
Smart-card Deployment of an Electronic Voting Protocol

Hervé Chabanne1,2, Emmanuelle Dottax1 and Franck Rondepierre1

1Idemia, France
2Télécom ParisTech, France

Keywords: e-Voting, Smart-cards, Biometrics, Belenios.

Abstract: We present a solution to securely deploy e-voting protocols on the field, thanks to smart-cards. Voters creden-
tials are securely stored on the cards, and the access is restricted by Match-on-Card biometrics. Interestingly,
the biometrics verification is made against a list of eligible voters, which allows to restrict the number of cards
to one per voting booth. In contrast with previous e-voting solutions requiring a secure element per voter,
this constitutes an affordable solution. As an example, we describe how the voting scheme Belenios can be
implemented. We show that the resulting scheme gains receipt-freeness, and we give an implementation report
that shows the practicability of our solution.

1 INTRODUCTION

Different electronic voting (e-voting) systems have
been proposed together with their relative security
properties. Ballot privacy (secrecy of the vote) and
verifiability (capacity of checking that the election
produces the right result) are required. We here de-
scribe an implementation of such an e-voting system
based on smart-cards – named hereafter voting cards.

Our proposal takes advantage of the trust we can
put in voting cards. Indeed, the security of smart-
cards is today assessed by well-established evalua-
tion processes (as e.g. (Common Criteria, 2018)), and
they have already been identified as security enablers
in implementing e-voting schemes. However, all pro-
posals made until now assume one-card per voter, and
hence are facing cost and deployment difficulties for
large scale elections.

In our solution, voting cards are used as crypto-
graphic resources, but only one per voting booth is
required. And for a given voting station, each of its
voting booth will receive the same voting card. As-
suming the polling station takes N voters, any of this
N voters will be able to use these voting cards, but no
one else. To enforce this policy, the voting cards will
perform a biometrics Match-on-Card (MoC) against
the list of eligible voters. The idea of MoC is that
reference biometrics are securely stored on the card,
and that the comparison with the live biometrics (the
match) is performed inside the card. If the compar-
ison is made against one reference (i.e. authentica-
tion), it is called 1:1-MoC, and if N references are
compared (i.e. identification), it is called 1:N-MoC.

There are today smart-cards with 1:N-MoC (NIST,
2011) deployed at national level but the idea of per-
forming 1:N-MoC is, to the best of our knowledge,
new for voting systems (see Sect. 2.2). It allows our
solution to enjoy the security benefits of smart-cards
at a limited cost.

Despite its importance, as much we are aware of,
we are the first to provide performances (see Sect. 5)
for the Belenios e-voting system. We provide figures
for both finite field and elliptic curve based computa-
tions.

Another interesting feature of our solution is its
convenience. Indeed, all the material can be prepared
before the election and the process in the voting booth
is very light, making smoothness a key feature of the
proposal (see Sect. 3).

Finally, we want to stress out the fact that, in our
approach, we do not modify the underlying crypto-
graphic e-voting protocol. Rather, we exhibit an eco-
nomically viable deployment of it (for a broader per-
spective on the additional economical cost of secu-
rity systems in modern applications, see (Sklavos and
Souras, 2006)). As a comparison, in (Chaidos et al.,
2016a), the benefits of secure hardware is pointed out
but in the presentation of this very work (Chaidos
et al., 2016b), it is indicated that giving a card to each
voter would be considered as too expensive. By not
changing the cryptographic specifications of the un-
derlying protocol, we aim at keeping most of its se-
curity properties. For the specific case of Belenios,
quoting (Chaidos et al., 2016a) again, we note that
we get the additional receipt-freeness security prop-
erty with our implementation (See Sect. 4).

Chabanne, H., Dottax, E. and Rondepierre, F.
Smart-card Deployment of an Electronic Voting Protocol.
DOI: 10.5220/0007443805030510
In Proceedings of the 5th International Conference on Information Systems Security and Privacy (ICISSP 2019), pages 503-510
ISBN: 978-989-758-359-9
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

503

Related Works. A first version of Belenios appears
in (Cortier et al., 2014). The current release of the
software can be found online (Belenios, 2018b), as
well as a voting platform (Belenios, 2018a). This
protocol has been used in more than 200 local elec-
tions. The initial protocol is extended in (Chaidos
et al., 2016a) to enable receipt-freeness. This is done
at the price of relying on more complex cryptographic
primitives. A more detailed description is given in
Sect. 2.1.

There have been several e-voting system propos-
als coming with tamper-resistant devices. Proposals
to use smart-cards in the intent of achieving receipt-
freeness have been made in (Magkos et al., 2001;
Lee and Kim, 2002). Also, (Budurushi et al., 2012)
provides a survey of the use of national electronic
ID-card for remote e-voting in Estonia, Austria and
Germany, and for polling station e-voting in Finland.
More information on Estonia solution can be found
online (Estonia, 2018). Smart-card-based implemen-
tations of the Civitas e-voting protocol (Clarkson
et al., 2008) are proposed in (Neumann and Volkamer,
2012; Neumann et al., 2013).

In all these solutions, it is assumed that each voter
is provided with a personal, tamper-resistant voting
device.

2 BACKGROUND

2.1 Belenios

Belenios is an extension of Helios (Adida, 2008;
Adida et al., 2009), with an explicit registration au-
thority: eligibility is guaranteed by signing the bal-
lots. It also uses different zero-knowledge proofs.
It is close to Helios-C (Cortier et al., 2014) too, but
without the threshold support for the decryption of
the ballots. The description given here is compliant
with the one found in the recent paper (Cortier et al.,
2018). More details can be found in the specification
(Glondu, 2018).

The main parties involved in the election are:

• A voting server S, representing the bulletin board
manager and operated by the server administrator
A. It is responsible for processing ballots in the
bulletin box BB.

• A credential authority C, who is responsible only
for the generation of credentials and their distri-
bution to the voters.

• A set of trustees T1, · · · ,Tm. They are the pub-
lic authorities in charge of tallying and publishing

the result of the election. They also produce the
parameters of the election.

• The eligible voters V1, · · · ,Vn.
The following algorithms are used:
Setup(1λ): The administrator A and the trustees gen-

erate the election encryption public key pk, and
trustees secret keys (ski)(i=1...m) via a distributed
cryptosystem parametrized with security parame-
ter λ. Public key pk is an implicit input for all
remaining algorithms.

Register(id): Creates a signing key pair
(upkid ,uskid) for the voter id. This step is
run by C. The list L of the public keys of all
eligible voters is published, and it is considered
an implicit input for all remaining algorithms.

Vote(id,v,upkid ,uskid): Constructs a ballot for the
voter id and vote v. The ballot is of the form
(id,upkid ,c,s), where:
• c is the vote encrypted under the election key

pk, together with proofs that the vote is cor-
rectly formed,

• s is the voter signature on c, computed with the
signing key uskid .

This step is performed by voters willing to express
their vote.

Valid(BB,b, pk): Checks the validity of the ballot
with respect to the ballot box BB: verifies the sig-
nature and the proof of b =(id,upkid ,c,s), and
also checks there is no same identity id with dif-
ferent credential upkid and no different identity
with same credential. This is performed by the
voting server S whenever a new vote is received.

Box(BB,b): The voting server S returns the ballot
box BB ∪ b if Valid(BB,b, pk) holds, BB other-
wise. The ballot box is kept internally.

Publish(FBB): Returns the public views of BB:
• provides the talliers with FBB, a version of BB

with voters identities discarded (ballots are now
of the form (upkid ,c,s)),

• extend each ballot with a hash of it, and publish
the result PBB= {(b,hash(b))|b ∈ FBB}.

This step is handled by the administrator A.
Tally(FBB,(ski)(i=1...m)): Returns the result of the

election r, as well as a proof π that the tally was
computed correctly. To do so, the ballots signa-
ture and proofs are verified and invalid ballots are
discarded. Then, ciphertexts are added and the
sum is decrypted (thanks to homomorphic feature
of the encryption algorithm) to get the election re-
sult. This is performed conjointly by Administra-
tor A and trustees.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

504

Verify(pk,PBB,r,π): This algorithm allows one to
check that the tally corresponds to the public bul-
letin board FBB via verification of the proof π.

VerifyVote(b,PBB): Checks that the ballot b belongs
to the public bulletin board. It is intended to
the voters, for checking that their ballot is indeed
taken into account.

The security of voting schemes is a vast subject
that has attracted a lot of attention. Informally stated,
the key properties to achieve are ballot privacy (no
one can gain information on the choices of the vot-
ers), completeness (all valid votes are counted), eligi-
bility (no one who is not allowed to vote can vote),
soundness (any invalid vote is not counted).

For an extensive-review of theses properties and
the schemes that offer them, we refer to, e.g., (Be-
naloh et al., 2017). Machine-checked proofs in Easy-
Crypt for privacy and verifiability in Belenios are pro-
vided in (Cortier et al., 2018).

As Helios, Belenios does not achieve receipt-
freeness (a voter has no means to prove how she
voted). Indeed, the voter can record and reveal the
randomness used to encrypt her ballot. It is then
possible to re-encrypt the claimed vote and to check
the presence of the corresponding ballot in the pub-
lic bulletin board (see Sect. 5 for details regarding the
encryption process). A receipt-free version of Bele-
nios, called BeleniosRF, has been proposed in (Chai-
dos et al., 2016a).

2.2 1:N-MoC

Biometric traits can be represented as vectors, known
as templates, and can be further compared. To mea-
sure the performance of a biometric system, one usu-
ally considers its False Acceptance Rate (FAR) – the
proportion of impostors being wrongly accepted –
and False Rejection Rate (FRR) – the proportion of
genuine users being rejected erroneously. We here
give figures for different modalities: 1:1-MoC for fin-
geprint and 1:N-MoC for iris and face.

The deep convolutional network Facenet (Schroff
et al., 2015) outputs 128-byte vectors embedded in an
Euclidean space for coding face images. Two tem-
plates match whenever their euclidean distance (l2-
norm) is below a given threshold. An accuracy recog-
nition performance as high as 99.63% = 1−FRR can
then be reached (on the dataset named Labeled Faces
in the Wild (Huang et al., 2008)).

As far as 1:1-MoC is concerned, the Minex pro-
gram (NIST, 2011) by NIST is dedicated to the eval-
uation of fingerprint minutia matchers running on
smart-cards. It reports, for instance, a solution with

fingerprints coded on 512 bytes, and with (FRR,FAR)
equal to (0.0047,0.01) or (0.0086,0.001).

In what follows, we consider that voting cards
contain a set of such reference templates for iden-
tifying eligible voters. Instead of performing brutal
search by performing N matches against the freshly
captured biometric data, a better strategy is first to
check whether this latter is close enough to one vector
within the set. This problem is known in the litera-
ture as Nearest Neighbour Search. As an example of
what has already been done in this field (Hao et al.,
2008), we want to describe a method based on Local-
ity Sensitive Hashing (LSH). The definition of LSH is
recalled:

Definition 1. Let B be a metric space, U a set with
smaller dimensionality, r1,r2 ∈ R with r1 < r2 and
p1, p2 ∈ [0,1] with p1 > p2.

A family H = {H1, . . . ,Hk},H j : B → U is
(r1,r2, p2, p2)-LSH if for all h ∈ H,x,x′ ∈ B,
Pr[h(x) = h(x′)] > p1 if dB(x,x′) < r1 and Pr[h(x) =
h(x′)]< p2 if dB(x,x′)> r2.

That definition, together with the fact that two biomet-
ric traits measurements coming from the same per-
son (resp. from different persons) are close (resp. are
far) in the underlying distance, gives to (Hao et al.,
2008) the basis of its identification algorithm, the sin-
gle collision principle. The principle can be stated as:
two similar biometric records will have high chance
to have “colliding” H j. The identification proceeds
by first looking at collisions through LSH functions
between the fresh captured biometric data and all the
references stored, and then, for the most likely candi-
dates, by checking if a match actually happens. Iden-
tification in (Hao et al., 2008) is made against a large
iris database. Iris templates are 256-byte long vectors
embedded in the Hamming space, and the LSH func-
tions are simply projections over random coordinates.

The same “single collision principle” is used in
(Bringer et al., 2009), where a facial MoC implemen-
tation is considered. The smart-card here serves to
enforce the privacy inside a biometric terminal.

In the case of templates encoded as vectors in the
Euclidean space, LSH can be thought as a random
projection where each of the H j is associated with a
random line in a 2-dimensional space.

3 BELENIOSHW

In this section, we describe our solution to se-
curely deploy the Belenios system with the following
tweaks:

Smart-card Deployment of an Electronic Voting Protocol

505

• the replacement of the login/password used for
voter authentication in Belenios by a 1:N-MoC,

• the provisioning of voters credentials in a smart-
card.

Election Preparation. The election is prepared by
performing the following steps:

• Enrolment: biometric templates of eligible voters
are gathered.

• Smart-cards provisioning: for each polling sta-
tion, a set of identical cards is prepared (one per
voting booth and some spare). Each card contains
the templates of all the voters of the polling sta-
tion, and for each voter id, his templateid is asso-
ciated with his secret credential uskid – the same
as the one used in standard Belenios. Each card
also contains the public key pk of the election,
used to encrypt the ballots.

• Material deployment: Each polling station is
equipped with some terminals, and the set of
cards.

Remark 1. Each voting card can come equipped
with its own storage keys. These (symmetric) keys
will serve to securely store (confidentiality, integrity)
data outside the card. More specifically, all the data
needed by a voter to vote, i.e. his cryptographic keys
along with some pre-computed data which do not de-
pend on his vote (see Remark 4) can be placed out-
side the voting cards. Whenever a voter has identified
himself, the card will retrieve all the data this very
voter needs to vote. This solution can be envisaged
as a trade-off to increase the storage capacity of the
voting card, at the cost of little more computations.

Election. We propose to supply each voting booth
with a terminal with the adequate interfaces for the
voter, the required biometric sensor(s), and a voting
card. Once the voter has entered a voting booth in his
polling station, his journey is the following:

• The voter presents his biometric data, and the 1:N-
MoC is performed;

• If the MoC is successful, the voter is prompted by
the terminal to make his choice according to the
election;

• The choice is sent to the card, the card builds
the ballot by computing the encryption, the proofs
and the signature;

• The ballot is sent to the terminal.

Remark 2. As computations are performed by the
smart-card connected to a terminal, the voter has
no mean per-se to get his ballot value, and hence
no mean to check its presence in the public bulletin

board. We propose to rely on a secure interface to dis-
play the hash value of his ballot to the voter. For more
convenience, an extra printer can also be added in the
voting booth to print a paper with the hash value of
the ballot. The voter can easily check that the printed
value is the same than the one printed. Moreover, do-
ing so, the voter can use it later to check his ballot has
been cast.

The rest of the process – the validation of the bal-
lots by the voting server, the publication of the ballots
and the tally by the trustees – is performed exactly as
in Belenios.

4 SECURITY PROPERTIES

The variant of Belenios we propose only makes few
changes to the original scheme. We here give a de-
tailed view of the modifications, using the notation
introduced in Sec. 2.1, and we discuss the impact of
these changes on the voting scheme.
Set-up: This step is left unchanged.
Register: This step is slightly modified. The cre-

dential authority still generates the signing keys
for the voters, but instead of sending them to the
voters, these secrets are securely stored in smart-
cards, each key being associated to the biometric
template of the corresponding voter. The cards are
distributed in the polling stations.
Once the cards are personalized this way, the cre-
dential authority publishes the list of public keys
and forgets the secrets, like in standard Belenios.
Note that this step could be managed such that
only the cards know the secrets. It is indeed pos-
sible to generate the signing key pairs inside one
card, and to securely communicate the secrets to
the other cards of the same polling station. Note
also that in the new scheme, the voters have no
access to the value of their secrets.

Vote: This step is exactly the same as in Belenios,
except that the computations are made by a smart-
card instead of a software client on voter’s com-
puter. There is however a difference. Belenios
authenticates voters via a login/password proce-
dure, and voters enter their secret key. Our solu-
tion enforces voter authentication via biometrics
and hence have the nice feature of preventing a
dishonest voter to sell his vote by giving away his
password. In addition, as computations are made
in smart-cards, nobody – including the voter – has
access to intermediate results. In particular, the
voter has no mean to learn the details of the en-
cryption computation.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

506

Valid, Box, Publish, Tally, Verify: These steps are
left unchanged.

VerifyVote: The voter uses the printed hash value of
the ballot to check his ballot has been cast (see
Remark 2).

As can be seen, we make no additional, specific as-
sumption on the parties involved in the process:
• On the trustees side, there is strictly no change.
• No change on the Voting Server side, either.
• The Credential authority behaves the same and

has access to the same information. Only, send-
ing the keys to the voters is replaced by associ-
ating a voter’s key to his biometrics in a smart-
card. There is no new possibility for this party
when dishonest.
On the voter side, the usage of a smart-cards

changes the scheme regarding the receipt-freeness
property. As already mentioned, Belenios (as well as
Helios) is not receipt-free because the voter can get
the random involved in the encryption and use it to
prove how he voted. The fact that the encryption be
performed by a smart-card prevents this, assuming the
card is tamper-proof. As acknowledged in (Chaidos
et al., 2016a), using such hardware tokens is indeed a
way to add receipt-freeness to Belenios.

As a conclusion, BeleniosHW enjoys the same se-
curity properties as Belenios, with the addition of the
receipt-freeness, based on the usage of a tamper-proof
device.

5 PERFORMANCES

Exponentiation Algorithms. We hereafter define
two different exponentiations that will be used to im-
plement the algorithms. We take into account the fact
that when the base is a value known in advance, it is
possible to provision the card with pre-computed val-
ues.

Double Exponentiation (DE) is the computation of
the value ue ·v f , when no assumption can be made on
the value of u or v. Using the Straus-Shamir’s trick
(Straus, 1964; Gamal, 1984), this computation can be
made with the same performances as computing the
simple exponentiation ue . This trick requires scan-
ning the exponents from the most significant bits to
the less significant bits, and the pre-computation of
the value u ·v.

Known Value Exponentiation (KVE) is the compu-
tation of the value ue, when u is a static value, known
in advance (such as a group generator, or a static pub-
lic key). This case can be treated as a special case of
DE – with half-length exponents. Indeed:

ue = ue1 ·ve2 , where e = e1 +e2 ·2
`
2 , v = u2

`
2 , and ` is

the bit-size of e. Since u is a known value, we assume
that v is available with negligible cost. As the cost of
an exponentiation is linear with the exponent length,
a KVE is twice as fast as a DE.

Ballot Encryption. We stick to Belenios and use
the ElGamal encryption scheme. Operations are made
in a group of order q, generated by a generator g.
To compute c(i)enc =

{
α(i),β(i)

}
, the encryption of the

choice m(i), we shall:

• Pick a random value r(i) ∈ Zq.

• Compute α(i) = gr(i) , for which we can use a KVE.

• Compute β(i) = pkr(i) ·gm(i)
, for which we can use

a DE.

Remark 3. Only β depends on the election choice
m(i).

Ballot Signature. We consider that the key pair
(upkid ,uskid), generated in the register phase, has
been stored in the voting card. This constitutes
a slight difference with the Belenios specification
(Glondu, 2018), as there is no need to compute
upkid . Belenios uses a Schnorr-like digital signature
scheme. We denote by Hsignature the hash func-
tion dedicated to the signature scheme. To get s =
(challenge,response), we shall compute:

• a random value w ∈ Zq.

• A = gw, using a KVE.

• challenge =Hsignature(upkid ,A,c
(1)
enc, . . . ,c

(n)
enc)

mod q

• response = w−uskid ·challenge mod q

Remark 4. As A does not depend on the voter nor on
the election choices, it can be pre-computed.

Ballot Proof of Correctness. For a given ciphertext
(α,β), we shall prove that it is the encryption of a
valid message, i.e. that it has the form (gr, pkr ·gm),
with m ∈ {M0, . . . ,Mk} ({0,1} in our case). This
is achieved with a dedicated zero-knowledge proof
involving the random r used in the construction of
(α,β). The proof consists in a sequence of chal-
lenges/responses, one for each possible valid choice
The proof has been made non-interactive thanks to
a hash function Hiproof to determine the sum of all
challenges.

Let m = Ms. To create the complete proof, we
perform the following steps.

Smart-card Deployment of an Electronic Voting Protocol

507

Table 1: Theoretical timings for the computation of a ballot.

DL timings (ms) EC timings (ms)

candidates # candidates
1 8 16 32 1 8 16 32

Vote-indep. 240 1247 2,397 4,969 37 194 374 733
Vote-dep. 479 2493 4,795 9,397 74 383 737 1,444

Total 719 3,740 7,192 14,096 111 577 1,111 2,177

Step 1: For all j 6= s:

• Pick c j, p j at random in Fq,
• Compute A j = gp j ·α−c j = gp j−r ·c j , using a
KVE,
• Compute B j = pkp j ·

(
β ·g−M j

)−c j , using a DE,
• Set challenge j = c j and response j = p j.

Step 2: For the index s:

• Pick w at random in Fq,
• Compute As = gw and Bs = pkw,
• Set challenges =

Hiproof(upkid ,α,β,A0,B0, . . . ,Ak,Bk) −
∑ j 6=s challenge j mod q
• Set responses = w+ r ·challenges mod q

In our case, m(i) ∈ {0,1} for each ciphertext c(i)enc,
and min(x) 6 m = ∑i m(i) 6 max(x) for the overall
proof. Hence, we have:

c(i)pr =
{

challenge(i)0 ,response(i)0 ,

challenge(i)1 ,response(i)1

}
coverall
pr =

{
challengeoverall

min(x),responseoverall
min(x),

. . . ,

challengeoverall
max(x),responseoverall

max(x)

}
Remark 5. Note that it is possible to slightly
modify the process so as to compute As and
Bs in Step 1. Indeed, in this case As =

gps ·α−cs = gps−r ·cs and Bs = pkps ·
(
β ·g−Ms

)−cs =

pkps ·
(

pkrgMs ·g−Ms
)−cs = pkps−r ·cs . It is then suffi-

cient to set w = ps− r ·cs mod q in the computation
responses. Doing so, all the A’s can be pre-computed,
and only the B’s depend on the election choice. Fur-
thermore, given an election setup, the values g−M j

can be pre-computed and hence be available at no
cost.

Summary. On the voter side, a total of 3n+ 2 KVE
and 3n+ 1 DE has to be processed. We also have no-
ticed that among those exponentiations, 3n+ 2 KVE
may be processed at any time as they do not depend
on the choice of the voter. For instance, the card may
compute those values between two voting sessions.
We can also consider pre-computing all theses values
if we have access to an external storage. In this case
the data would be stored encrypted with a key known
only by the card, so as not to decrease the security of
the solution.

The exponentiations in the encryption, as well as
in the computation of the A j’s, use an ephemeral se-
cret r(i). They should be implemented with a regular
or an atomic algorithm to prevent side-channel attacks
(see e.g. (Peeters, 2013)). We express hereafter the
cost of DE and KVE in terms of “low level” operations
for `-bit size operands: modular multiplication M(`),
modular addition/subtraction A(`) and modular inver-
sion I(`). We will uses these formulæ in the next sec-
tion to evaluate the time required to compute a ballot
in a voting card.

Discrete Logarithm. Let (p,q,g, ·) denote the
multiplicative group used to compute the ballot, such
that gq ≡ 1 mod p. A naive implementation of DE re-
quires 1 square and 0.75 multiplication per bit, and we
assume an atomic implementation with the same tim-
ings for squares and multiplies. As already said, KVE
is twice as fast. We then have the following formulæ:

DL-DE(p,q) = |q| ·(1.75) ·M(|p|)
DL-KVE(p,q) = 0.5 ·DL-DE(p,q)

Elliptic Curve. We denote by (E(p),q,g,+) the
additive group used to compute the ballot, such that
[q]g = O. We chose the atomic implementation
proposed in (Rondepierre, 2013) with a point dou-
bling/addition cost of 10 field multiplications and 10
field additions/subtractions and 1 doubling and 0.5
addition per bit. Each scalar multiplication also re-
quires one modular inversion. We then have the fol-
lowing formulæ:

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

508

Table 2: Timings for modular operations on a dedicated hardware.

Field size Multiplication Addition Inversion
(bits) (µs)

256 3.21 0.566 230
3072 214.05 NA NA

EC-DE(p,q) =|q| ·(1.5) ·
(10M(|p|)+10A(|p|))+ I(|p|)

EC-KVE(p,q) =0.5 · |q| ·(1.5) ·
(10M(|p|)+10A(|p|))+ I(|p|)

Real Component. Let us take usually recommended
key lengths |q|= 256 and |p|= |g|= 3072 in the DL
case and |q| = |p| = 256 in the EC case (in bits). In
order to get an insight of the timings on an actual
component, we give the figures for modular multipli-
cation, addition/subtraction and inversion in Table 2.
These figures correspond to a component equipped
with a smart-card dedicated hardware efficiently im-
plementing the modular arithmetic.

Performing ballot pre-computations saves around
a third of the overall performances which is worth
mentioning.

REFERENCES

Adida, B. (2008). Helios: Web-based open-audit voting.
In van Oorschot, P. C., editor, Proceedings of the
17th USENIX Security Symposium, pages 335–348.
USENIX Association.

Adida, B., de Marneffe, O., Pereira, O., and Quisquater,
J.-J. (2009). Electing a University President Using
Open-Audit Voting: Analysis of Real-World Use of
Helios. In D. Jefferson, J.L. Hall, T. M., editor,
Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections. Usenix.

Belenios (2018a). Belenios election server. https://belenios.
loria.fr/admin.

Belenios (2018b). Belenios verifiable online voting system.
http://www.belenios.org/.

Benaloh, J., Bernhard, M., Halderman, J. A., Rivest, R. L.,
Ryan, P. Y. A., Stark, P. B., Teague, V., Vora, P. L., and
Wallach, D. S. (2017). Public evidence from secret
ballots. CoRR, abs/1707.08619.

Bringer, J., Chabanne, H., Kevenaar, T. A. M., and Kindarji,
B. (2009). Extending match-on-card to local biomet-
ric identification. In Biometric ID Management and
Multimodal Communication, Joint COST 2101 and
2102 International Conference, BioID MultiComm,
pages 178–186.

Budurushi, J., Neumann, S., and Volkamer, M. (2012).
Smart cards in electronic voting: Lessons learned

from applications in legally-binding elections and ap-
proaches proposed in scientific papers. In EVOTE
2012, pages 257–270.

Chaidos, P., Cortier, V., Fuchsbauer, G., and Galindo, D.
(2016a). BeleniosRF: A Non-interactive Receipt-Free
Electronic Voting Scheme. In Proceedings of the 2016
ACM SIGSAC, pages 1614–1625.

Chaidos, P., Cortier, V., Fuchsbauer, G., and Galindo, D.
(2016b). BeleniosRF: A Non-Interactive Receipt-Free
Electronic Voting Scheme. Presentation at CCS 2016.
https://www.youtube.com/watch?v=Fzj29WTVWb8.

Clarkson, M. R., Chong, S., and Myers, A. C. (2008). Civ-
itas: Toward a secure voting system. In IEEE Sympo-
sium on Security and Privacy, pages 354–368.

Common Criteria (2018). ICs, Smart Cards and Smart
Card-Related Devices and Systems , Certified Prod-
ucts. https://www.commoncriteriaportal.org/products/
#IC.

Cortier, V., Dragan, C. C., Strub, P.-Y., Dupressoir, F., and
Warinschi, B. (2018). Machine-checked proofs for
electronic voting: privacy and verifiability for belenio.
In Proceedings of the 31st IEEE Computer Security
Foundations Symposium (CSF’18). To appear.

Cortier, V., Galindo, D., Glondu, S., and Izabachène, M.
(2014). Election Verifiability for Helios under Weaker
Trust Assumptions. In Computer Security - ESORICS
- Proceedings, Part II, pages 327–344.

Estonia (2018). E-Estonia. https://e-estonia.com/solutions/
e-governance/i-voting/.

Gamal, T. E. (1984). A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. In Ad-
vances in Cryptology - CRYPTO ’84, pages 10–18.

Glondu, S. (2018). Belenios specification. version 1.5.
https://gforge.inria.fr/projects/belenios/.

Hao, F., Daugman, J., and Zielinski, P. (2008). A fast search
algorithm for a large fuzzy database. IEEE Trans. In-
formation Forensics and Security, 3(2):203–212.

Huang, G. B., Mattar, M., Berg, T., and Learned-Miller,
E. (2008). Labeled Faces in the Wild: A Database
forStudying Face Recognition in Unconstrained Envi-
ronments. In Workshop on Faces in ’Real-Life’ Im-
ages: Detection, Alignment, and Recognition. Erik
Learned-Miller and Andras Ferencz and Frédéric Ju-
rie.

Lee, B. and Kim, K. (2002). Receipt-free electronic vot-
ing scheme with a tamper-resistant randomizer. In In-
formation Security and Cryptology - ICISC 2002, Re-
vised Papers, pages 389–406.

Magkos, E., Burmester, M., and Chrissikopoulos, V. (2001).
Receipt-freeness in large-scale elections without un-
tappable channels. In Towards The E-Society: E-
Commerce, E-Business, and E-Government, The First

Smart-card Deployment of an Electronic Voting Protocol

509

IFIP Conference on E-Commerce, E-Business, E-
Government (I3E, pages 683–693.

Neumann, S., Feier, C., Volkamer, M., and Koenig, R. E.
(2013). Towards A practical JCJ / civitas imple-
mentation. In Informatik 2013, 43. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), pages 804–818.

Neumann, S. and Volkamer, M. (2012). Civitas and the
real world: Problems and solutions from a practical
point of view. In Seventh International Conference on
Availability, Reliability and Security, Prague, ARES,
pages 180–185.

NIST (2011). MINEX II - An Assess-
ment of Match-on-Card technology.
https://www.nist.gov/itl/iad/image-group/
minex-ii-assessment-match-card-technology.

Peeters, E. (2013). Advanced DPA Theory and Practice:
Towards the Security Limits of Secure Embedded Cir-
cuits. Springer Publishing Company, Incorporated.

Rondepierre, F. (2013). Revisiting atomic patterns for scalar
multiplications on elliptic curves. In Smart Card
Research and Advanced Applications - 12th Interna-
tional Conference, CARDIS, Revised Selected Papers,
pages 171–186.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015).
Facenet: A unified embedding for face recognition
and clustering. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR, pages 815–823.

Sklavos, N. and Souras, P. (2006). Economic models &
approaches in information security for computer net-
works. I. J. Network Security, 2(1):14–20.

Straus, E. G. (1964). Addition chains of vectors (problem
5125). Am. Math. Monthly, 70:806–808.

ICISSP 2019 - 5th International Conference on Information Systems Security and Privacy

510

