
Towards Automated Characterization of Malware’s High-level
Mechanism using Virtual Machine Introspection

Shun Yonamine1, Youki Kadobayashi1, Daisuke Miyamoto2 and Yuzo Taenaka1
1Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan

2The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo, 113-8658, Japan

Keywords: Malware Characterization, Virtual Machine Introspection, Taint Analysis, Malware Analysis.

Abstract: One of the goals of malware analysis is to figure out the intention of an attacker, namely high-level mecha-
nism. Since malicious activities are typically performed by combining multiple APIs, to identify the malicious
intention, it is needed to inspect the series of APIs to analyze its semantics. In traditional malware analysis,
this task generally relies on manual efforts of experts. There is no methodology for associating multiple APIs
and identifying the malicious intention in an automated manner. In this paper, we propose a virtual machine
introspection-based method for automatically identifying high-level mechanisms. We developed Spaniel, a
prototype system, which uses taint analysis to track malicious processing that derives from the data read from
a specified file and collects the traces of malicious activities. For evaluation, we used adversary behavior
models defined in ATT&CK and Spaniel identified key indicators that cover 26% of those models.

1 INTRODUCTION

One of the goals of malware analysis is to under-
stand the intention of an attacker. Since malware per-
forms malicious activities following the intention of
an attacker, security analysts need to figure out mali-
cious activities, namely high-level mechanism (Mitre,
2018; Lee et al., 2013). Malicious activities are con-
ducted through the series of low-level actions such
as system calls. And then, the middle-level behav-
ior can be retrieved from a series of low-level actions.
For instance, given a middle-level behavior that it first
calls read() to access user’s password file and next
calls send() to send that data outside the network,
there is a possibility that it is intended for data theft.
Therefore, in malware analysis, it is important to un-
derstand the relationship of each system call that was
executed independently by malware.

In traditional malware analysis, security analysts
monitor APIs and/or system calls executed by mal-
ware. API monitoring is one of the common malware
analysis techniques (Egele et al., 2012). Although
API monitoring enables security analysts to collect
rich information about malware, it is extremely time-
consuming since it requires analysts many steps, such
as setting breakpoints, inspecting memory values,
etc. There have been analysis platforms that support
automated malware analysis, e.g., Cuckoo Sandbox

(Cuckoo, 2013) . However, the information shown by
those platforms are limited and they do not preserve
the details about the relationship of each API call.

In this paper, we propose a novel approach to as-
sociate multiple actions of malware and extract its be-
havioral characteristics. Our approach aims at identi-
fying the malicious mechanisms of malware by ana-
lyzing its runtime behavior and reconstructing its se-
mantics. To accomplish this, we leverage technolo-
gies of virtual machine introspection and taint anal-
ysis. This paper presents Spaniel, a prototype sys-
tem for automatically extracting relationships of each
low-level action executed by malware. Our approach
is based on the insight that most types of malicious
activities accompany manipulation to the file data.
Spaniel performs taint analysis against file data and
associates low-level actions with each other through
tainting.

In order to show the capability of our approach,
we conduct a series of intention analysis experiment
including the scenarios of Exfiltration, Command and
Control (C2), and Encryption. Further, we investigate
the applicable coverage of our approach in the analy-
sis of malicious activities. We used the adversary’s
behavior model defined in ATT&CK (Strom et al.,
2017; Mitre, 2018) matrix which consists of various
techniques commonly used by an attacker.

Yonamine, S., Kadobayashi, Y., Miyamoto, D. and Taenaka, Y.
Towards Automated Characterization of Malware’s High-level Mechanism using Virtual Machine Introspection.
DOI: 10.5220/0007405504710478
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 471-478
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

471

2 RELATED WORK

The automated methodologies for analyzing the mali-
cious activity of malware is a widely studied topic.
However, the way of leveraging dynamic analysis
techniques to analyze malicious intentions has not
been widely studied yet. Existing methods are tai-
lored to solve a specific problem in malware anal-
ysis. In order to detect a characteristic of spyware,
the information flow tracking method was taken (Yin
et al., 2007; Egele et al., 2007). Further, informa-
tion flow tracking-based methods to analyze the cryp-
tographic function of malware were proposed (Wang
et al., 2009; Gröbert et al., 2011). Jacob et al. (Ja-
cob et al., 2011) proposed a program analysis based
method to identify C2 communication of bot. As for
the analysis of code injection malware, the methods
of process tracking were studied (Caillat et al., 2015;
Korczynski and Yin, 2017). Many of those previous
researches share the key insight that how a program
processes a message gives rich information about the
behavioral characteristic of malware. In this paper,
we apply this insight to build a method for identify-
ing the intention of an attacker.

Also, the techniques that can be leveraged for au-
tomated malware analysis is widely studied. The vir-
tual machine introspection (VMI) is a technology for
inspecting a system running on the virtual machine
from outside the hypervisor (Garfinkel and Rosen-
blum, 2003) and enables whole-system dynamic mal-
ware analysis. VMI is widely used for many secu-
rity solutions (Dolan-Gavitt et al., 2011) , e.g., intru-
sion detection, forensics, malware analysis. There are
several projects that feature VMI technology, such as
DRAKVUF (Lengyel et al., 2014), PANDA (Panda-
re, 2018; Dolan-Gavitt et al., 2015) , and DECAF
(Henderson et al., 2014). Furthermore, VMI plat-
forms that are based on QEMU is widely used for dy-
namic taint analysis (Schwartz et al., 2010) . Dynamic
taint analysis (taint analysis) leverages dynamic bi-
nary instrumentation (DBI) technology, and then it
enables data tracking in instruction-level. Taint anal-
ysis can be used in malware analysis for analyzing
specific functionalities of malware(Yin et al., 2007;
Wang et al., 2009).

To perform malware analysis effectively, there is
a study about whole-system dynamic binary analysis
approach. The whole-system dynamic binary analy-
sis is a technique used for analyzing malicious code
by using the virtual machine. Although develop-
ing whole-system dynamic binary analysis tool from
scratch is not straightforward, recent studies (Hender-
son et al., 2014; Dolan-Gavitt et al., 2015) have devel-
oped platforms to facilitate those whole-system dy-

namic binary analysis techniques. We also leveraged
those efforts to develop our proposed method.

3 SYSTEM DESIGN

3.1 Behavioral Analysis Method based
on File-monitoring and Tainting

The key feature in our approach is using the data flow
to automatically extract every APIs that are associated
with each other. Our approach aims at retrieving the
profile of middle-level behavior needed to reason the
intention of an attacker. To accomplish this, our ap-
proach uses API monitoring and taint analysis (taint-
ing) based on VMI.

First, before staring malware analysis, we have to
specify the watched file, a file which can be a data
source for tracking data flow. The watched file is used
as the taint source for taint analysis. For instance,
when it detects theread()API to the watched file, it
launches taint analysis on the memory where the file
data is loaded. We track the whole of the file data at
the byte level. By tracking the propagation of taint,
it can be possible to extract the series of instructions
that relate to each other. We collect tainted instruc-
tions, the code of instructions that processed tainted
data. From tainted instructions, also API calls that
handled tainted data can be retrieved.

Further, it makes possible to detect the presence of
an attacker’s intention by using the traces of taint as
the indicator. The traces of taint can be retrieved by
taint check, checking if the memory or register han-
dled by a tainted instruction is tainted or not. For in-
stance, the traces of taint could indicate the data exfil-
tration if send()API handle tainted data on its buffer.
Moreover, our approach provides a visualization of
an analysis result that shows the relationship between
each low-level action. The visualization is designed
to aid security analysts to estimate the malicious in-
tention of an attacker.

3.2 Implementation

We developed Spaniel, a prototype of our proposed
system. Spaniel is a plugin for PANDA (Panda-re,
2018; Dolan-Gavitt et al., 2015). PANDA is a whole-
system dynamic binary analysis platform that sup-
ports record-and-replay based analysis. Record-and-
replay can decouple the analysis from the execution
and thus suited for taint analysis that is too expensive
to be applied at runtime.(Chow et al., 2008; Stam-
atogiannakis et al., 2015). As for taint analysis, in

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

472

Recording Phase

VictimAttacker attack

PANDA QEMU

Victim

(Snapshot)

Analysis Phase using Spaniel

Saving details about

data flow and malicious

indicator

Intention

mining...

collecting information

- Taint check

- Tainted instructions code

Visualization Phase

/etc/passwdTainted Buffer

cat

cmd:cat

cmd:meterbind2.elf ld-2.13.so libc-2.13.so

[fd]1

[fd]4 [tcp]192.168.124.131:44261

sys_read

sys_write

sys_sendto

cmd:sh

Graph visualization

of malicious mechanism

Graphviz

Spaniel

dot

script

dot

script

Replaying...

Execution

Trace

Log

Execution

Trace

Log

Malicious

Activity

PANDA QEMU

Figure 1: System overview.

our case, we leverage the implementation of PANDA
(Whelan et al., 2013) to monitor the propagation of
taint at the byte level. PANDA leverages QEMU to in-
strument program execution per emulated code. Thus,
we can monitor and instrument every execution on the
system per emulated code to track the data flow. Ad-
ditionally, in our use of PANDA, we enabled the taint
propagation through pointer dereference in order to
capture the data flow on the malicious activity in de-
tail.

3.3 The Procedure of Malware Analysis
in our Approach

Spaniel performs analysis of malicious activities us-
ing record-and-replay. In addition, Spaniel has three
phases in analyzing malware as shown in Figure 1:
the recording phase for obtaining execution trace of
malware, the analysis phase for collecting informa-
tion used to identify the presence of malicious activ-
ity, and the visualization phase for making a visual-
ized output of analysis result.

In the recording phase, we execute a malware in
a sandboxed environment and record its execution to
obtain execution trace log. Execution trace log must
be captured for malware analysis using Spaniel. Dur-
ing malware performs its malicious activity, PANDA
records execution trace. Our assumption is that mal-
ware thoroughly performs its malicious activity dur-
ing the recording phase.

In the analysis phase, we use Spaniel to ana-
lyze adversary scenario from execution trace that we
recorded. While observing replayed malicious activ-
ity, Spaniel performs API hooking to monitor the read
access to the watched file that we specified. If our
watched file is accessed by file read operation, Spaniel
performs tainting on read-buffer and starts taint anal-
ysis. Spaniel then collects the tainted instruction code
which handled the tainted data and caused taint prop-

agation. Further, Spaniel uses VMI to obtain names
of shared libraries that were referenced from tainted
instruction codes. Spaniel also hooks output-related
API (e.g.,write(), send()) to conduct taint check
on write-buffer. If the buffer is tainted, under the
policies we defined, we consider it as an indicator of
data theft or data tampering. In this phase, we col-
lect information for identifying the type of malicious
attempt.

In the visualization phase, Spaniel generates a
graph that represents the series of malicious actions
that are associated with our watched file data. Based
on the analysis result, Spaniel produces a dot script
used by Graphviz (Graphviz, 2018) to output a graph.
The visualization phase is designed to help intuitively
understand the analysis results, for a case of reason-
ing about malicious activities that are not yet defined
under our detection policies.

As a result of three phases, Spaniel obtains the in-
dicator of adversary intent from recorded malware’s
activities. We use this as the indicator of compromise
(IOC) as well as the evidence that identifies the type
of high-level mechanism.

4 EXPERIMENT

In this section, we test Spaniel on its capability of
identifying the attacker’s intention. We demonstrate
that Spaniel can analyze footprints of malicious ac-
tions and associate them to identify malicious charac-
teristics. We set up experiments of three case studies
namely, Exfiltration, Encryption, Command and Con-
trol (C2) all selected from ATT&CK (Mitre, 2018).
Since Spaniel performs malware analysis through re-
playing the execution trace log, we need to run mal-
ware samples on virtual machine and record mali-
cious activities in advance. Malicious activities are
recorded using the record-and-replay functionality of

Towards Automated Characterization of Malware’s High-level Mechanism using Virtual Machine Introspection

473

PANDA and saved into execution trace log as shown
in Figure 1.

In order to set up those experiments, we used
Linux as a victim’s platform and prepared malware
samples that are appropriate for each experiment. We
used meterpreter (Security, 2018) to simulate cases of
exfiltration and C2. In addition, we used OpenSSL
(Foundation, 2018) as a sample for simulating en-
cryption.

We set up experiments as follows. In the cases
of exfiltration and C2, we simulate adversary be-
havior accessing victim machine via meterpreter. In
these scenarios, the attacker attempts to steal a cre-
dentials file (/etc/passwd) usingcat command via
meterpreter and sends it outside the network. In
the case of encryption, Spaniel analyzes the execu-
tion trace log that records encryption processing per-
formed by OpenSSL that we imitate as ransomware.
In this scenario, ransomware targets simple text file
(cryptme.txt). In all of our experiments, we employ
a strategy of monitoring the system calls that access
our watched file (e.g./etc/passwd, cryptme.txt).
Spaniel implements this strategy to start taint analysis
when it detects the read-related APIs to our watched
file.

4.1 Detecting IOC of “Exfiltration Over
C2 Channel”

We demonstrate that Spaniel analyzes “Exfiltration
Over C2 Channel” attack model having both aspects
of exfiltration and C2. We created a scenario where
the attacker tries to steal credentials file withcat
command via meterpreter. Spaniel then analyzes the
execution trace log which recorded the attack we sim-
ulated. The goal of this experiment is to detect indi-
cators that identify each attack of exfiltration and C2.

4.1.1 The Case of Exfiltration

In order to find the essence of the high-level mech-
anism of file exfiltration activity, before network
transfer, we have to detect the send-buffer, which
holds data tainted and associated with our watched
file. Spaniel applies taint analysis to data of our
watched file and tracks every instructions that han-
dle tainted data through taint propagation. At the mo-
ment when network transfer happens, Spaniel con-
ducts taint check to data held in the send-buffer. If
the send-buffer is tainted, we regard it indicates a sign
of occurrence the data exfiltration because we think it
is anomalous that the taint tag associated with creden-
tials data is propagated to the send-buffer.

In many cases, the modern malware performs

open

read

Data Obfuscation

Obfuscated

Data Buffer

Function A

Function B

Function C (tainted)

Function D

Function E (tainted)

send

Outside

Network
Detecting indicator of file exfiltration

by taint checking on the send buffer

Target

File

Figure 2: Detecting indicator of “File Exfiltration”.

obfuscation or tampering against target data before
sending them to the attacker’s machine. Since the
tampered data, which is encrypted or compressed,
shows no signs of original data on its surface, then
it becomes harder to associate the data kept in the
send-buffer with stolen data. Therefore, we use taint
checking to detect a sign of network transfer that tar-
gets our watched data, as shown in Figure 2. Through
taint propagation, our watched data leaves its vestiges
throughout memory areas or registers. Spaniel per-
forms taint checking to check if buffers handled by
APIs are tainted or not. If tainted, we consider that
fact as an indicator of file exfiltration.

We verified our hypothesis in the analysis of me-
terpreter as follows. Whenread() API is called and
it reads our watched file (/etc/passwd), then Spaniel
applies taint analysis to read-buffer. In the subsequent
processing after taint analysis is enabled, we observed
send() API call holding tainted buffer on its argu-
ment. Consequently, we consider those tainted buffer
as an indicator of file exfiltration.

4.1.2 The Case of Command and Control

We analyze meterpreter for the purpose of detecting
the presence of command and control. Spaniel ap-
plies taint analysis to/etc/passwd in the same way
we performed in Section 4.1.1 and collects tainted in-
structions. In dealing with a malware that implements
C2, we assume that an attacker is likely to utilize sys-
tem utilities, e.g., command and shared libraries, dur-
ing malicious activities in C2 channel. If the attacker
follows our assumption, tainted instructions are likely
to contain much information about the traces of the
attacker.

Spaniel instruments the execution to examine
tainted instructions during the analysis. While col-
lecting tainted instructions as shown in Figure 2,

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

474

/etc/passwdTainted Buffer

cat

cmd:cat

cmd:meterbind2.elf ld-2.13.so libc-2.13.so

[fd]1

[fd]4 [tcp]192.168.124.131:44261

sys_read

sys_write

sys_sendto

cmd:sh

Figure 3: Visualization of “Exfiltration Over C2 Channel”.

Spaniel leverages VMI to obtain a list of processes as
well as shared libraries loaded for each process. We
found out that some tainted instructions are codes that
are used bycat command. Thus, we can confirm the
presence of a malicious activity via the C2 channel.

Also, we found out that it is possible to associate
exfiltration and C2 activities. We used the name of
system utility as an indicator of the malicious attempt
through C2. Some malware use system utilities to
make it difficult to distinguish malicious operations
and legitimate ones. However, we think examining
tainted instructions helps analysts to deal with this
problem.

4.1.3 Visualization of Execution Trace of
“Meterpreter”

We visualized our experiment result as a graph (Fig-
ure 3). From a dot script that Spaniel generated
from anaysis result, we can obtain a graph by us-
ing Graphviz. This graph shows a series of ac-
tions that were performed by malware to accomplish
its malicious attempt of data theft. Each node rep-
resents a system component, e.g., process, system
call, that we observed during record-and-replay based
analysis with Spaniel. Edges between nodes repre-
sent caller/callee relationships. The “Tainted Buffer”
node represents the buffer that holds the data of our
watched file (/etc/passwd). Every node is involved
in handling data that are tainted. We hope this graph
helps analysts understand the mechanism of exfiltra-
tion and C2 more intuitively and deal with threats.

4.2 Detecting IOC of “Encryption”

4.2.1 The Case Encryption of OpenSSL

In this section, we demonstrate the way of detecting
the evidence of the use of encryption from a malicious
activity. In order to solve this task, we have to confirm

/home/john/tmp/cryptme.txt

/home/john/tmp/encrypted.txt

Tainted Buffer

cmd:openssl ld-2.13.so libc-2.13.so libcrypto.so.1.0.0 openssl

cmd:bash

sys_read

sys_write

Figure 4: Visualization of “Encryption”.

that the malware uses crypto-related API through the
series of malicious actions. Thus we examine tainted
instructions to find the traces of using crypto-related
API. Since tainted instructions are instruction codes
which derive from tainting our watched file data, we
assume that tainted instruction codes give us more de-
tails about malicious processing.

We conducted our experiment as follows. First,
we simulated encryption processing and obtained ex-
ecution trace log. In this scenario, openssl command
performs AES encryption against a simple text file,
namelycryptme.txt. We next use Spaniel to ana-
lyze the encryption scenario that we simulated. Fur-
ther, we try to collect the evidence of encryption from
a significant amount of instruction codes.

The openssl command performs encryption pro-
cessing to our watched file,cryptme.txt. In the
similar way that we analyzed meterpreter in Sec-
tion 4.1, Spaniel monitors the file operations and
starts taint analysis when our watched file is accessed,
and then collects tainted instructions. While col-
lecting tainted instruction codes, Spaniel leverages
VMI to obtain details of tainted instructions, such
as addresses and names of shared libraries, like we
have conducted to find a footprint ofcat command
in Section 4.1.2. From the experiment result, we
confirmed thatlibcrypto.so was included in a list
of shared libraries we obtained by using VMI. The
libcrypto.so is a shared library used for encryp-
tion processing, and then we confirmed the possibility
that our watched file data was processed with crypto-
related APIs. From the experiment result, we con-
firmed that examing tainted instructions is efficient to
find the traces of using the crypto-related libraries and
identify the malicious mechanism of encryption.

4.2.2 Visualization of Execution Trace of
“Openssl”

In the same way that we visualized exfiltration and
C2, we obtained a graph (Figure 4) that represents
file encryption activity. This graph shows the rela-
tionship between each node of handling tainted data

Towards Automated Characterization of Malware’s High-level Mechanism using Virtual Machine Introspection

475

and follows the same representation rule that we used
in Section 4.1. This graph showsread() API call,
which handles our watched filecryptme.txt. The
“Tainted Buffer” node represents data of our watched
file. Further, thelibcrypto.so node indicates that
our file data is encrypted. From the name of crypto-
related API we obtained, we can identify the mali-
cious attempts of encryption.

5 EVALUATION

In order to confirm the effectiveness of Spaniel, we
investigated its capability of finding IOCs that we ex-
pect to find from various kinds of malicious activities
listed in ATT&CK. ATT&CK matrix includes 106
models of malicious activities. First, we explain our
IOC for identifying the kinds of malicious activities
as follows.

• If instruction codes executed by malware handle
tainted data.

• If tainted data is stored on the argument when
output-related API is called.

• If it is possible to detect what kind of activity
is performed by malware from the name of the
shared library mapped from instruction code. e.g.,
We identified the occurrence of encryption by de-
tecting API oflibcrypto.so in an experiment.

Next, we conducted an investigation and the re-
sults can be seen in Table 1. This result shows that
Spaniel is capable of finding the IOC that we de-
scribed above from 26 models out of a total of 106
models. This result indicates that Spaniel is poten-
tially able to extract the middle-level behavior of the
malicious activity on every stage of the cyber kill
chain, (e.g., Control, Execute, Maintain). Those mod-
els Spaniel could detect have a common behavioral
characteristic; the file input and the output to exter-
nal resources such as a file or socket, can be easily
related by taint propagation and taint checking. We
demonstrated that Spaniel could detect models where
explicitly data flow by data alteration (e.g., encryp-
tion) occurs between the file input and external out-
put. We want to state that, in the security incident
caused by malware, the analysis method based on
tracking the file data accessed by malware is a rea-
sonable approach.

We examined “Data source” item from each tech-
nique of ATT&CK (Mitre, 2018). “Data source” con-
tains information that can be used to detect and ana-
lyze each attack model. Since Spaniel performs taint
analysis against malware’s file operations, we enu-
merated models that have “File monitoring” in their

data sources, namely file-monitoring type. There are
56 models of file-monitoring type. We confirmed that
there are 18 attack models out of 56. However, that is
fewer than the 26 models shown in Table 1. We note
several reasons as follows.

• “Account discovery” model of discovery tactic is
not defined as a file-monitoring type. Regarding
“Account discovery”, ATT&CK considers only
process activities, e.g., id command and groups
command, in data sources. However, we con-
firmed it empirically through the experiment of
exfiltration targeted at/etc/passwd.

• “Exfiltration over command and control channel”
model of exfiltration tactic is not defined as the
file-monitoring type. Regarding this technique,
ATT&CK considers data sources only about pro-
cess activities and network activities.

• Several models of C2 tactic are not defined as the
file-monitoring type. Regarding these techniques,
ATT&CK considers their data sources as network
activities such as packet monitoring.

In the descriptions of ATT&CK, to analyze a
malware’s network activity, packet monitoring is re-
garded as an appropriate method. This also means
that network traffic data is generally considered as an
appropriate data source for malware analysis.

We expect that, since the data source is limited
to only a regular file, the analysis enabled coverage
of Spaniel is also limited. From this, we want to
point out that there is a gap between the traditional
malware analysis method and the data flow tracking-
based method. We suppose that considering the kind
of data source, e.g., file or network, is important since
the kind of data source which malware tries to access
varies depending on its purpose.

Although the result was lower than half the total
number, we are not pessimistic about this result. We
evaluated through a series of experiments (e.g., exfil-
tration, encryption, C2), the policy we used for eval-
uation might not be severe. For instance, we did not
consider the case of “Automated Collection” model
into the results even though we accomplished an ex-
periment of credentials file exfiltration in Section 4.1
since “Automated Collection” belongs to collection
tactics, not exfiltration tactics. On the malware anal-
ysis that uses the data flow tracking, it is needed to
design appropriate policies to determine if the behav-
ior tracked through data flow is malicious or not. De-
pending on detection policies, we possibly could im-
prove detection rate against ATT&CK models.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

476

Table 1: A list of attack models in the ATT&CK Matrix that Spaniel can detect.
Tactic Technique Detected attack models as⊚, similar models as◦

Persistence .bashprofile and .bashrc ⊚

Hidden Files and Directories ⊚

Rc.common ◦

Privilege Escalation Setuid and Setgid ⊚

Defense Evasion Clear Command History ◦

File Deletion ⊚

Hidden Files and Directories ⊚

Scripting ◦

Credential Access Bash History ◦

Credentials in Files ⊚

Discovery Account Discovery ◦

Lateral Movement Remote File Copy ⊚

Execution Command-Line Interface ⊚

Scripting ◦

Collection Data Staged ◦

Data from Local System ◦

Exfiltration Data Compressed ◦

Data Encrypted ⊚

Exfiltration Over Command and Control Channel ⊚

Command and Control Commonly Used Port ◦

Custom Command and Control Protocol ◦

Custom Cryptographic Protocol ⊚

Data Encoding ⊚

Data Obfuscation ⊚

Remote File Copy ⊚

Standard Cryptographic Protocol ◦

6 DISCUSSION

In this section, we discuss the limitations in Spaniel
and suggestions for future work. First, Spaniel is de-
signed to handle malware that does not use techniques
to thwart analysis using a virtual machine. If mal-
ware detects the presence of virtual machine and then
stops or changes its behavior, recording phase (Fig-
ure 1 in Section 3) may not work effectively. Since
Spaniel relies on record-and-replay using QEMU, we
need countermeasures on each anti-analysis technique
against QEMU. It still leaves a technical challenge
to deal with real-world malware that uses those anti-
analysis techniques

Next, the predefined adversary behavior models
of ATT&CK we detected are explicit data processing
and their maliciousness could only be identified from
the relationship between file input and external out-
put, e.g., file or network, through tainting. However,
also taint analysis has the weakness, e.g., overtaint-
ing or undertainting (Schwartz et al., 2010; Slowin-
ska and Bos, 2009) . We have to consider possibilities
where malware generates intentionally indirect or im-
plicit data flow to bypass taint analysis.

Next, Spaniel detects encryption activities of the
malware based on the presence of crypto-related API
calling. Therefore, Spaniel can be evaded if mal-
ware performs encryption with its own method. Our
approach is a sort of signature-based detection. We
treated the crypto-related APIs as an explicit indi-
cator for detection. To deal with encryption activ-
ity that does not match with signatures, it is needed
to adopt the heuristic-based approaches. However,
also heuristic-based (Wang et al., 2009; Gröbert et al.,

2011) approaches rely on assumptions that are statisti-
cal and/or empirical. If malware does not follow those
assumptions, also heuristic-based approaches can be
bypassed. We leave this to future work.

Finally, although we expect that Spaniel can help
security analysts in the complicated tasks of malware
analysis, we have not tested Spaniel from a perspec-
tive of performance improvement of analysts. To
evaluate efficiency from a view of security analysts,
we might need to conduct user tests. For example,
Yakdan et al. (Yakdan et al., 2016) have conducted a
user study for evaluating the usability of decompiler
they designed to help reverse engineers.

7 CONCLUSION

Understanding the attacker’s intention is one of the
challenges in malware analysis. From the perspective
of automated malware analysis, there is no method to
reason about the intention of an attacker. In this paper,
we proposed a novel approach to pinpoint the kind of
malicious mechanism. Spaniel, a prototype we devel-
oped, examines instruction codes that relate to the file
operations by using taint analysis. In order to confirm
our hypothesis, we tested Spaniel with several attack
models, exfiltration, encryption, C2. We confirmed
that Spaniel is capable of detecting IOC and identify-
ing the type of high-level mechanism. Through the se-
ries of experiments, we used minimal-installed Linux
as victim’s system and time cost for analysis was less
than 5 minutes. We hope this type of characteriza-
tion method would give more insights in this field of
malware analysis.

Towards Automated Characterization of Malware’s High-level Mechanism using Virtual Machine Introspection

477

REFERENCES

Caillat, B., Gilbert, B., Kemmerer, R., Kruegel, C., and Vi-
gna, G. (2015). Prison: Tracking process interactions
to contain malware. InHigh Performance Computing
and Communications (HPCC), 2015 IEEE 7th Inter-
national Symposium on Cyberspace Safety and Secu-
rity (CSS), 2015 IEEE 12th International Conferen on
Embedded Software and Systems (ICESS), 2015 IEEE
17th International Conference on, pages 1282–1291.
IEEE.

Chow, J., Garfinkel, T., and Chen, P. M. (2008). Decou-
pling dynamic program analysis from execution in vir-
tual environments. InUSENIX 2008 Annual Technical
Conference on Annual Technical Conference, pages
1–14.

Cuckoo (2013). Automated Malware Analysis. https:
//www.cuckoosandbox.org/.

Dolan-Gavitt, B., Hodosh, J., Hulin, P., Leek, T., and Whe-
lan, R. (2015). Repeatable reverse engineering with
panda. InProceedings of the 5th Program Protection
and Reverse Engineering Workshop, page 4. ACM.

Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J. T., and
Lee, W. (2011). Virtuoso: Narrowing the semantic
gap in virtual machine introspection. InIEEE Sympo-
sium on Security and Privacy, pages 297–312. IEEE
Computer Society.

Egele, M., Kruegel, C., Kirda, E., Yin, H., and Song, D.
(2007). Dynamic spyware analysis.

Egele, M., Scholte, T., Kirda, E., and Kruegel, C. (2012). A
survey on automated dynamic malware-analysis tech-
niques and tools.ACM computing surveys (CSUR),
44(2):6.

Foundation, O. S. (2018). OpenSSL Cryptography and
SSL/TLS Toolkit. https://www.openssl.org/.

Garfinkel, T. and Rosenblum, M. (2003). A virtual machine
introspection based architecture for intrusion detec-
tion. In Proc. Network and Distributed Systems Se-
curity Symposium.

Graphviz (2018). “Graphviz - Graph Visualization Soft-
ware”. https://www.graphviz.org/.

Gröbert, F., Willems, C., and Holz, T. (2011). Automated
identification of cryptographic primitives in binary
programs. InInternational Workshop on Recent Ad-
vances in Intrusion Detection, pages 41–60. Springer.

Henderson, A., Prakash, A., Yan, L. K., Hu, X., Wang, X.,
Zhou, R., and Yin, H. (2014). Make it work, make it
right, make it fast: building a platform-neutral whole-
system dynamic binary analysis platform. InProceed-
ings of the 2014 International Symposium on Software
Testing and Analysis, pages 248–258. ACM.

Jacob, G., Hund, R., Kruegel, C., and Holz, T. (2011). Jack-
straws: Picking command and control connections
from bot traffic. InUSENIX Security Symposium, vol-
ume 2011. San Francisco, CA, USA.

Korczynski, D. and Yin, H. (2017). Capturing malware
propagations with code injections and code-reuse at-
tacks. InProceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security,

CCS ’17, pages 1691–1708, New York, NY, USA.
ACM.

Lee, A., Varadharajan, V., and Tupakula, U. (2013).
On malware characterization and attack classifica-
tion. In Proceedings of the First Australasian Web
Conference-Volume 144, pages 43–47. Australian
Computer Society, Inc.

Lengyel, T. K., Maresca, S., Payne, B. D., Webster, G. D.,
Vogl, S., and Kiayias, A. (2014). Scalability, fidelity
and stealth in the drakvuf dynamic malware analysis
system. InProceedings of the 30th Annual Computer
Security Applications Conference.

Mitre (2018). “ATT&CK Linux Technique Matrix”. https:
//attack.mitre.org/wiki/LinuxTechniqueMatrix (ac-
cessed 2018-02-13).

Mitre (2018). “MAEC Core Specification, Ver-
sion 5.0”. http://maecproject.github.io/releases/5.0/
MAEC CoreSpecification.pdf.

Panda-re (2018). “Platform for Architecture-Neutral Dy-
namic Analysis”. https://github.com/panda-re/panda.

Schwartz, E. J., Avgerinos, T., and Brumley, D. (2010). All
you ever wanted to know about dynamic taint anal-
ysis and forward symbolic execution (but might have
been afraid to ask). InSecurity and privacy (SP), 2010
IEEE symposium on, pages 317–331. IEEE.

Security, O. (2018). About the Metasploit Me-
terpreter. https://www.offensive-security.com/
metasploit-unleashed/about-meterpreter/.

Slowinska, A. and Bos, H. (2009). Pointless tainting?: eval-
uating the practicality of pointer tainting. InProceed-
ings of the 4th ACM European conference on Com-
puter systems, pages 61–74. ACM.

Stamatogiannakis, M., Groth, P., Bos, H., et al. (2015). De-
coupling provenance capture and analysis from execu-
tion. In Proceedings of the 7th USENIX Workshop on
the Theory and Practice on Provenance (TaPP). Ed-
inburgh, Scotland.

Strom, B. E., Battaglia, J. A., Kemmerer, M. S., Kuper-
sanin, W., Miller, D. P., Wampler, C., Whitley, S. M.,
and Wolf, R. D. (2017). Finding cyber threats with
att&ck-based analytics.

Wang, Z., Jiang, X., Cui, W., Wang, X., and Grace, M.
(2009). Reformat: Automatic reverse engineering of
encrypted messages. InESORICS, volume 9, pages
200–215. Springer.

Whelan, R., Leek, T., and Kaeli, D. (2013). Architecture-
independent dynamic information flow tracking. In
International Conference on Compiler Construction,
pages 144–163. Springer.

Yakdan, K., Dechand, S., Gerhards-Padilla, E., and Smith,
M. (2016). Helping johnny to analyze malware: A
usability-optimized decompiler and malware analysis
user study. InSecurity and Privacy (SP), 2016 IEEE
Symposium on, pages 158–177. IEEE.

Yin, H., Song, D., Egele, M., Kruegel, C., and Kirda, E.
(2007). Panorama: capturing system-wide informa-
tion flow for malware detection and analysis. InPro-
ceedings of the 14th ACM conference on Computer
and communications security, pages 116–127. ACM.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

478

