
Primal Heuristic for the Linear Ordering Problem

Ravi Agrawal1, Ehsan Iranmanesh1,2 and Ramesh Krishnamurti1
1Simon Fraser University, Burnaby, BC, Canada

21QB Information Technologies (1QBit), Vancouver, BC, Canada

Keywords: Linear Ordering Problem, Linear Programming, Integer Linear Programming, Branch-and-bound, Primal
Heuristic, Node Selection.

Abstract: In this paper, we propose a new primal heuristic for the Linear Ordering Problem (LOP) that generates an
integer feasible solution from the solution to the LP relaxation at each node of the branch-and-bound search
tree. The heuristic first finds a partition of the set of vertices S into an ordered pair of subsets {S1,S2} such
that the difference between the weights of all arcs from S1 to S2 and the weights of all arcs from S2 to S1 is
maximized. It then assumes that all vertices in S1 precede all vertices in S2 thus decomposing the original
problem instance into subproblems of smaller size i.e. on subsets S1 and S2. It recursively does so until the
subproblems can be solved quickly using an MIP solver. The solution to the original problem instance is
then constructed by concatenating the solutions to the subproblems. The heuristic is used to propose integer
feasible solutions for the branch-and-bound algorithm. We also devise an alternate node selection strategy
based on the heuristic solutions where we select the node with the best heuristic solution. We report the results
of our experiments with the heuristic and the node selection strategy based on the heuristic.

1 INTRODUCTION

The Linear Ordering Problem can be defined as fol-
lows. Let G = (V,A) denote a complete digraph on n
vertices, where V = {1,2, . . . ,n} is the set of vertices
and A is the set of arcs that includes, (i, j) and (j, i),
for every distinct pair of vertices i and j in V . For
every arc (i, j) ∈ A, we have a weight ci j. A linear
ordering of the vertices {1,2, . . . ,n} can be denoted
by 〈v1,v2, . . . ,vn〉, where v1 precedes v2, v2 precedes
v3, and so on. The objective of the problem is to find
a linear ordering σ such that ∑i, j:σ(i)≺σ(j) ci j is max-
imized, where σ(i) ≺ σ(j) denotes that vertex i pre-
cedes vertex j in the linear ordering σ. The problem
belongs to the NP-hard class of problems (Garey and
Johnson, 1979).

The Linear Ordering Problem (LOP) is closely re-
lated to problems in graph theory, such as the feed-
back arc set problem, and the analogous feedback
node set problem, as well as the node induced acyclic
subdigraph problem. The problem has found its rel-
evance in voting theory that involves ranking a set of
objects based on individual preferences, such that the
ranking matches the individual preferences as closely
as possible. This is also relevant to the problem of
ranking a set of teams/players in sports tournaments.

The input-output analysis in the field of economics
and the problem of machine scheduling under prece-
dence constraints are other problems of practical im-
portance which can be modeled using the linear or-
dering problem. For a detailed discussion on the ap-
plications of the linear ordering problem, the reader is
referred to (Martı́ and Reinelt, 2011).

As LOP can be used to model problems of such
practical importance, a lot of attention has focused on
methods to obtain optimal or near optimal solutions
to the problem. A common and effective method to
solve such problems optimally is Integer Linear Pro-
gramming. The LOP can be formulated as a 0/1 Inte-
ger Linear program and solved using the branch-and-
bound approach (Mitchell, 1997). However as the
computation time required to obtain the optimal so-
lution grows rapidly with the size of the problem, it
becomes impractical for large-sized problems. This
makes it necessary to devise techniques for efficiently
exploring the branch-and-bound search tree in order
to solve large problems using this method. Primal
heuristics are often employed to get a good bound
early in the branch-and-bound search by generating
good integer feasible solutions. The variable and node
selection strategies are integral to branch-and-bound
as they dictate how the search tree is constructed and

Agrawal, R., Iranmanesh, E. and Krishnamurti, R.
Primal Heuristic for the Linear Ordering Problem.
DOI: 10.5220/0007406301510156
In Proceedings of the 8th International Conference on Operations Research and Enterprise Systems (ICORES 2019), pages 151-156
ISBN: 978-989-758-352-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

151

explored. We propose a new primal heuristic for the
LOP that can be used to provide the bound for the
branch-and-bound algorithm as well as define a new
node selection strategy.

Numerous techniques have been developed to ob-
tain really good near optimal solutions to such prob-
lems. The Local Search Algorithm for the Traveling
Salesman Problem (Lin, 1965), for example, starts
with some initial feasible solution and then iteratively
improves the solution by searching solutions in its
neighbourhood. The quality of solutions obtained us-
ing such local search methods depends on the size
of the neighbourhoods, hence techniques to investi-
gate richer neighbourhoods have been developed. For
a detailed survey of such techniques, the reader is
referred to (Ahuja et al., 2002). Population based
methods such as the Genetic Algorithm (GA), Scatter
Search (SS), etc. are well established meta-heuristics
which search for a good solution by evolving a set of
solutions. These methods have been successfully ap-
plied to the Linear Ordering Problem and other simi-
lar problems. For a detailed treatment of these meth-
ods, please refer (Martı́ and Reinelt, 2011). Memetic
Algorithm (MA) which combines the Genetic Algo-
rithm and local search procedure has also been devel-
oped for the Linear Ordering Problem (Schiavinotto
and Stützle, 2004). Such methods are capable of find-
ing really good solutions, however, the methods do
not guarantee the quality of the solution. They also
often take a long time to converge making them im-
practical to be used as primal heuristics as a part of
the branch-and-bound.

Hybrid methods which combine local search and
exact methods using ILP techniques have also been
proposed (Dumitrescu and Stützle, 2003). In such
methods, an instance of the problem is solved by lo-
cal search methods, while the subproblems are solved
optimally, both to explore the neighbourhood of a fea-
sible solution, as well as to obtain good bounds on the
optimal solution. A Mixed Integer Program heuris-
tic has been developed for the Linear Ordering Prob-
lem (Iranmanesh and Krishnamurti, 2016). This MIP
heuristic generates a starting feasible solution based
on the Linear Programming solution to the Integer
Program formulation for the LOP. For each starting
solution, a neighborhood is defined, again based on
the LP solution to the problem. A MIP solver is then
used to obtain the optimal solution among all the so-
lutions in the neighborhood. As compared to the MIP
heuristic, our heuristic relies on partitioning the set
of vertices S into an ordered pair of subsets {S1,S2}
such that the difference between the weights of all
arcs from S1 to S2 and the weights of all arcs from S2
to S1 is maximized. The set of vertices are recursively

partitioned until for each of the resulting subsets we
can quickly solve the linear ordering problem on the
subset using a MIP solver. The integer feasible solu-
tion to the original LOP instance is then constructed
by concatenating the solutions to the linear ordering
problems on the subset of vertices. In comparison
with MIP heuristic, our heuristic is fast and generates
good solutions close to the optimal and hence can be
used as a primal heuristic in branch-and-bound.

2 PROBLEM FORMULATION

A linear ordering problem on graph G = (V,A) with
arc weights ci j ∀ (i, j) ∈ A, can be formulated as a
0/1 integer programming problem. We define a binary
decision variable xi j for each arc (i, j) ∈ A such that:

xi j =

{
1, if i≺ j, vertex i precedes vertex j
0, otherwise

The canonical Integer Linear Programming for-
mulation for the LOP (Martı́ and Reinelt, 2011) can
be given as follows:

Maximize ∑
(i, j)∈A

ci jxi j (1)

s.t.
xi j + x ji = 1 (2)

∀ i, j ∈V : i < j
xi j + x jk + xki 6 2 (3)

∀ i, j,k ∈V : i < j, i < k, j 6= k
xi j ∈ {0,1} (4)

∀ i, j ∈V : i 6= j

The objective function (1) maximizes the total
weight of all arcs (i, j) such that i≺ j. Constraint (2)
ensures that either i ≺ j or j ≺ i, but not both. Con-
straint (3) prohibits a directed cycle where i≺ j, j≺ k,
and k ≺ i. Constraint (4) constrains the variables xi j
to take values in the set {0,1}.

3 METHOD

We design the primal heuristic for the linear ordering
problem based on the concept of strongly connected
components in graph theory. A directed graph is said
to be strongly connected if every vertex in the graph
can be reached from every other vertex. The strongly
connected components of an arbitrary directed graph
form a partition into subgraphs that are themselves

ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems

152

Algorithm 1: Partitioning Problem for the Linear Ordering Problem.

Input : Weight matrix [C]n×n, and LP relaxation solution [P]n×n
Output: Subsets (S1,S2) of the set of vertices V in graph G = (V,A)

1 for each xi j == 1 in P do
2 add constraint (yi− y j ≥ 0) to LOP-Partition formulation;
3 end
4 Solve the LOP-Partition (with the added constraints);
5 Let S1 be the set of all vertices with yi == 1;
6 Let S2 be the set of all vertices with yi == 0;
7 Return (S1,S2);

strongly connected. If every strongly connected com-
ponent in the graph is contracted to a single vertex, the
resulting graph is a directed acyclic graph. The lin-
ear ordering problem itself is based on a complete di-
rected graph which is strongly connected. However, if
we had some way of determining edges at least some
of which participate in the optimal solution, we can
compute the strongly connected components over this
new graph. The resulting directed acyclic graph can
then be used to establish the precedence relation be-
tween the vertices that belong to the different strongly
connected components. The linear ordering problem,
as a result, can be decomposed into subproblems on
each of the strongly connected components.

To see how this could be useful, consider the
graph G = (V,A) for the linear ordering problem.
We form a new graph H by greedily selecting the
edges (i, j) between each pair of vertices i and j, such
that ci j > c ji. The strongly connected components
of graph H form an acyclic graph S = (Vs,As) where
Vs = {s1,s2, . . . ,sk} is the set of components and As is
the set of arcs between the components. We can then
define the precedence relation between the different
components as si ≺ s j if (si,s j) ∈ As. Consequently,
we can also define the precedence relation between
the vertices belonging to the different components as
u ≺ v if u ∈ si,v ∈ s j and si ≺ s j. Once these prece-
dence relations are established, we just need to find
the precedence relations between the vertices within
each component to solve the complete linear ordering
problem.

In practice, however, it is too much to expect that
the graph resulting from the greedy selection of edges
would contain more than one component. So we de-
vise an ILP problem to find the best partition to divide
the linear ordering problem into subproblems.

3.1 Partitioning Problem

For a linear ordering problem, the partitioning prob-
lem splits the set of vertices V into two subsets S1
and S2 such that ∑i∈S1, j∈S2(ci j− c ji) is maximized. It

is formulated as a 0/1 integer programming problem.
We define a decision variable yi for each vertex i ∈V
such that:

yi =

{
1, if vertex i belongs to S1

0, if vertex i belongs to S2

The Integer Linear Programming formulation for
the partitioning problem can then be given as:

Maximize ∑
(i, j)∈A

ci j(yi− y j) (5)

s.t.
yi ∈ {0,1} ∀ i ∈V (6)

We call this problem LOP-Partition. The objective
function (5) maximizes the difference between the to-
tal weight of the arcs from subset S1 to S2 and the total
weight of the arcs from S2 to S1. The only set of con-
straints for the problem, Constraint (6), states that the
decision variables take values from the set {0,1}.

We can see that the problem is trivial when we
have no constraints. However, when using branch-
and-bound to solve the LOP, we have the solution to
the LP relaxation at each node where some variables
xi j have been fixed to either 0 or 1. For all variables
xi j set to 1, we introduce additional constraints in the
above problem to ensure that we adhere to the partial
solution. The constraint can be given as follows:

yi− y j ≥ 0 (7)

3.2 Algorithm

The heuristic recursively partitions the set of vertices
in the graph G = (V,A) into two subsets. The par-
titioning is performed until the subsets can be effi-
ciently solved using an MIP solver. If the subsets
are sufficiently small, we use the MIP solver to solve
them optimally. The pseudocode for the heuristic is
given in Algorithm 2.

Primal Heuristic for the Linear Ordering Problem

153

Algorithm 2: Primal Heuristic to obtain Integer Feasible Solution.

Input : Weight matrix [C]n×n, and LP relaxation solution [P]n×n
Output: An ordering 〈v1,v2, . . . ,vn〉 of the vertices in graph G = (V,A)

1 if n≤ 40 then
2 return optimal ordering v∗ using a MIP solver;
3 end
4 Run Algorithm 1 (partitioning problem) to obtain subsets S1 and S2;
5 Find the weight matrix [CS1]|S1|×|S1| for subset S1;
6 Find the weight matrix [CS2]|S2|×|S2| for subset S2;
7 Find the LP solution matrix [PS1]|S1|×|S1| for subset S1;
8 Find the LP solution matrix [PS2]|S2|×|S2| for subset S2;
9 Run Algorithm 2 with [CS1] and [PS1] to get ordering v1 of S1;

10 Run Algorithm 2 with [CS2] and [PS2] to get ordering v2 of S2;
11 Obtain v by concatenating v1 and v2;
12 Return v;

3.3 Improvement Phase

The linear ordering 〈v1,v2, . . . ,vn〉 obtained via the
primal heuristic as described in Algorithm 2 serves as
a starting solution for improvement heuristics. We use
local search to look for insert moves that further im-
prove the objective function (1) (Laguna et al., 1999).
We perform the move that causes maximum improve-
ment until no improvement is possible using such a
move.

3.4 Node Selection

When using the branch-and-bound search in ILP, we
may have multiple nodes in the queue waiting to be
processed. For each node, we have the solution to the
LP relaxation and the branching variable at its parent
node, and the branching direction. This information
is used to provide the partial solution to the heuristic
and a node with the best heuristic solution is chosen
to be processed next.

4 EMPIRICAL ANALYSIS

The computational experiments were conducted on an
Intel Core i7-7700HQ with 2.80 GHz 64-bit proces-
sor, 8.0 GB of RAM and Ubuntu 16.04 64-bit as the
Operating System. The heuristic was implemented in
C++. The LP and MIP problems were solved using
CPLEX 12.8 on a single thread. The experiments on
the difficult instances were run under the time restric-
tion of 600 seconds however no such constraint was
placed on the easier instances.

4.1 Data Set

The data set for the computational experiments was
obtained from the Optsicom project (Martı́ et al.,
2009). We use the following data for our experiments.

4.1.1 Special Instances

These are problem instances that were used in publi-
cations. The EX instances were used in (Christof and
Reinelt, 2001). The ATP instances were created from
the results of ATP tennis tournaments in 1993/1994.
Nodes correspond to a selection of players and the
weight of an arc (i, j) is the number of victories of
player i against player j.

4.1.2 Instances RandomAI

These instances are generated from a uniform distri-
bution in the range [0,100]. These problems were
originally generated from a [0, 25000] uniform dis-
tribution (Laguna et al., 1999) and modified after-
wards, sampling from a significatively narrow range
([0,100]) to make them harder to solve. The size of
these instances are 100, 150, and 200. For the experi-
ments, we use the instances with size 100 as the larger
instances are too difficult to be solved using ILP.

4.2 Computational Results

We summarize the computational results in Table 1
and Table 2. Table 1 shows experiments on special
instances that can be solved in reasonable time us-
ing ILP, and Table 2 shows experiments on the much
harder RandomAI instances. In Table 1, we can see
that using the heuristic (H), and using the heuristic

ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems

154

Table 1: Computational Results for Special Instances.

CPLEX H H+NS

Instance Size NLPS CPU(s) NLPS CPU(s) NLPS CPU(s)

ATP66 66 113 56 57 41 62 44
ATP76 76 1046 1147 651 778 254 368
EX4 50 133 22 97 21 128 46
EX5 50 197 35 183 45 123 42
EX6 50 47 10 37 12 58 18

Table 2: Computational Results for RandomAI Instances.

Best Known (Martı́ et al., 2009) H H+NS

Instance Size Solution Bound Gap(%) Solution Gap(%) Solution Gap(%)

t1d100.01 100 106852 114468 7.128 106288 7.696 106344 7.639
t1d100.02 100 105947 114077 7.674 104905 8.743 104952 8.694
t1d100.03 100 109819 117843 7.306 109035 8.078 109184 7.931
t1d100.04 100 109252 117639 7.677 108417 8.506 108675 8.248
t1d100.05 100 108859 117538 7.973 108094 8.737 108447 8.383
t1d100.06 100 108201 117057 8.185 107786 8.601 107609 8.779
t1d100.07 100 108803 117118 7.642 108276 8.166 108405 8.037
t1d100.08 100 107480 115756 7.700 106746 8.440 107010 8.173
t1d100.09 100 108549 116527 7.350 107720 8.176 107776 8.120
t1d100.10 100 108771 117518 8.042 108222 8.590 108336 8.475

along with node selection (H+NS), both lead to a de-
cline in the number of LPs (NLPS) solved. However,
for some instances we can see an increase in the CPU
time (in seconds) which may be due to the additional
work at each node. Table 2 shows results for the much
harder instances for which we report the lower bounds
obtained. The heuristic can be used to find solutions
which are substantially close to the best known solu-
tions (Martı́ et al., 2009) thereby making it possible to
prune large parts of the tree quickly.

5 CONCLUSION

The Linear Ordering Problem is a classic combina-
torial optimization problem with applications to nu-
merous problems of practical importance. A stan-
dard method to solve such problems optimally is
using Integer Linear Programming and branch-and-
bound search. The computation time, however, grows
rapidly with the size of the problem instance. In this
paper, we propose a new primal heuristic that gener-
ates good feasible solutions from the partial LP so-
lution at each node of the branch-and-bound tree. We

also devise a new node selection strategy based on the
heuristic solution. Preliminary experimental results
show that the approach is promising. The solutions
obtained using the heuristic are substantially close to
the optimal and provide a good lower bound for the
branch-and-bound algorithm. The number of nodes
that need to be processed also show a decline when
the heuristic is used.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their constructive comments and suggestions. The
first and last author would like to acknowledge sup-
port from the Natural Sciences and Engineering Re-
search Council (NSERC) of Canada.

REFERENCES

Ahuja, R. K., Ergun, O., Orlin, J. B., and Punnen, A. P.
(2002). A survey of very large-scale neighborhood

Primal Heuristic for the Linear Ordering Problem

155

search techniques. Discrete Applied Mathematics,
123(1-3):75 – 102.

Christof, T. and Reinelt, G. (2001). Algorithmic aspects
of using small instance relaxations in parallel branch-
and-cut. Algorithmica, 30(4):597–629.

Dumitrescu, I. and Stützle, T. (2003). Combinations of lo-
cal search and exact algorithms. In Applications of
Evolutionary Computation, pages 211–223. Springer.

Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A guide to the Theory of NP-
Completeness. W. H. Freeman and Company.

Iranmanesh, E. and Krishnamurti, R. (2016). Mixed integer
program heuristic for linear ordering problem. In 5th
International Conference on Operations Research and
Enterprise Systems, pages 152–156.

Laguna, M., Martı́, R., and Campos, V. (1999). Intensifica-
tion and diversification with elite tabu search solutions
for the linear ordering problem. Computers & Opera-
tions Research, 26(12):1217 – 1230.

Lin, S. (1965). Computer solutions of the traveling sales-
man problem. The Bell System Technical Journal,
44(10):2245–2269.

Martı́, R. and Reinelt, G. (2011). The Linear Ordering
Problem: Exact and Heuristic Methods in Combina-
torial Optimization. Applied Mathematical Sciences
Volume 175. Springer.

Martı́, R., Reinelt, G., and Duarte, A. (2009). Optsicom
project. http: www.optsicom.es/lolib.

Mitchell, J. E. (1997). Solving linear ordering problems
with a combined interior point simplex cutting plane
algorithm.

Schiavinotto, T. and Stützle, T. (2004). The linear ordering
problem: Instances, search space analysis and algo-
rithms. Journal of Mathematical Modelling and Algo-
rithms, 3(4):367–402.

ICORES 2019 - 8th International Conference on Operations Research and Enterprise Systems

156

