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Abstract: This case study reports on two first-semester programming courses with more than 190 students. Both courses
made use of automated assessments. We observed how students trick these systems by analysing the version
history of suspect submissions. By analysing more than 3300 submissions, we revealed four astonishingly
simple tricks (overfitting, evasion) and cheat-patterns (redirection, and injection) that students used to trick
automated programming assignment assessment systems (APAAS). Although not the main focus of this study,
it discusses and proposes corresponding counter-measures where appropriate. Nevertheless, the primary intent
of this paper is to raise problem awareness and to identify and systematise observable problem patterns in a
more formal approach. The identified immaturity of existing APAAS solutions might have implications for
courses that rely deeply on automation like MOOCs. Therefore, we conclude to look at APAAS solutions
much more from a security point of view (code injection). Moreover, we identify the need to evolve existing
unit testing frameworks into more evaluation-oriented teaching solutions that provide better trick and cheat
detection capabilities and differentiated grading support.

1 INTRODUCTION

We are at a transition point between the industrialisa-
tion age and the digitisation age. Computer science
related skills are a vital asset in this context.

One of these basic skills is practical programming.
Consequently, the course sizes of university and col-
lege programming courses are steadily increasing.
Even massive open online courses (Pomerol et al.,
2015) – or MOOC – are used more and more sys-
tematically to convey necessary programming capa-
bilities to students of different disciplines (Staubitz
et al., 2015). The coursework consists of program-
ming assignments that need to be assessed. Since the
submitted assignments are executable programs with
a formal structure, they are highly suited to be as-
sessed automatically. In consequence, plenty of auto-
mated programming assignment assessment systems
(APAAS) evolved and showed that “automatic ma-
chine assessment better prepares students for situa-
tions where they have to write code by themselves
by eliminating reliance on external sources of help
(Maguire et al., 2017).” We refer to (Romli et al.,
2017), (Caiza and Alamo Ramiro, 2013), (Ihantola
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et al., 2010), (Douce et al., 2005), and (Ala-Mutka,
2005) for an overview of such tools.

In plain terms, APAAS solutions are systems that
execute injected code (student submissions). The
problem is that code injection is known as a severe
threat from a security point of view. Code injection
is the exploitation of a runtime environment that pro-
cesses data from potentially untrusted sources (Su and
Wassermann, 2006). Injection is used by an attacker
to introduce code into a vulnerable runtime environ-
ment to change the course of intended execution. We
refer to (Halfond and Orso, 2005), (Ray and Ligatti,
2012), and (Gupta and Gupta, 2017) for an overview
of such kind of attacks.

Of course, such code injection vulnerabilities are
considered by APAAS solutions. Let us take the
Virtual Programming Lab (VPL) (Rodrı́guez et al.,
2011b) as an example. VPL makes use of a jail system
that is built around a Linux daemon to execute sub-
missions in a controlled environment. Student sub-
missions are executed in a sandbox that limits the
available resources and protects the host. This sand-
box strategy is common for almost all APAAS solu-
tions.

However, it is astonishing that APAAS solutions
like VPL overlook the cheating cleverness of students.
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On the one hand, APAAS solutions protect the host
system via sandbox mechanisms, and APAAS sys-
tems put much effort in sophisticated plagiarism de-
tection and authorship control of student submissions
(Rodrı́guez et al., 2011a), (del Pino et al., ).

However, the grading component can be cheated
by much more straightforward means in various
ways which makes these solutions highly suspect
for (semi-)automated programming examinations that
contribute to certificate a certain level of program-
ming expertise like it must be done in MOOCs. Al-
though this paper provides some solutions to curtail
the problem, the primary intent of this paper is a more
descriptional and analytical one. Many evaluation
solutions in this domain space are often just “hand
made”. This paper intends to raise problem aware-
ness and to identify and systematise observable prob-
lem patterns in a more formal approach. According to
a literature review and the best of the author’s knowl-
edge, no similar studies and comparative evaluations
exist. Nevertheless, cheat and trick patterns are (un-
consciously) known by many programming educators
but have been systematised rarely – especially not in
the context of automatic evaluations.

Let us take Moodle as an example. Moodle is
an Open Source E-Learning system adopted by many
universities and colleges. If an institution runs Moo-
dle, a reasonable choice for an APAAS solution is the
Virtual Programming Lab (VPL) because of its con-
venient Moodle integration. However, one thing we
learned throughout this study is, how astonishing sim-
ple it is to trick VPL. Let us take Listing 1 as a very
illustrating example.

Listing 1: Point injection attack.

System.out.println("Grade :=>> 100");
System.exit(0);

If placed correctly in a student submission, these
both lines will grade every VPL submission with full
points. This “attack” will be classified in this paper
as an “injection attack” and can be easily adapted to
every other programming language and APAAS so-
lution. Three more patterns are explained that have
been observed throughout two programming courses.

Therefore, the remainder of this paper is outlined
as follows. We will present our methodology to iden-
tify student cheat-patterns in Section 2. Section 3
will present observed cheat-patterns and derives sev-
eral insights on what automated evaluation tools could
consider preventing this kind of cheating. Section 4
will address threats of internal and external validity of
this study and provide some guidelines on the gener-
alizability and limitations of this paper. We conclude

our findings in Section 5 and present some fruitful re-
search opportunities.

2 METHODOLOGY

We evaluated two first semester programming Java
courses in the winter semester 2018/19:

• A regular computer science study programme
(CS)

• An information technology and design focused
study programme (ITD)

Both courses were used to search for student sub-
missions that intentionally trick the grading compo-
nent. However, plagiarism is excluded in this study
because a lot of other studies have already anal-
ysed plagiarism detection (Liu et al., 2006), (Burrows
et al., 2007), (Rodrı́guez et al., 2011a), (del Pino et al.,
). Table 1 provides a summarized overview of the
course design and Figure 1, and Figure 2 present the
corresponding student activities, and results.

Table 1: Course overview.

CS ITD

Students 113 79
Assignments (total) 29 20
Number of bunches 11 6
Assignments per bunch (avg) 3 3
Time for a bunch (weeks) 1 2

Groups 7 6
Students per group (avg) 18 12
Student/advisor ratio (avg) 6 6

All assignments were automatically evaluated by
the VPL Moodle plugin (version 3.3.3). We followed
the general recommendations described by (Thiébaut,
2015). Additionally, we developed a VPL Java tem-
plate to minimise repetitive programming of the eval-
uation logic. The template was used to check the
conformance with assignment-intended programming
styles like recursive or functional (lambda-based) pro-
gramming, avoidance of global variables and so on.
To minimise Hawthorne and Experimenter effects we
only applied minor changes to this template through-
out the study (see Section 4).

The assignments were organised as weekly
bunches but all workable from the very beginning. To
foster continuous working weekly deadlines were set
for the bunches. In case of ITD the “base speed” was
a bit slower (two weeks per bunch). Except for this
“base speed,” all students could work on their sub-
missions in their own pace in the classroom, at home,
on their own, in groups or any other form they found
personally appropriate.
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Figure 1: Students interactions with VPL. Circle size is rel-
ative to the observed maximum of interactions. Times of
weekly programming laboratories are marked.

All students joined one time a week a program-
ming laboratory session of 90 minutes with the op-
portunity to ask advisors and student tutors for help
and support. To solve more than half of all assign-
ments qualified to take part in a special VPL-test to
get a 10%-bonus for the written exam. However, this
study does not cover the “bonus-”test nor the written
exam.

2.1 Illustrating Assignment

Some basic Java programming knowledge must be as-
sumed throughout this paper. The continuous exam-
ple assignment for this paper shall be the following
task1. A method countChar() has to be programmed
that counts the occurrence of a specific character c in
a given String s (not case-sensitive).

The following example calls are provided for a
better understanding of the intended functionality.

• countChar('a', "Abc")→ 1
• countChar('A', "abc")→ 1
• countChar('x', "ABC")→ 0
• countChar('!', "!!!")→ 3

A reference solution for our “count chars in a

1A catalogue of all assignments (German) used for this
study can be found here: https://bit.ly/2WSbtEm
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Figure 2: Observed submission and workload trends (last
CS submission in calendar week 03 was not mandatory).

string” problem might be the following implementa-
tion of countChar().

Listing 2: Reference solution (continuous example).

int countChar(char c, String s) {
s = s.toLowerCase();
c = Character.toLowerCase(c);
int i = 0;
for (char x : s.toCharArray()) {

if (x == c) i++;
}
return i;

}

Figure 3 shows an exemplifying VPL screenshot
from a students perspective.

2.2 Searching for Cheats

Our problem awareness emerged with the (acciden-
tal) observation of Listing 3 in an intermediate student
submission.

Listing 3: (Accidental) observed student inspection code.

System.out.println(
System.getProperties()

);

In Java, the getProperties() method reveals the
current set of underlying system properties. It con-
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Figure 3: VPL screenshot (on the right evaluation report presented to students).

tains information like the Java installation directory,
the Java version, the Java classpath, the operating sys-
tem, and the user account. This line of code con-
tributed absolutely nothing to solve the respective as-
signment. It did not even occur in the final submis-
sion. It was just an intermediate outcome to inspect
the underlying configuration of the electronic evalua-
tion component. Although the revealed data is harm-
less for the integrity of the jails server, this one line
of code shows that students understand how to make
use of such “code injection attacks” to figure out how
the electronic evaluation component could be com-
promised.

To minimise Hawthorne and Experimenter effects
(Campbell and Stanley, 2003) neither the students
nor the advisers in the practical programming courses
were aware that student submissions were analysed
to deduce cheating patterns. Even if cheating was de-
tected this had no consequences for the students. It
was not even communicated to the student or the ad-
visers.

Furthermore, students were not aware that the ver-
sion history of their submissions and therefore even
intermediate cheating experiments (that did not make
it to the final submission) were logged.

However, not every submission was inspected for
understandable effort reasons. Therefore, the follow-
ing submission samples were investigated to search
systematically for cheat-patterns in every calendar
week.

• S1: TOP 10 of submissions with great many trig-
gered evaluations (parameter optimization?)

• S2: TOP 10 of submission with a great many ver-
sions (cheating experiments?)

• S3: TOP 10 of submissions with astonishingly

less average points across all triggered evaluations
but full points in the final submission (what causes
such “boosts”?)

• S4: Submissions with unusual (above 95% per-
centile) many condition related terms like if,
return, switch, case, &&, and || (parameter op-
timization?)

• S5: Submissions with unusual terms like
System.exit, throw, System.getProperties,
:=>> that would stop program execution or have a
special meaning in VPL or Java but are unlikely to
contribute to a problem solution (APAAS attack?)

• S6: Ten further random submissions to cover un-
intended observation aspects.
Table 2 summarizes the results quantitatively.

Within these six samples, cheat and trick patterns
were identified mainly by a manual but a script-
supported observation. VPL submissions were down-
loaded from Moodle and analysed weekly. We de-
veloped a Jupyter-based (Kluyver et al., 2016) quan-
titative analysis and submission data model for this
dataset. Each student submission was represented
as an object containing its version and grading his-
tory that references its student submitter and its corre-
sponding study programme. The analytical script and
data model made use of the well known Python li-
braries statistics, NumPy (Oliphant, 2006), matplotlib
(Hunter, 2007), and the Javaparser library (Smith
et al., 2018). It was used to identify the number of
submissions and evaluations, points per submission
versions, timestamps per submission version, occur-
rences of unusual terms, and so on. Based on this
quantitative data, the mentioned samples (S1 - S5)
were selected automatically and randomly in case of
S6. The script was additionally used to generate Fig-
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Table 2: Detected cheats.
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41 3 4 629 72 4 4
42 3 - 298 53 15 2
43 3 3 486 65 11 3
44 - - - - - - - -
45 3 3 446 55 5
46 3 - 231 54 3 3 2
47 2 3 315 55 6
48 1 - 66 44 8 2
49 3 3 363 66 6 1
50 3 - 192 47 5 7

XMas - - - - - - - -
02 3 4 280 57 2 3 1
03 2 - 38 38 1 11

∑ 31 20 3344 570 66 6 31 2

ures 1, 2, and 4. Additionally, the source codes of
the sample submissions were exported weekly as an
archived PDF document. However, the scanning for
cheat-patterns was done manually within these doc-
uments. Sadly, this dataset cannot be made publicly
available because it contains non-anonymous student-
related data.

It turned out, that primarily the sample S4 was a
very effective way to detect a special kind of cheat
that we called overfitting (see Section 3.1). Other
kinds of cheats seem to occur equally distributed
across all samples. However, the reader should be
aware that the search for cheat-patterns was quali-
tatively and not quantitatively. So, the study may
provide some hints but should not be taken to draw
any conclusions on quantitative cheat-pattern distri-
butions (see Section 4).

3 OBSERVED CHEAT-PATTERNS

The observed student cheat and trick patterns will be
explained by the small and continuing example al-
ready introduced in Section 2.1.

Most students strived to find a solution that fits
the scope and intent of the assignment (see Figure 4).
So, their solutions showed similarities to this refer-
ence solution - although different approaches exist to
solve this problem (see Figure 3 for a non-loop based
approach). However, a minority of students (approx-
imately 15%) make use of the fact that a “dumb au-
tomata” grades. Accordingly, we observed the fol-

lowing cheating patterns that differ significantly from
the intended reference solution above (see Figure 4):

• Overfitting solutions (63%)
• Redirection to reference solutions (6%)
• Problem evasion (30%)
• Injection (1%)

Especially overfitting and evasion tricks are “poor-
mans’ weapons” often used by novice programmers
as a last resort to solve a problem. Much more alarm-
ing redirection and injection cheats occurred only in
rare cases (less than 10%). However, how do these
tricks and cheats look like? How severe are they?
Moreover, what can be done against it? We will in-
vestigate these questions in the following paragraphs.

3.1 Overfitting Tricks

Overfitted solutions strive to get a maximum of points
for grading but do not strive to solve the given prob-
lem in a general way. A notable example of an over-
fitted solution would be Listing 4.

Listing 4: Overfitting solution.

int countChar(char c, String s) {
if (c == ’a’ && s.equals("Abc"))

return 1;
if (c == ’A’ && s.equals("abc"))

return 1;
if (c == ’x’ && s.equals("ABC"))

return 0;
if (c == ’!’ && s.equals("!!!"))

return 3;
// [...]
if (c == ’x’ && s.equals("X"))

return 1;
return 42;

}

This solution maps merely the example input pa-
rameters to the expected output values. The solu-
tion is completely useless outside the scope of the test
cases.

What Seems to be Ineffective to Prevent Overfit-
ting? The problem could be solved, by merely hid-
ing the calling parameters and expected results in the
evaluation report. However, this would result in in-
transparent grading situations from a students per-
spective. A student should always know what the rea-
son is to refuse points.

Another option is to detect and penalise such kind
of overfittings. A straightforward – but not perfect
– solution would be to restrict the amount of al-
lowed return statements. That makes overfitting
more complicated for students but still possible as
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Figure 4: Observed cheat-pattern frequency (sums may not add up exactly to 100% due to rounding).

Listing 5 shows. This submission reduced the amount
of return statements simply by replacing if state-
ments with more complex logic expressions. How-
ever, the return avoidance does not change the over-
fitting at all.

Listing 5: Return avoidance.

int countChar(char c, String s) {
if (c==’a’ && s.equals("Abc")) ||

(c==’A’ && s.equals("abc")) ||
(c==’x’ && s.equals("X"))

return 1;
// [...]
if (c==’x’ && s.equals("ABC"))

return 0;
}

What Can be Done to Prevent Overfitting? Ran-
domised tests make such overfitted submissions inef-
fective. Therefore, our general recommendation is to
give a substantial fraction of points for randomised
test cases. However, to provide some control over
randomised tests, these tests must be pattern based to
generate random test cases targeting expected prob-
lems (e.g., off-by-one errors, boundary cases) in stu-
dent submissions. We refer to (Romli et al., 2017) for
further details. E.g. for string-based data we gained
promising results to generate random strings merely
by applying regular expressions (Thompson, 1968)
inversely. However, the reader should be aware that
current unit testing frameworks like JUnit do not pro-
vide much support for randomised test cases.

3.2 Redirection Cheats

Another shortcoming of APAAS solutions can be
compiler error messages that reveal details of the eval-
uation logic. In the case of VPL, an evaluation is pro-
cessed according to the following steps.

1. The submission is compiled and linked to the
evaluation logic.

2. The compiled result is executed to run the checks.
3. The check results are printed in an APAAS spe-

cific notation on the console (standard-out).
4. This output is interpreted by the APAAS solution

to run the automatic grading and present a kind of
feedback to the submitter.
This process is straightforward and provides the

benefit that evaluation components can handle almost
all programming languages. If one of the steps fails,
an error message is generated and returned to the sub-
mitter as feedback. This failing involves typically to
return the compiler error message. That can be prob-
lematic because these compiler error messages may
provide unexpected cheating opportunities.

Let us remember. The assignment was to program
a method countChar(). Let us further assume that a
student makes a small spelling error like to name the
method countChars() instead of countChar() – so
just a trailing s is added. That is a general program-
ming error that happens fast (see Listing 6).

Listing 6: A slightly misspelled submission.

int countCharS(char c, String s) {
int i = 0;
for (char x : s.toCharArray()) {

if (x == c) i++;
}
return i;

}

If this submission would be submitted and eval-
uated by an APAAS solution, this submission would
likely not pass the first compile step due to a simple
naming error. What is returned is a list of compiler
error messages like this one here that shows the prob-
lem:
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Checks.java:40: error: cannot find symbol
Submission.>>countChar<<(’a’, "Abc") ==
Solution.countChar(’a’, "Abc")

The compiler message provides useful hints to
correct a misspelt method name, but it also reveals
that a method (Solution.countChar()) exists to
check the student submission. The reference solu-
tion can be assumed to be correct. So, compiler error
messages can reveal a reference solution method that
could be called directly. A student can correct the
naming and redirects the submitted method directly
to the method that is used for grading. Doing that,
the student would let the evaluation component eval-
uate itself which will provide very likely full points.
A notable example would be Listing 7.

Listing 7: Redirection submission.

int countChar(char c, String s) {
return Solution.countChar(c, s);

}

This is categorized as a redirection cheat. Stu-
dents can gain insights systematically into the evalua-
tion logic by submitting non-compilable submissions
intentionally.

What Seems to be Ineffective to Prevent Redirec-
tion? APAAS solutions could avoid returning com-
piler error messages completely. However, this would
limit the necessary debug pieces of information for
students.

One could return blanked compiler error messages
that do not reveal sensitive information. However, to
blank out relevant parts of compiler error messages is
language specific and can be very tricky to be solved
in general. What is more, with every update or new
release of a compiler, corresponding error messages
can change. All this would have been to be checked
with each compiler update. That seems not a prag-
matic approach.

One could avoid to generate the expected results
by a reference solution and provide them as hard-
coded values in the evaluation logic. However, this
would limit opportunities to generate test cases in
a pattern-based approach, and we already identified
randomised test cases as appropriate countermeasure
to handle overfitting cheats. So, this is not the best
solution.

What are the Problems to Prevent Redirection?
The submission should be executed in a context that
by design cannot access the grading logic. In a perfect
world, the student logic should be code that deseri-
alises input parameters from stdin, passes them to the

submitted function, and serialises the output to stdout.
The grading logic should serialise parameters, pipe
them into the wrapped student code, deserialise the
stdout, and compare it with the reference function’s
output. However, this approach would deny making
use of common unit testing frameworks for evalua-
tion although it would effectively separate the sub-
mission logic and the evaluation logic in two different
processes (which would make most of the attack vec-
tors in this setting ineffective). However, to the best
of the author’s knowledge no unit testing frameworks
exist that separate the test logic from the to be tested
logic into different processes.

In case of a class-based object-oriented language,
one can overcome this problem using abstract classes.
It is to demand that the submission must be derived
from a given abstract class with abstract methods to be
overwritten by the student’s methods. The evaluation
logic calls the abstract class and the evaluation code
can be thus compiled in advance. Compilation errors
can now only refer to the submitted code, not to the
evaluation code. However, our experiences showed
that this approach tends to explode in more complex
object-oriented contexts with plenty of classes and de-
pendencies.

Furthermore, we have to consider the pedagogical
aspect here. For the abstract class-based solution, we
need the concept of an abstract class from day one of
the course. According to our experiences, especially
novice (freshman) programmers have plenty of prob-
lems understanding the concept of an abstract class at
this level.

Another approach is to scan the submission for
questionable calls like Solution.x() calls. If such
calls are found, the submission is downgraded to zero
points. That is our approach after we have identi-
fied this “attack vector.” Additionally, we deny to
make use of getClass() calls and the import of the
reflection package. Both would enable to formu-
late arbitrary indirections. However, this makes it
necessary to apply parsers and makes the assignment
specific evaluation logic a bit more complicated and
time-intensive to program. We show at the end of the
following Section 3.3 how to minimise these efforts.

3.3 Problem Evasion Tricks

Another trick pattern is to evade a given problem
statement. According to our experiences, this pat-
tern occurs mainly in the context of more sophisti-
cated and formal programming techniques like recur-
sive programming or functional programming styles
with lambda functions.

So, let us now assume that the assignment is still to
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implement a countChar() method, but this method
should be implemented recursively. A reference so-
lution might look like in Listing 8 (we do not consider
performance aspects due to tail recursion):

Listing 8: Recursive reference solution.

int countChar(char c, String s) {
s = s.toLowerCase();
c = Character.toLowerCase(c);
if (s.isEmpty()) return 0;
char head = s.charAt(0);
String rest = s.substring(1);
int n = head == c ? 1 : 0;
return n + countChar(c, rest);

}

However, sometimes student submissions only
pretend to be recursive without being it. Listing 9 is a
notable example.

Listing 9: Problem evasing solution.

int countChar(char c, String s) {
if (s.isEmpty()) return 0;
return countChar(c, s, 0);

}

int countChar(char c, String s,int i){
for (char x : s.toCharArray()) {

if (x == c) i++;
}
return i;

}

Although countChar() is calling (an overloaded
version of) countChar() which looks recursively, the
overloaded version of countChar() makes use of a
for-loop and is therefore implemented in a fully im-
perative style.

The same pattern can be observed if an assign-
ment requests functional programming with lambda
functions. A lambda-based solution could look like
in Listing 10.

Listing 10: Lambda reference solution.

(c, s) -> Stream.of(s.toCharArray())
.filter(x -> x == c)
.count();

However, students take refuge in familiar pro-
gramming concepts like loops. Very often, submis-
sions like in Listing 11 are observable:

Listing 11: Lambda problem evasion.

(c, s) -> {
int i = 0;
for (char x : s.toCharArray()) {

if (x == c) i++;
}
return i;

};

The (c, s) -> { [...] }; seems functional
on the first-hand. But, if we look at the implemen-
tation, it is only an imperative for loop embedded in
a functional looking context.

The problem here is, that evaluation components
just looking on input-output parameter correctness
will not detect these kinds of programming style eva-
sions. The just recursive- or functional-looking solu-
tions will generate the correct results. Nevertheless,
the intent of such kind of assignments is not just to
foster correct solutions but although to train specific
styles of programming.

What Can be Done to Avoid Problem Evasion?
Similar to redirection cheats, submissions can be
scanned for unintended usage of language concepts
like for and while loops. In these cases, the submis-
sion gets no points or is downgraded. However, this
makes it necessary to apply parsers and makes the as-
signment specific evaluation logic a bit more compli-
cated and time-intensive to program. To simplify this
work, we are currently working on a selector model
that selects nodes from an abstract syntax tree (AST)
of a compilation unit to detect and annotate such kind
of violations in a pragmatic way. The approach works
similarly like CSS selectors selecting parts of a DOM-
tree in a web context. Listing 12 is an illustrating ex-
ample. It effectively detects and annotates every loop
outside the main()-method.

Listing 12: Selector based inspection.

inspect("Main.java", ast ->
ast.select(METHOD , "[name!=main]")

.select(FOR, FOREACH , WHILE)

.annotate("no loop")

.exists()
);

3.4 Point Injection Cheats

All previous cheat-patterns focused the compile, or
the execution step, and try to formulate a clever sub-
mission that tricks the evaluation component and its
checks. Instead of this, injection cheats target inten-
tionally the grading component. Injection cheats re-
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quire in-depth knowledge about what specific APAAS
solution (e.g., VPL) is used, and knowledge about the
internals and details how the APAAS solutions gener-
ate intermediate outcomes to calculate a final grade.

We explain this “attack” by the example of VPL.
However, the attack can be easily adapted to other
APAAS tools. VPL relies on an evaluation script that
triggers the evaluation logic. The evaluation logic has
to write results directly on the console (standard-out).
The grading component parses and searches for lines
that start with specific prefixes like

• Grade :=>> to give points
• Comment :=>> for hints and remarks that should

be presented to the submitter as feedback.

VPL assumes that students are not aware of this
knowledge. It is furthermore (somehow inherently)
assumed that student submissions do not write to the
console (just the evaluation logic should do that) – but
it is possible for submissions to place arbitrary output
on the console and is not prohibited by the Jails server.
So, these assumptions are a fragile defence. A quick
internet search with the search terms "grade VPL"
will turn up documentation of VPL explaining how
the internals of the grading component are working
under the hood. So, submissions like Listing 13 are
possible and executable.

Listing 13: Injection submission.

int countChar(char c, String s) {
System.out.print("Grade :=>> 100");
System.exit(0);
return 0; // for compiler silence

}

The intent of such a submission is merely to inject
a line like this

Grade :=>> 100

into the output stream to let the grading component
evaluate the submission with full points.

What Can be Done to Avoid Injection Attacks? In
a perfect world, the student code should not have ac-
cess to the streams that are sent to the evaluation com-
ponent. However, in the case of VPL, exactly this case
cannot be prevented.

Nevertheless, there are several options to handle
this problem. In our case, we developed a basic eval-
uation logic that relies on a workflow assuring that
points are always written after a method has been
tested. Additionally, we prohibited to make use of the
System.exit() call to assure that submissions could
never stop the execution on their own. So, it might
be that situations occur on the output stream with in-
jected grading statements.

Grade :=>> 100 (injected)
Grade :=>> 0 (regular)

However, the regular statements are always fol-
lowing the injected ones due to the design of the ex-
ception aware workflow. Because VPL only evaluates
the last Grade :=>> line, the injection attack has no
effect. However, this is a VPL specific solution. For
other systems the following options could be consid-
ered (if stdout access of the student submission cannot
be prevented):

• The APAAS could inject a filter for System.out
to avoid or detect tainted outputs.

• System.out statements could be handled like
unintended language concepts. That would
be very similar like handling problem eva-
sion cheats. However, this could deny
System.out.println() statements even for de-
bugging which could interfere with a pragmatic
workflow for students. Therefore, these checks
should be somehow limited making it necessary to
apply parsers, running complex call-chain analy-
sis. All this makes the assignment specific evalua-
tion logic much more complex and time-intensive
to program.

• The APAAS could redirect the console streams
(standard out and standard error) to new streams
for the submission evaluation. That would ef-
fecitively separate the submission logic streams
from the evaluation logic streams and no stream
injections could occur.

In all cases, APAAS solutions must prevent that
student submissions can stop their execution via
System.exit() or similar calls to bypass the control
flow of the evaluation logic. In our case, we solved
this by using a Java SecurityManager – it is likely
to be more complicated for other languages not pro-
viding a virtual machine built-in security concept. For
these systems parser-based solutions (see Section 3.3)
would be a viable option.

4 THREATS OF VALIDITY

We consider and discuss the following threats of in-
ternal and external validity (Campbell and Stanley,
2003) that apply to our study and that might limit its
conclusions.

4.1 Internal Validity

Internal validity refers to whether an experimental
condition makes a difference to the outcome or not.
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Selection Bias: We should consider that the target
audience of both analysed study programmes differs
regarding previous knowledge on programming. A
noteworthy fraction of CS students gained basic pro-
gramming experience before they start their computer
science studies. In case of the ITD programme, a
noteworthy fraction of students handle programming
courses as a “necessary evil.” Their intrinsic motiva-
tion focuses mainly on design-related aspects. Ac-
cordingly, only a tiny fraction has some pre-study
programming experience. Because we only searched
qualitatively and not quantitatively for cheat-patterns,
this is no problem. However, it is likely that in the
CS group more cheating can be found than in the ITD
group mainly due to more mature programming skills.
So be aware, the study design is not appropriate to
draw any conclusions on which groups prefer or can
apply what kind of cheat-patterns.

Attrition: This threat is due to the different kinds of
participants drop out of the study groups. Each pro-
gramming course has a drop-off rate. The effect can
be observed in both groups by a decrease of submis-
sions over time (see Figure 2). However, this study
searched only qualitatively for cheat-patterns. For this
study, it is of minor interest whether observed cheat-
patterns occur in a phase with a high, medium, or low
drop-off rate. However, in phases with a maximum of
submissions, some cheats could have been overseen.
So, the study does not proclaim to have identified all
kinds of cheat-patterns.

Maturation: A development of participants oc-
curred in both groups (e.g. we see a decrease of the
“poor-man cheat” overfitting in Table 2). All students
developed a better understanding of the underlying
grading component and improved their programming
skills during their course of actions. Therefore, it is
likely that more sophisticated forms of cheating (like
redirection and injection) occurred with later submis-
sions. That is what Table 2 might indicate. However,
we searched only qualitatively for cheat-patterns. For
this study, it was of minor interest whether observed
cheat-patterns occur in the first, second, or third phase
of a programming course. The study design is not ap-
propriate to draw any conclusions on aspects of what
kind of cheat-pattern occur at what level of program-
ming expertise.

4.2 External Validity

External validity refers to the generalisability of the
study.

Contextual Factors: This threat occurs due to spe-
cific conditions under which research is conducted
that might limit its generalisability. In this case, we
were bound to a Moodle-based APAAS solution. The
study would not have been possible outside this tech-
nical scope. We decided to work with VPL because
it is the only mature-enough open source solution for
Moodle. Therefore, the study should not be taken to
conclude on all existing APAAS systems. However, it
seems to be worth to check existing APAAS solutions
whether they are aware of the four identified cheat-
patterns (or attack vectors from a system security per-
spective).

Hawthorne Effects: This threat occurs due to par-
ticipants’ reactions to being studied. It alters their
behaviour and therefore the study results. There-
fore, students were unaware that their submissions
were analysed to identify cheat-patterns. However,
if unaware cheat-patterns were identified subsequent
checks may have been added to the grading compo-
nent. So, it is likely that repetitive cheating hardly oc-
curred. Because of the qualitative nature of the study,
we do not see a problem here. However, because of
this internal feedback loop, the study should not be
taken to draw any conclusions on the quantitative as-
pects of cheating.

5 CONCLUSION

We have to be aware that (even first-year) students are
clever enough to apply intentionally basic cheat injec-
tion “attacks” into APAAS solutions. We identified
highly overfitted solutions, redirection to reference
solutions, problem evasion and even APAAS spe-
cific grading statement injections as cheat-patterns.
Likely, this list is not complete.

For VPL and Java programming courses a
template-based solution was used that has been inten-
tionally developed to handle such kind of cheats. We
evaluated this approach in two programming courses
with more than 3300 submissions of more than 190
first-year students. Although this template-based ap-
proach is pragmatic and working, several further
needs can be identified:

• Better overfitting prevention mechanisms al-
ready mentioned by (Romli et al., 2017).

• Better mechanisms to detect the undesired usage
of programming language concepts like loops,
global variables, specific datatypes, return types,
and more.

• Better mechanisms to detect, handle, and prevent
possible tainted outputs of submissions that could
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potentially be used for APAAS specific grading
injections.

To handle these needs it seems necessary

1. to randomise test cases,

2. to provide additional practical code inspection
techniques based on parsers,

3. and to isolate the submission and the evaluation
logic consequently in separate processes (at least
the console output should be separated).

As far as the author oversees the APAAS land-
scape, exactly these features are only incompletely
provided. APAAS solutions are a valuable asset to
support practical programming courses to minimise
routine work for advisers and to provide immediate
feedback for students. However, as was shown, these
systems can be cheated quite easily. If we would use
them – for instance in highly hyped MOOC formats –
for automatic certification of programming expertise,
the question arises whether we would certificate the
expertise to program or to cheat and what would
this question mean for the reputation of these courses
(Alraimi et al., 2015)?

In consequence, we should look at APAAS so-
lutions much more from a security point of view –
in particular from a code injection point of view.
We identified the need to evolve unit testing frame-
works into more evaluation-oriented teaching solu-
tions. Based on the insights of this study we are
currently working on a Java-based unit testing frame-
work intentionally focusing educational contexts. Its
working state can be inspected on GitHub (https:
//github.com/nkratzke/JEdUnit).
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