
A Semantic Analysis of Interface Description Models of
Heterogeneous Vehicle Application Frameworks: An Approach

Towards Synergy Exploration

Sangita De1,3, Michael Niklas1, Jürgen Mottok2 and Přemek Brada3

1Corporate System & Technology SW, Continental Automotive GmbH, Regensburg, Germany
2Department of Electrical Engineering & Information Technology, OTH, Regensburg, Germany

3Department of Computer Science and Engineering, Universitsy of West Bohemia, Pilsen, Czech Republic

Keywords: Application, Framework, IDL, Semantic, Mapping, Traits, Synergy, Metamodel, Syntax, Component Model,
Domain, Vehicle, Interface, Messages, Fields, RPC, Client-Server, Analysis, Structures, Port, Service, IPC.

Abstract: As the world is getting more connected, the demands of services in automotive industry are increasing with
the requirements such as IoT (Internet of Things) in cars, automated driving, etc. Eventually, the automotive
industry has evolved to a complex network of services, where each organization depends on the other
organizations, to satisfy its service requirements in different phases of the vehicle life cycle. Because of these
heterogeneous and complex development environments, most of the vehicle component interface models need
to be specified in various manifestations to satisfy the semantic and syntactic requirements, specific to
different application development environments or frameworks. This paper describes an approach to semantic
analysis of components interfaces description models of heterogeneous frameworks, that are used for vehicle
applications. The proposed approach intends to ensure that interface description models of different service-
based vehicle frameworks can be compared, correlated and re-used based on semantic synergies, across
different vehicle platforms, development environments and organizations. The approach to semantic synergy
exploration could further provide the knowledge base for the increase in interoperability, overall efficiency
and development of an automotive domain specific general software solutions, by facilitating coexistence of
components of heterogeneous frameworks in the same high-performance ECU for future vehicle software.

1 INTRODUCTION

A semantic analysis on domain specific applications
(apps) of heterogeneous frameworks (FWs) can be
dedicated to specific kind of artefacts (e.g.
deployment possibilities of app component models,
etc) or it can be general and capable of including any
constituent of the metamodel ecosystem in context of
app software. The Interface Description Language
(IDL) model is an integral part of an app FW and is
represented using a platform specific language. The
IDL model of a Service Oriented Architecture (SOA)
based vehicle app FW, usually describes the services
that are offered or required by an app in an abstract
form, independent of implementation details. Every
vehicle app IDL model can be expressed in two basic
forms. Firstly, FW specific language notation, named
as syntax, and secondly, meaning of the syntax named
as semantics. Syntax of an IDL is possibly infinite set

of legacy elements, and is augmented by the meaning
of those elements, which is expressed by relating the
syntax to a semantic domain (Weinreich and
Sametinger, 2001). Therefore, any app FW IDL
definition must consist of the syntax domain and
mapping from the syntactic elements to the semantic
domain. The approach to synergy exploration using
semantic comparison of interface models of vehicle
components can be used to find the correlation among
the interface syntax of these components.

1.1 Contribution of the Report

A vehicle interface description model usually has
commonality in semantics, despite using different
IDLs, when modelling the same app for a vehicle
component in different FWs. However, the SOA
based vehicle FWs have IDLs which differ mostly in
concrete syntax representations because their
manifestations are adapted to a specific app FW to

394
De S., Niklas M., Mottok J. and Brada P.
A Semantic Analysis of Interface Description Models of Heterogeneous Vehicle Application Frameworks: An Approach Towards Synergy Exploration.
DOI: 10.5220/0007472503960403
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 7th International Conference on Model-Driven Engineering and
Software Development), pages 394-401
ISBN: 978-989-758-358-2
Copyright c© 7th International Conference on Model-Driven Engineering and Software Development by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

which they are integrated. This further results in
inefficient vehicle app software component reuse and
increase in overall development cost. The gaps
between these IDLs of heterogeneous vehicle app
FWs, can be reduced by analysing the semantic
synergies in semantic mappings of their interface
models, thereby leading to more efficient vehicle app
software component reuse and reduction in overall
development cost.

The goal of this paper is to compare the semantics
of various SOA based vehicle app FW interface
models using mappings and to explore the synergies
in semantic mappings. This will help future domain
experts to understand the semantic synergies of
interface models and decide which semantic
synergies could be considered for creating any kind
of domain specific general software solutions such as
a Meta Interface description model for automotive
domain. In the future, semantic mappings of interface
models of vehicle FWs could be further used for
translation of semantics required for app component
model transformation from one FW to another FW
(Ruscio et al., 2012).

1.2 Motivation Scenario and Related
Work

An app component model description is always useful
for exchange of information between the FW experts
of the given component model. The specifics of an
app component model however make it quite difficult
to read and understand the architecture of app
component for experts from other different vehicle
FWs (Brada and Snajberk, 2011). Over the past few
years, the demand for cross sub-domain
functionalities in the automotive domain has
increased. Consequently, it has become necessary to
combine the software components and subsystems as
well as message formats from different sub-domains,
to provide cross domain functionalities (Avram et al.,
2014). This could be due to the fact: firstly, the
increase in requirement for integration with 3rd party
and legacy components, secondly, the conformance
to frequent new standards in automotive domain
(Birken, 2013), thirdly, the non-functional system
requirements such as performance and footprints and
lastly, the requirement of huge number of
communicating processors for cross sub- domain
communications. Therefore, it is required to cluster
the vehicle apps based on a software functional area
and glue the relevant artefacts between them
(Pretschner et al., 2007). This can be done by
identifying the synergies in semantic mappings
among the vehicle app IDL models of an app cluster.

There are several IDLs of SOA based FWs which
are used for vehicle app interface model
specifications. The OMG (Object Management
Group) standard has an open distributed object
computing infrastructure CORBA (Common Object
Request Broker Architecture) (Gokhale et al., 2007).
CORBA provides object services that are service
interfaces to be used by many distributed object
programs regardless of application domains, but
CORBA faces performance trade-offs with high
speed networks. Franca FW provides special support
to those automotive domain IDLs which can be
implemented using EMF (Birken, 2013). Based on
the Franca core model, service interface
specifications defined in other IDLs can be
transformed to or from Franca. However, there are
still some unanswered questions like successful
extension of Franca connectors to messages. These
questions could be addressed using semantic mapping
analysis.

Message component interface models from ROS
(Robot Operating System) and Google Protobuf
(Protocol buffers) used for different message
serialization and deserialization purposes during
message transmission and reception in vehicle apps,
have several pros and cons. There are proposals for
establishing a bridge between ROS and Protobuf FWs
to overcome their cons and to obtain a merged support
from both ROS and Protobuf IDLs (Dhama, 2017).
To establish this kind of bridge basically requires
statical analysis of metamodels to understand the
semantic mapping and synergies between given
specific FWs app interface models.

1.3 Automotive IDL: The Rationale

In domain specific models such as automotive system
models, the metamodels are often originally
introduced as structuring elements. These elements
give semantics to traditional modelling languages and
thereby also describes semantics for interface models
(Ruscio et al., 2012). The Figure 1 illustrates
overview of heterogeneous software components
(SWCs) supported by different app FWs say A and B
and supported by different Operating Systems (OSs).
In context of a concrete app, a software component
implementation must conform to one of the
component types defined by its component model. An
app software component model has a set of concrete
interface elements manifest on the visible surface of
its black box. These model elements populate some
or all its actual traits, which again conform to the
corresponding trait definitions.

A Semantic Analysis of Interface Description Models of Heterogeneous Vehicle Application Frameworks: An Approach Towards Synergy
Exploration

395

Figure 1: Overview of interfaces of SWC.

An interface not only specifies the services, call-
backs or function calls that a client may request from
a service provider app component, but it may also
include constraints on the usage of these services that
must be considered by both the service app
component and its clients. Interfaces are service
contracts between a service provider and a service
receiver. This contract may include numerous
invariants, preconditions and post conditions such as
deployment conditions of an app component interface
model that must be considered when using an
individual operation.

Most automotive domain FW component models
have an IDL for describing interfaces and their
elements using an implementation independent
semantic and syntactic notation (Lau and Wang,
2007). In context of SOA based FWs that are mostly
used in automotive domain, an app IDL model
basically includes information on following elements
at an abstract level:

 Service definition using signals or messages,
structure or events and broadcasts
specifications;

 A unique name for the service or identity for
the interface;

 Method signatures containing Semantic and
Syntactic Information with valid parameter
types, e.g. methods used for Service
subscription (or registration), Service
publication, Service notifications (using
callback notifications), etc.;

 Attributes (or member variables of an
interface), fields and Data Types (e.g.
primitive, complex);

 Optional deployment features based on
supported middleware or communication
protocol used by different app FWs.

2 SEMANTIC ANALYSIS OF IDL
MODELS: THE APPROACH

The problem to find the differences in the
component’s interface model of heterogeneous FWs
is intrinsically complex and requires specialized
algorithms to match the abstraction levels of models.

2.1 Static Semantic Analysis

Based on explicit semantic content authoring or static
analysing, approaches can be roughly classified into
two basic categories Top-Down and Bottom-Up
(Brada and Snajberk, 2011). The manual static
semantic analysis approach considered in the current
scope is a Top-Down approach and is at an early
stage, without the use of any automated static analysis
tool. The approach is based on the starting point of an
authoring process which is upper most level of
expressiveness. The proposed approach considers
Interface_basic_type of the interface specification as
the starting point or trait for analysis process. The
current approach defines the abstract traits of a
vehicle FW’s component interface model for the
semantic analysis. The approach further uses
semantic mapping to compare these traits for few of
the existing IDL alternatives used by vehicle FWs.
The approach uses a common case study of
SeatHeating SWC to realize an abstract interface
model by using each of the IDL alternatives. The
SeatHeating SWC is a sensor actuator component
model used in vehicle to monitor seat heat.

2.2 Classification of Traits for
Semantic Analysis

The abstract functional traits that are required for a
vehicle app interface model, have been classified
based on SOA based FW’s component metamodels
basic features. For the traits, the metamodel
representation ∈ Identifiers defines a trait ’ s
metamodel representation name, and metatype ∈
Identifiers defines type of the trait in context of
metamodel (Brada and Snajberk, 2011). The
specifications of abstract functional traits for
component interface model elements are provided
below, where comm stands for communication:
 Interface_basic_type

metamodel representation: basic_intf_element
metatype:basic_element_specification;

 Service_Interface_connection_point
metamodel representation: service_connect_pt
metatype: Interface_ports;

MODELSWARD 7th International Conference on Model-Driven Engineering and Software Development - 7th International Conference on
Model-Driven Engineering and Software Development

396

 Intf_bind_comm_proto
metamodel representation: comm_proto
metatype: Interface_binder_comm_protocol;

 Communication_Method_Specification
metamodel representation: method_spec
metatype: Interface_communication_method;

 Method_behaviour_Specification
metamodel representation: method_behav
metatype: asynchronous,synchronous;

 Field_Specification
metamodel representation: field_spec
metatype: attributes;

 Records_Specification
metamodel representation: record_spec
metatype: Datatypes;

Traits for an IDL can also represent non-
functional elements. The specifications of non-
functional traits for component interface model are
provided below:

 Versioning: Interface compatibility;

 Software Licence supported;

 Language Bindings supported.

3 IDL MODELS OF VEHICLE
APP FWS: ALTERNATIVES

This section provides an overview of abstract
interface models using few of the existing IDL
alternatives of heterogeneous FWs used for vehicle
apps (Dhama, 2017). The abstract interface models
discussed in this section are based on SeatHeating
SWC model case study, as described in subsection
2.1.

3.1 Franca IDL

Franca IDL is developed as a part of the GENIVI
standard Franca FW and supports IVI (In-Vehicle
infotainment) system’s interfaces. Franca IDL is
language-neutral and independent of concrete
bindings. APIs (Application Program Interfaces)
defined with Franca IDL consist of collections of
attributes, methods and broadcasts (Birken, 2013).
Primitive datatypes supported are (Un)signed
integers, Float/Doubles, Strings and Byte Buffers.
Using Franca IDL, a vehicle app client calls the
backend server using a vehicle ID and a struct
(Structure) defining service information such as a
unique Service Id. Figure 2 illustrates SeatHeating
vehicle app using Franca IDL abstract model. With

Franca IDL, a vehicle app is free to use older versions
of service interface methods with newer versions of
Franca IDL models. Therefore, in context of
versioning, Franca IDL has backward compatibility.

Figure 2: Abstract model of Franca FW Interface with
Service Structures and Methods.

Franca+ provides an extension to the Franca FW that
adds support to the modelling for software and hardware
components. It uses the same textual language style as
Franca but supports the definition of components,
composition of components, typed ports and connectors
between ports as seen in the Figure 3.

Figure 3: Abstract model for Franc++ component Interface.

The “provides” keyword, within a component
definition, is used to define a provider port. Similarly,
the “requires” keyword is used to define a required
port. Franca+ plans to extend the Franca interface
deployment model based on RPC (Remote Procedure
Call) mechanism. The Common API provides the
middleware solution supported by GENIVI as a part
of Franca FW. With Franca Interface model, an app
communicates with the Common API library and not
with the IPC (Inter Process Communication) directly
thereby making the app IPC agnostic.

3.2 Google Protocol Buffers IDL

Protobuf are a flexible, efficient, automated
mechanism for serializing structured data, used in IVI

/* Structure grouped under
Services*/
interface SeatHeatingServ {
version (major 2 minor 0),
struct HeatingElementService
{UInt32 ServiceId, String
ServiceName}
/* Method specification*/method
subscribeSeatHeatingServ{
in {UInt32 VehicleId
HeatingElementService myService}}}

/*A Client Component for Heating
Element */
Service component SeatHeatingControl
{ requires SeatHeatingElement as
AnswerMePort

} /* The Server Component for
Heating Element */
Service component SeatHeating {

 provides SeatHeatingElement as
AskMePort}

A Semantic Analysis of Interface Description Models of Heterogeneous Vehicle Application Frameworks: An Approach Towards Synergy
Exploration

397

systems e.g. vehicle telematics data exchange, etc.
Protobufs are open source since 2008, prior to that
they were internally used by Google (since 2001). A
strong aspect of Protobuf data descriptions is the
ability to update, in a backward compatible and
forward compatible way, without affecting the
already deployed systems. Versioning is done by
using unique field numbers. The meta-data in
Protobuf is in form of key-pairs. In contrast to Franca
IDL, the base of defining interfaces within Protobuf
is through the definition of messages.

Messages are identified by a name and contain
fields, each with a unique field number as illustrated
in an example in Figure 4 (Dhama, 2017). However,
like Franca IDL Protobuf also uses a RPC mechanism
known as gRPC (Google RPC) for deployment of
message component models. RPC binding done via
gRPC generates stubs and skeletons. The Search
Request for service or Search Response messages
(basically a structure) contains 2 essential fields as
per proto3 syntax, illustrated in Figure 4. Fields can
either be:

 singular: with multiplicity 0...1. No keyword is
needed in this case;

 repeated: with multiplicity 0...N. Keyword
repeated is used. It is used to define an array
type.

Figure 4: Abstract model of service interface messages
using Google Protobuf.

gRPC is a high performance open source RPC
FW. Client machines can seamlessly call server
machines as if they are in the same execution
environment. Protobufs are designed for messages
that are 1MB in size or smaller. Therefore, Protobuf

by default, will not deserialize a message larger than
64MB. Protobuf uses two different kinds of message
transport mechanisms. When transferring of
client(stubs) to server (skeleton) RPC messages
within a single machine, Protobuf uses IPC using
shared memory and event based synchronizations.
When there is a requirement to transfer RPC
messages from client or subscriber to server or
publisher including multiple host machines, Protobuf
uses inter host communication based on UDP
(Unified Datagram Protocol) multicast feature.

3.3 Apache Thrift IDL

Thrift is a software library and set of code-generation
tools developed at Facebook to expedite development
and implementation of efficient and scalable backend
services. Thrift, which is supported by Apache
Software Foundation standard, allows developers to
define datatypes and service interfaces in a single
language-neutral file. Thrift generates all the
necessary code to build RPC clients and servers that
communicate seamlessly across various
programming languages (Slee, Agarwal and
Kwiatkowski ,2007). and is frequently used in the
vehicle apps e.g. monitoring of driver behaviour apps
using sensors.

Apache Thrift IDL is a superset of Protobufs, with
additional features that does not exist in Protobuf
such as constants, rich containers types e.g. list, maps,
sets, etc. The RPC invocation is done by sending a
method name on wire as string. Thrift defines
interfaces using Structures. Struct (structures) are
grouped under services like Franca IDL. An example
of SeatHeating service to track the seat heat using
Thrift IDL is shown in Figure 5. The field header for
every member of a struct is encoded with a unique
field identifier.

Figure 5: Abstract model for thrift struct and services.

/*Search request for Interface
SeatHeating Operation */
message SeatHeatingOperationRequest
{
string parameter1 = 1; /* Singular
Field Specification */
bool parameter2 = 2;}
/*Search response for Interface
SeatHeating Operation */
message
SeatHeatingOperationResponse {
bool parameter2 = 1; repeated
string parameter3 = 1;}
/*Repeated Field Specification*/
Service SeatHeatingserv{rpc
operation(SeatHeatingOperationReque
st);returns(SeatHeatingOperationRes
ponse);}

/*Interface using structures*/
struct SeatHeatingElement {
1: required double seat_temp;
2: required double heating_calib;
};
/*exception*/
exception DBUnavailable {
1: string ErrorCode;};
/*Service Specification*/
service SeatHeatingserv {
bool updatetemp(1:
SeatHeatingElement elem) throws
(1: DBUnavailable naService);}

MODELSWARD 7th International Conference on Model-Driven Engineering and Software Development - 7th International Conference on
Model-Driven Engineering and Software Development

398

The Thrift IDL also supports versioning.
Versioning in Thrift is implemented via field
identifiers Thrift is robust to versioning and data
definition changes. Thrift supported app FW must be
able to support requests from out-of-date clients to
new servers, and vice versa. Therefore, in context of
versioning, Apache Thrift IDL has forward &
backward compatibility like Franca IDL.

3.4 AUTOSAR XML (ARXML)

ARXML (AUTOSAR eXtensible Markup Language)
is the standard description format used to model all
AUTOSAR (Automotive Open System Architecture)
software component models related to the
AUTOSAR Classic platform and the AUTOSAR
Adaptive platform. AUTOSAR is widely accepted as
the de-facto standard of automotive system software
architecture for developing automotive app of various
automotive platforms during the different phases of a
vehicle life cycle. The AUTOSAR app software
component (SWC) template meta model is
implemented using ARXML Schema (Dhama, 2017).

One of the major benefits of using ARXML as
IDL is to simply the comparison of AUTOSAR SWC
descriptions from different AUTOSAR based
automotive platforms. This further enables
interoperability among different AUTOSAR
platforms such as AUTOSAR Adaptive and
AUTOSAR Classic. Figure 6 illustrates an
SeatHeating SWC model using ARXML. The
AUTOSAR SWC have provider port
(PPortPrototype) and receiver port (RPortPrototype)
interfaces like Franca+. The app software component
uses service interfaces. An example of AUTOSAR
Adaptive app software component release version
4.0.3 specific ARXML file can be seen in Figure 6.

/*Software Component Model
Specification*/

/*Service Interface specification using
Methods and Events */

Figure 6: SeatHeating vehicle app SWC model
implementation using ARXML.

The Service interface model uses RPC
communication protocol, like Franca, Protobuf and
Thrift IDLs. Service interface is specified using
various elements (AUTOSAR AP release, 2010),
these includes:

 Aggregation of variable data prototypes in the
role of Events;

 Aggregation of meta-class Fields in the role of
Fields;

 Aggregation of Client-Server Operations in the
role of Methods.

In AUTOSAR Adaptive platform, a Service
Instance Manifest file contains Service deployment
description. The services provider SWCs are called
skeleton and the service receiver SWCs are called
Proxy. For model migration of a AUTOSAR Classic
SWC model to the AUTOSAR Adaptive app manifest
model, ARXML is used as a common modelling
language to represent both source and target SWC
models and their interfaces.

3.5 ROS IDL

ROS (Robot Operating System) provides the required
tools to easily access sensor’s data, process that data,
and generate an appropriate response for the motors
and other actuators of the robot. Due to these
characteristics ROS is a perfect FW for self-driving
cars and an autonomous vehicle can be considered
just as another type of robot (Berger and
Dukaczewski, 2014).

ROS offers a message passing interface that
provides IPC and is commonly referred to as a
middleware solution. The benefit of using a message
passing system is that it forces to implement clear
interfaces between the nodes in a system, thereby
improving encapsulation and promoting code reuse.
The datatypes used by ROS messages is a superset of
datatypes used by Google Protobuf and Apache
Thrift.

The asynchronous nature of publish/subscribe
messaging works for Data Distribution Services
(DDS) requirements in robotics, but for synchronous
request/response interactions, RPC is used between
processes required for higher levels of robot
operations. In ROS1 FW, a Master stores topics and
service registration information for all other ROS
nodes. An example to create a ROS1 FW service node
for SeatHeating SWC using a node handler for
invocation of RPC is illustrated in Figure 7.

A Semantic Analysis of Interface Description Models of Heterogeneous Vehicle Application Frameworks: An Approach Towards Synergy
Exploration

399

Figure 7: Abstract model of a ROS 1 service node using
ROS IDL.

To create a client node using ROS1 FW, a
ros::ServiceClient object is used to call the service
using the same node handler later on as illustrated in
Figure 8. A node sends out a message by publishing
it to a given topic. The topic is a name that is used to
identify the content of the message. The nodes can
only receive messages with a matching topic type.

Figure 8: Abstract model of a ROS 1 client node using ROS
IDL.

4 DISCUSSIONS ON RESULTS OF
SEMANTIC ANALYSIS

This section includes tables to illustrate the results
from semantical comparison of the various IDL
models based on mapping of functional and non-
functional traits. Table 1 illustrates the semantical
comparison of the various IDL models based on
mapping of non-functional interface traits (described
in sub-section 2.2): Versioning i.e. forward or
backward compatibility of a component’s interface
model, software Licence supported, and Language
bindings used to describe a component’s interface
model (Ruscio et al., 2012). The fields within the
tables marked white indicates semantic synergies in
functional and non-functional traits among the
different FW IDL model alternatives, using manual
static semantic analysis approach. The synergies
revealed in the semantic traits comparison of the
vehicle FW IDL alternatives, could be further utilized
for cross vehicle FW communication of services.

Table 1: Static semantic mapping of FW IDL models based
on non -functional traits.

IDL Alter-
natives

Versioning Language
Bindings
supported

Software
Licence
supported

Franca
IDL

Backward
compatibi-
lity

C++, C,
Java

Genivi
Alliance

Protobuf Forward,
Backward
Compatibi-
lity

C++,
Python,
Java, C#

BSD

Thrift Forward,
Backward
compatibi-
lity

C++, Java,
Python,
Ruby, C#,
Perl

Apache

arxml Backward
compatibi-
lity

C++, C AUTOS-AR

ROS IDL No support
to versioning

C++, C,
Python

BSD

Table 2 illustrates the semantic mapping of vehicle
app IDL alternatives based on functional traits such
as Interface basic element type specification or
representation, interface’s Communication Method
Specification used, and the Communication protocol
that is used for deployment of the FW API models.

Table 2: Static semantic mapping based on functional traits
for vehicle component service interface model.

IDL Interface_
basic_
type

Communica-
tion_Method_
Specification

Intf_bind_
comm_pro
to

Franca
IDL

Structure,
Port
Interface

Publish-
Subscribe,
Client.Server

RPC

Protobuf Messages Publish-
Subscribe

gRPC

Thrift Structure Client-Server RPC

ARXML Port
Interface

Publish-
Subscribe

RPC

ROS IDL Messages Client-Server,
Publish-
Subscribe

RPC,
DDS IP

/* Service node created by Server*/
ros::init(argc,argv,"add_two_ints_s
erver");
ros::NodeHandle n;
ros::SeatHeatingServ service =
n.advertiseService("update_seat_tem
perature", update);

/* Service requested by Client*/
ros::NodeHandle n;
ros::SeatHeatingControl client =
n.serviceClient<service_start::updat
e_Temp>("update_seat_temperature");

MODELSWARD 7th International Conference on Model-Driven Engineering and Software Development - 7th International Conference on
Model-Driven Engineering and Software Development

400

Table 3 illustrates semantic synergies based on
semantic mapping of the IDLs based on functional
traits such as interface Method behaviour
specification, Record specification used for attributes
specification and Service (Service Provider or
Receiver) Interface connection point.

Table 3: Static semantic mapping of FW IDLs based on
functional traits.

Primitive types in Table 3 includes (Un)signed
integers, floats, Strings, bytes, Booleans, double.

5 CONCLUSIONS

The paper proposes a manual static semantic analysis
approach specifically tailored to explore the synergies
in semantics of interface models for vehicle app
components of heterogeneous FWs. With the
proposed approach, we have defined the abstract
functional and non-functional traits as the basic
features for a FW component’s interface model. We
have tried to simplify the semantic comparisons based
on the traits, for the various IDL alternatives by using
a common case study. Semantic synergies were
successfully explored to find the correlation between
the IDL models. In the absence of semantic synergy
exploration among the IDL models, the translation of
the interface semantics of an app SWC model of a
given FW to SWC model of another FW is not
possible. With the growing demands for services, the

functional and non-functional traits considered in the
current scope for vehicle FW IDLs, could be further
extended for semantic analysis in future. As a
proposal for future work, the correlation explored
between the different FW IDL models using semantic
mappings can be used for any kind of automotive
domain specific general software solution such as
Meta IDL model. To deal with this, we plan to extend
our work of semantic mapping of interface traits in
this direction.

REFERENCES

Weinreich, R., Sametinger, J., 2001. The book, “Component
Models and Component Services: Concepts and
Principles”, G.T. Heineman and W.T. Council (eds.),
Reading, MA: Addison-Wesley, pp. 33-48.

Brada, P., Snajberk, J., 2011. “Ent: A Generic Meta-Model
for the Description of Component-based Applications”,
Elsevier Electronic Notes in theoretical Computer
Science 279(2).

Ruscio, D., Wagelaar, D., Iovino, L., Pierantonio, A.,2012.
“Translational Semantics of a co-evolution Specific
language with the EMF Transformation Virtual
Machine”, ICMT.

Slee, M., Agarwal, A., Kwiatkowski, M., 2007. “Thrift:
Scalable Cross-language Services Implementation”,
Facebook white paper 5, 156 university ave.

Dhama, A., 2017. “Interface Definition Languages”, EB
white paper, http://www.elektrobit.com.

Birken, K., 2013. “Franca User Guide”, Release 0.12.0.1,
Eclipse Foundation, itemis AG.

Lau, K., K., Wang, Z., 2007. “Software Component
Models”, IEEE Transactions on software Engineering,
Vol 33, Issue 10, pp. 709-724.

AUTOSAR Adaptive Platform (AP) Release,
October, 2017. “Specification of manifest”.
http://www.autosar.org.

Berger, C., Dukaczewski, M., 2014. “Comparison of
Architectural Design Decisions for Resource-
Constrained Self-Driving Cars-A Multiple Case-
Study”, in Gesellschaft for INFORMATIK.

Pretschner, A., Broy, M., Krüger, I., H., Stauner, T., 2007.
“Software engineering for automotive systems: A
roadmap”, In Proceedings FOSS 2007, IEEE
Computer Society, Washington DC, USA, pp. 55-71.

Avram, A., Lenz, D., Bauch, D., Minnerup, P.,2014.
“Interface Definition and Code Generation in
heterogeneous Development Enviornments from a
Single-Source”, Fortiss GmbH, TMU, Munich.

Gokhale, A., Schmidt, D., C., Ryan, C., Arulanthu, A.,
1999. „The Design and performance of A OMG
CORBA IDL Compiler Optimized for Embedded
Systems “, LCTES workshop at PLDI, Atlanta,
Georgia.

A Semantic Analysis of Interface Description Models of Heterogeneous Vehicle Application Frameworks: An Approach Towards Synergy
Exploration

401

