2014) fits a 3D face model to the face

data to reconstruct a single 3D textured face model

for each person in the gallery. The approach requires

to estimate the pose for any new probe to be able to

apply it to all 3D textured models in the gallery. This

allows to generate 2D images by plan projection and

then compute the LBP descriptor on the whole pro-

jected 2D images to perform the classification using

an SRC algorithm. Likewise, (Sang et al., 2016) used

the depth data for pose correction based on ICP al-

gorithm to render the gallery view as the probe one.

However, contrary to (Hsu et al., 2014), the authors

applied Joint Bayesian Classifier on RGB and depth

HOG descriptors extracted from the both data and the

final decision is made via weighted sum of their simi-

larity scores.

From the discussion above, the most focus to pre-

processing especially dealing with pose variation by

aligning the query data to the gallery samples. Alt-

hough this kind of sequential processing may lead to

error propagation from pose estimation to the classi-

fication, it gave a very good results (Hsu et al., 2014).

Alternatively, to deal with pose variation, (Ciaccio

et al., 2013) used a large number of image sets in

the gallery under different poses angles from a single

RGB-D data. Also, the face pose is estimated via the

detection and alignment of standard facial landmarks

in the images (Zhu and Ramanan, 2012). Each face

is then represented using a set of extracted patches

centered on the detected landmarks and described by

a set of LBP descriptor, co-variance of edge orienta-

tion, and pixel location and intensity derivative. The

classification is then performed by computing distan-

ces between patch descriptors, inferring probabilities,

and lately performing a Bayesian decision.

The following works, gave more attention to fe-

ature extraction from face RGB-D data than pre-

processing and dealing with head pose variation. In

(Dai et al., 2015), a single ELMDP (Enhanced Local

Mixed Derivative Pattern) descriptors are extracted

and Nearest Neighbor algorithm is used for the com-

bined features with confidence weights. In (Goswami

et al., 2014), a combination of HOG applied on sa-

liency and entropy features, and geometric attributes

computed from the Euclidean distances between face

landmarks are used as face signature. The random

forest classifier is then used for the identity classifi-

cation. In (Boutellaa et al., 2015), a series of hand-

crafted feature extractors (i.e., LBP, LPQ, and HOG)

are applied respectively on texture and depth crops

and finally SVM classifier is carried out for face iden-

tification. The only use of the carefully-engineered

representation was with feature Binarized Statistical

Image Features detector (BSIF).

In (Kaashki and Safabakhsh, 2018) three-

dimensional constrained local model (CLM-Z) is ap-

plied for face-modeling and landmarks points locali-

zation. Local features HOG, LBP and 3DLBP around

landmarks points are extracted then SVM classifier is

used for the classification.

Indeed, (Hayat et al., 2016) proposed the first

RGB-D image set classification for face recognition.

For a given set of images (which can captured frames

with Kinect sensor), the face regions and the head po-

ses are firstly detected with (Fanelli et al., 2011) al-

gorithm’s than clustered into multiple subsets accor-

ding to the estimated pose. A block based covariance

matrix representation with LBP features is applied

to model each subsets on the Riemannian manifold

space and SVM classification is performed on all sub-

sets for the both modality. The final decision is made

with a majority vote fusion. The proposed technique

has been evaluated on a combination of three RGB-D

data sets and achieved an identification rate of 94.73%

which concurrent the single image based classifica-

tion accuracy’s.

Observations. For the classification part, we ob-

serve that SRC is used in the most popular RGB-D

face recognition systems (Li et al., 2013; Hsu et al.,

2014). Indeed, after its successful application in

(Wright et al., 2009) for face recognition, SRC has

attracted the attention in many other computer vision

tasks. Also, SRC is a good choice when the number

of classes in the dataset is variable and in a constant

increase, which is the case of face recognition appli-

cations.

We note that the most prominent methods (Hsu

et al., 2014) (Li et al., 2013) aim principally to over-

come the issues of pose variation either with pose cor-
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Figure 1: An overview of the online process of the proposed method. First, the facial regions are detected from image and
depth data. Local patches are then extracted from both of the modalities. Afterward, two CNNs are used to transform the
extracted patches to obtain feature vectors to feed the SRC algorithm and finally obtain the person ID.

rection or with augmenting the gallery through ge-

nerating new images in different view or even cap-

turing multi-view data for each face in the gallery.

Data representation and appropriate feature extraction

remains underestimated in the aforementioned works

and they settle for hand-crafted features combinations

and fusion. In this new era of deep learning techni-

ques, we believe that RGB-D face recognition sys-

tems can take benefits of CNNs to learn appropriate

features and boost their performances.

Contribution. The main objective of this paper is to

highlight how CNNs can contribute to learn a discri-

minant representation of local regions in face image,

and how it competes with standard hand-crafted fea-

ture extractors in the case of RGB-D face recognition.

A given face is represented by a set of patches around

detected salient key-points. Each of these patches is

assigned an ID by SRC technique that associate the

patch to one of the most similar patches in the da-

tabase. The raw patches data (image and depth) are

transformed using a CNN before feeding the classifi-

cation part. We propose an effective approach to learn

our CNN weights leading to a discriminant space for

face patches representation.

3 PROPOSED FACE

RECOGNITION SYSTEM

The proposed approach involves online and offline

phases sharing some processing blocks. The offline

phase is to train our CNNs while the online phase is

dedicated to predict the person identity given a face

query. Figure 1 sketches the online phase. It goes al-

ong the following steps. Firstly, the face is localized

in the image. It is then represented by a set of patches

cropped around key-points extracted on the face. Af-

terward, two trained CNNs are applied to transform

these patches to get a feature vector for each one, and

an SRC algorithm is used to attribute an ID for each

feature vector before making the late fusion leading

to the predicted identity. The remaining of the section

gives details about the different processing blocks just

introduced including the training of the CNNs.

3.1 Face Pre-processing and Patch

Extraction

The face pre-processing shared between the offline

and online phase of our system includes median and

bilateral filtering for the depth maps and face locali-

zation (Zhu and Ramanan, 2012)1. The face region

is cropped and resized to 96 × 96 pixels to ensure

a normalized face spatial resolution. To get rid of

face landmarks localization, we only consider salient

image key-points without any further semantic ana-

lysis and without loss of generality. In other words,

we do not try to catch specific anatomical reference

points on the face. That said, the repeatability of

image feature points for face analysis was proven. We

used the SURF operator (Bay et al., 2006) to extract

interest key-points on the cropped face images. The

number of extracted key-points is variable and de-

pends on face textures and also the position of the

person in the frustum of the RGB-D camera. The

key-points coordinates are mapped on the depth crop

using the sensor calibration parameters. Around each

key-point, we crop from both image and depth data

two patches of 20× 20 pixels. Again, the mapping

1We used only the face localization, facial landmarks
were not used.
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between image and depth map can be ensured by the

RGB-D sensor geometric calibration (Ben-Hamadou

et al., 2013).

3.2 CNN Architecture and Training

Since the size of the CNN input patches is small

(20×20 pixels), we designed a relatively shallow

CNN architecture as described in Table 1. It is worth

to notice that at this level of the study we did not

try complex architectures or fancy connectivity (skip

connections, residual, etc..) but it could be explored

later in future works. We train separate models with

the same architecture for each modality (i.e., image

and depth patches).

Research on face analysis usually focuses on fin-

ding an improvement in faithful face characterization

with discriminant and robust representation. Lear-

ning descriptors with neural networks is entirely a

data-driven approach. The objective of the discrimi-

nant descriptors learning is to find a transformation

from raw space to an another space in which featu-

res from same classes are closer than features from

different classes. Metric learning using a triplet net-

work was introduced by Google’s FaceNet (Schroff

et al., 2015), where a triplet-loss is used to train an

embedding space for face image using online triplet

mining which outperforms a Siamese networks in ma-

nifolds clustering. Good face embedding satisfy simi-

larity’s constraint by the way faces from the same per-

son should be close together while those of different

faces are far away from each other. The intra-class

distance should to be smaller than the inter-class dis-

tance and form well separated clusters.

In this paper, the triplet loss takes a triplet of pa-

tches as input in the form a, p,n , where a is the an-

chor patch, p is the positive patch, which is a diffe-

rent sample of the same class as a, and n standing

for negative patch is a sample belonging to a different

class. The objective of the optimization process, is to

update the parameters of the network in such way that

Table 1: Our CNN architecture for small RGB-D Patches.
odim stands for number of channels in the output tensors,
similarly idim is the number of channels in the input tensors,
and ks is the kernel size.

Layer Parameters Output tensor

Convolution odim: 6, ks: 3 (6,18,18)

BatchNorm (6,18,18)

Sigmoid (6,18,18)

Max Pooling ks: 2 (6,9,9)

Convolution odim: 32, ks: 3 (32,7,7)

ReLU (32,7,7)

Max Pooling ks: 2 (32,3,3)

FCL idim: 288, odim: 128 128

Figure 2: Local feature descriptor training pipeline with tri-
plet loss.

patches a and p become closer in the embedded fe-

ature space, and a and n are further apart in terms

of their Euclidean distances as presented in Figure 2.

The triplet loss formula is given in Equation 1. f (x)
stands for the application of CNN on a given input

x to generate a feature vector (embedding). Another

hyper parameter is added to the loss equation called

the margin, it defines how far away the dissimilari-

ties should be. Minimizing Ltr enforces to maximize

the Euclidean distance between patches from diffe-

rent classes which should be greater than the distance

between anchor and positive features distance. For

efficient training, only the triplets patches that verify

the constraint Ltr > 0 are online selected as a valid

triplet to improve the training.

Ltr = ∑
a,n,p

(

|| f (a)− f (p)||22 (1)

−|| f (a)− f (n)||22
+ margin)

3.3 Patch Classification

We followed (Grati et al., 2016) for the adaptive and

dynamic dictionary selection in the SRC process. The

objective the SRC is to reconstruct an input signal by

a linear combination of atoms in a selected dictionary.

We denote by yk ∈R
M the input feature vector obtai-

ned from the application of the trained CNN on the

k-th extracted patch and M is the its dimension. Also,

we note by D̃k ∈ R
M×Ñ the dictionary. It consists of

the closest Ñ gallery patches (atoms). Equation 2 gi-

ves the linear regression leading to the reconstructed

feature vector ỹk. xk ∈ R
Ñ is the sparse coefficient

vector whose nonzero values are related to the atoms

in D̃k used for the reconstruction of yk, εk captures

noise, and Ñ is experimentally fixed.

ỹk = D̃k xk + εk (2)

The estimation of the sparse coefficients xk is for-

mulated by a LASSO problem with an ℓ1 minimiza-

tion using (Mairal et al., 2010):

argmin(‖D̃k xk −yk‖2 +λ‖ xk‖1) (3)
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Finally, the identity associated to the k-th patch is

classically the class generating the less reconstruction

error. Once the sparse representation of all local pat-

ches in the query image is obtained, a score level fu-

sion strategy is applied then a majority vote rule pre-

dicts the final person identity.

4 EXPERIMENTS AND RESULTS

4.1 Training Details

Our CNNs has been trained with a batch size of 64, a

decay value of 0.0005 a momentum value of 0.09 and

an initial learning rate set to 0.001. We used PyTorch
2 framework to implement and train the CNNs. Fir-

stly, the set of patches is classically split to training

and testing sets. The pool of patch triplets needed for

the CNNs training are generated and updated every

ten epochs of the training by gathering the triplets

from all the persons equally. A single patch triplet

is obtained following these 3 steps:

1. Randomly select one anchor patch from the pool

of patches related the a given person c.

2. Randomly select the positive patch from the re-

maining patches in the same pool.

3. Randomly select the negative patch from the patch

pool related to other persons ( 6= c)

4.2 Datasets

Our approach is validated on two publicly RGB-D

face databases: Eurecom (Huynh et al., 2012), and

Curtin faces (Li et al., 2013).

• Eurecom dataset is composed by 52 subjects, 14

females and 38 males. Each person has a set

of 9 images in two different sessions. Each ses-

sion contains 9 settings: neutral, smiling, open

mouth, illumination variation, left end right pro-

file, occlusion on the eyes, occlusion on the

mouth, and finally occlusion with a white paper-

sheet.

• CurtinFaces dataset consists of 52 subjects. Each

subject has 97 images captured under different va-

riations: combinations of 7 facial expression, 7

poses, 5 illuminations, and 2 occlusions. Curtin-

Faces database with low quality face models is

more challenging in terms of variations of poses,

and expression and illumination face models.

2https://pytorch.org/

Figure 3: Performance comparison between our CNN fea-
tures and the standard hand-crafted features HOG and LBP.

4.3 Validation and Results

We performed two sets of experiments to evaluate our

approach. The first set is dedicated to compare with

state-of-the-art systems, and the second set is to evalu-

ate the proposed learned features comparing to hand-

crafted features (i.e., HOG and LBP) taking our face

recognition system as baseline.

For the first set of experiments, and on CurtinFa-

ces dataset, we report our results as well as those of

(Hsu et al., 2014) (Li et al., 2013), (Ciaccio et al.,

2013), (Kaashki and Safabakhsh, 2018), and (Grati

et al., 2016). To make a fair comparison, we use the

same protocol as (Li et al., 2013). 18 images contai-

ning only one kind of variations in illumination, pose

or expression are selected for the training and testing

images include the rest of non-occluded faces, there

are a total of 6 different yaw poses with 6 different

expressions added to the neutral frontal views. The

reported results of our system on RGB, depth and fu-

sion scheme in comparison with (Li et al., 2013) are

summarized in table 2.

Table 2: Face recognition performance under yaw pose and
facial expression variations.

Pose Modality Our Work DSC+SRC

Frontal RGB 100% 100%
Depth 100% 100%
Fusion 100% 100%

Yaw ± 30 RGB 99.03 % 99.8%
Depth 94.55% 88.3 %
Fusion 98.40% 99.4 %

Yaw ± 60 RGB 93.75 % 97.4%
Depth 86.05% 87.0%
Fusion 93.43% 98.2%

Yaw ± 90 RGB 70.2% 83.7%
Depth 63.45% 74%
Fusion 71.15% 84.6 %

Average RGB 94.6% 96.70%
Depth 88.67% 86.65%
Fusion 94.23% 96.98%

The presented results demonstrates that our met-

hod can works equally to the aforementioned work
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Table 3: CurtinFaces Database performances on differently approach.

Pose Our Cov+LBP LBP+SRC DCS+SRC BSIF+SRC HLF+SVM

Frontal 100% N/A 100% 100% 100% 100%

Yaw ±30 98.40% 94.2% 99.4 % 99.8% 99.04% 90.3%

Yaw ±60 93.43% 84.6% 98.2 % 97.4 95.51% 58.6%

Yaw ±90 71.15% 75.0% 93.5% 83.7% 60.58% N/A

which is based on expensive pre-processing stage to

frontalize and to fill symmetrically the self-occluded

part in the face due to head rotation. An overall of

94.6%, 88.67% and 94.23% are achieved with our

system respectively for RGB, depth and multimodal

data. It’s clear that our RGB performance need to

be improved but our depth performance seems bet-

ter than this reported in (Li et al., 2013) which de-

monstrate the importance and the effectiveness of data

representation with learning discriminant features to

overcome challenging conditions. In other hand we

present in table 3 our obtained results in comparison

with the most performing state of the art techniques

namely(Ciaccio et al., 2013; Hsu et al., 2014) and

some recent works (Grati et al., 2016; Kaashki and

Safabakhsh, 2018).

It is shown that our system outperforms (Ciaccio

et al., 2013) (Cov+LBP) with a margin of 4 % in Yaw

±30 while a gain of ≈ 9% in Yaw ±60. The drop in

the performance for the set Yaw ±90 angles can be

explained by the fact that CurtinFaces database con-

tains only just two samples for left and right ±90.

That is, if we take one sample for testing, no corre-

sponding pose exists anymore in the gallery. In con-

trary and as reported previously in the related work

section, (Ciaccio et al., 2013; Hsu et al., 2014; Li

et al., 2013) pre-processings allow to tackle this is-

sue as they either augment the gallery by generating

new poses, correct the pose or symmetrically filling

the self occluded part in the face. Beyond these well

engineered pre-processings, in this work we aim to fo-

cus on estimating optimal RGB-D data representation

for face recognition applications.

In other hand, our study is compared also

to (Kaashki and Safabakhsh, 2018) (labeled as

HLF+SVM in the Table 3) as it uses patch repre-

sentation around landmarks points. We can observe

that our performance are better with a gain of 8% in

Yaw ±30 angle and an improvement of more than

30% in Yaw ±60 angle. These results highlights the

added-value of learned features to derive more dis-

criminant representations for local features compa-

red to the standard hand-crafted features (i.e., HOG,

LBP, and 3DLBP) and prove clearly the use of salient

points without interpreting face structure.

On Eurecom database, the first session set is se-

lected for training and the second one for test. The

learned feature descriptor yield to 90,82% for texture

images and 85,57% for depth data, and 92,70% after

fusion, which is better than the recognition rate obtai-

ned in RISE (Goswami et al., 2014) (i.e., 89.0% after

fusion).

The second set of experiments are dedicated to

compare our CNN learned features to hand-crafted fe-

atures taking our system as baseline. This is to high-

light the added-value of CNN learned features. Three

versions of our system are tested, the only changed

part is the feature extraction: HOG+SRC, LBP+SRC,

and CNN+SRC. As shown in Figure 3, CNN+SRC

outperforms the other systems for all the test subsets.

Based on all the obtained results and compari-

sons, we can conclude that CNN learned-features can

achieve a competitive identification performance for

person recognition from low-cost sensor and under

challenging pose and expression variations and wit-

hout any prior face analysis (e.g., face pose estima-

tion, facial landmarks detection, etc.).

5 CONCLUSION

In this paper, we proposed a data-driven representa-

tion for RGB-D face recognition. A given face is re-

presented by a set of patches around detected salients

key-points on which a CNNs transformation are ap-

plied to extract the learned local descriptor for each

modality separately before performing SRC classifi-

cation. The experimental results obtained on ben-

chmark RGB-D databases highlight the added-value

of deep learning local features compared to standard

hand-crafted feature extractors. For future works,

we plan to extend our system with learning a multi-

modal representation to combine texture and depth

data. With an appropriate CNN, the fusion strategy

of RGB-D data will take in consideration the comple-

mentarity between depth and image data to enhance

the recognition performance.
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