
Quantity Checking through Unit of Measurement Libraries, Current
Status and Future Directions

Steve McKeever, Görkem Paçaci and Oscar Bennich-Björkman
Department of Informatics and Media, Uppsala University, Sweden

Keywords: Units of Measurement, Units Checking, Unit Libraries, Quantity Pattern.

Abstract: Unit errors are known to have caused some costly software engineering disasters, most notably the Mars
Climate Orbiter back in 1999. As unit annotations are not mandatory for execution only dramatic events
become newsworthy. Anecdotally however, there is evidence to suggest that these kinds of errors are recurrent
and under-reported. There are an abundance of tools and most notably libraries to aid scientific developers
manage unit definitions. In this paper we look in detail at how a number of prominent libraries in the most
popular programming languages support units. We argue that even when these libraries are based on a sound
design pattern, their implementation becomes too broad. Each library is distinct with varying features, lacking
a core API, compromising both interoperability and thereby usage. We claim that further library or tool
development is not needed to further adoption, but that a greater understanding of developers requirements is.

1 INTRODUCTION

In scientific applications, physical quantities and units
of measurement are used regularly. However few pro-
gramming languages provide direct support for man-
aging them. The technical definition of a physical
quantity is a “property of a phenomenon, body, or
substance, where the property has a magnitude that
can be expressed as a number and a reference” (Joint
Committee for Guides in Metrology (JCGM), 2012).
To explain this further, each quantity is declared as
a number (the magnitude of the quantity) with an
associated unit (Bureau International des Poids et
Mesures, 2014). For example you could assert the
physical quantity of length with the unit metre and
the magnitude 10 (10m). However, the same length
can also be expressed using other units such as cen-
timetres or kilometres, at the same time changing the
magnitude (1000cm or 0.01km). Although these ex-
amples are all based on the International System of
Units (SI), which is the most used and well known
unit system, there exists several other systems that
these physical quantities can be expressed in, each
with different units for the same quantity. Other ex-
amples include the Imperial system, the Atomic Units
system, and the CGS (centimetre, gram, second) sys-
tem. These have evolved over time and branched off
from each other.

Some well known and expensive errors have

arisen due to unit inconsistencies when operating over
values of differing unit systems or differing represen-
tations of dimensions. The most famous of which is
the Mars Climate Orbiter (Stephenson et al., 1999).
The orbiter had malfunctioned, causing it to disinte-
grate in the upper atmosphere. A later investigation
found that the root cause of the crash was the incor-
rect usage of Imperial units in the probe’s software.
However for the most part, scientific developers have
been able to manage their code without tool or static
checking support. The burden of cost for such errors
has been contained within the scope of their endeav-
ours.

Several popular software modelling languages in-
clude representations of physical units, such as Mod-
elica (Modelica, 2018) or VSL in the MARTE stan-
dard (Ribeiro et al., 2016), but these form part of
the specification and are not a requirement for de-
rived executables, much as cardinality annotations in
UML diagrams. With greater interoperability, indus-
trial use of computational simulations and penetra-
tion of digitalisation through cyber-physical systems;
it seems pertinent to faithfully represent key proper-
ties of physical systems such as units of measurement
in code bases. This can be achieved through the use of
domain specific languages (Garny et al., 2008) or pro-
gramming languages that support units of measure-
ment, tools that detect unit inconsistencies or libraries
that provide units to existing languages.

McKeever, S., Paçaci, G. and Bennich-Björkman, O.
Quantity Checking through Unit of Measurement Libraries, Current Status and Future Directions.
DOI: 10.5220/0007524704410447
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 441-447
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

441

Adding units to conventional programming lan-
guages has a rich history going back to the 1970s and
early 80s, with proposals to extend Fortran (Gehani,
1977) and then Pascal (Dreiheller et al., 1986). The
pioneering foundational work was undertaken by
Wand and O’Keefe (Wand and O’Keefe, 1991). They
revealed how to add dimensions to the simply-typed
lambda calculus, such that polymorphic dimensions
can be inferred in a way that is a natural extension of
Milner’s polymorphic type inference algorithm.

In terms of initial library support for modular or
object-oriented languages, Hilfinger (Hilfinger, 1988)
showed how to exploit Ada’s abstraction facilities,
namely operator overloading and type parameterisa-
tion, to assign attributes for units of measurement to
variables and values.

All of the aforementioned solutions require ei-
ther migration to a new language or annotating the
source code, both of which are burdens on the de-
velopers. A more lightweight methodology is pre-
sented in (Ore et al., 2017) that uses an initial pass to
build a mapping from attributes in shared libraries to
units. The shared libraries contain unit specifications
so this mapping is used to propagate into a source pro-
gramme and, as the authors show, detect inconsisten-
cies.

An alternative pathway is to introduce physi-
cal units into an object oriented modelling platform,
along with a compilation workflow that leverages
OCL expressions (Mayerhofer et al., 2016) or staged
computation (Allen et al., 2004) to derive units where
possible at compile-time. These elegant abstractions
lift the declaration and management of units into soft-
ware models but do not solve the interoperability
problem due to the lack of agreed conventions for
scientific, medical and financial applications of the
Quantity pattern.

Unfortunately we lack an authoritative estimate
of how frequently unit inconsistencies occur or their
cost. Anecdotally we can glean that it is not negli-
gible from experiments described in certain papers.
Cooper (Cooper and McKeever, 2008) developed a
validation tool for CellML, a domain specific lan-
guage for modelling biological systems. He applied
it to the repository of CellML models and, of those
that were found to be invalid, 60% had dimension-
ally inconsistent units. Similarly, the Osprey type
system type system (Jiang and Su, 2006) provides
an advanced unit checker and inference engine for
C. In their paper they describe having applied it to
mature scientific application code and found hitherto
unknown errors. Unfortunately they do not describe
the prevalence or magnitude of these errors. A more
telling statistic is found in (Ore et al., 2017) where

they apply their lightweight unit inconsistency tool to
213 open-source systems, finding inconsistencies in
11% of them.

There are many libraries that provide support for
units in all of the popular programming languages.
However no standard has emerged. In this paper we
argue that the existing design pattern is too broad and
open to interpretation. The rest of this paper is struc-
tured as follows. In Section 2 we provide an introduc-
tion to units of measurement and the Quantity pattern
that provides a standard object oriented solution. In
Section 3 we describe the underlying implementation
strategy of some of the most used unit libraries in the
most popular programming languages. In Section 4
we surmise as to why the Quantity pattern has failed
to galvanise the scientific programming community,
and suggest areas of future work required to promote
better software engineering with regards to units of
measurement. Finally in Section 5 we articulate our
position and contextualise our study further.

2 DESCRIBING UNITS OF
MEASUREMENT

Here, we will first introduce the problem by means of
an example scenario. Two programmers are working
on a system that manages physical quantities using a
popular language such as C#, Java, or Python. The
first programmer wants to create two quantities that
will be used by the second at a later stage. Because
the language does not have support for this type of
construct, he or she decides to do it using integers and
adding comments, like this:
int mass = 10; // in tonnes
int acceleration = 10; // in m.sˆ-2

Now the second programmer wants to use these val-
ues to calculate force using the well-known equation
F = m×a:
int force = mass * acceleration; // 100N

The variable force will now have the value of 100,
assumed to be 100 N. The issue is that the vari-
able mass is actually representing 10 tonnes, not
10 kilograms. This means that the actual value of
the force should be 100000 N (instead of 100 N), off
by a factor of one thousand. Because the quantities
in this example are represented using integers there is
no way for the compiler to know this information and
therefore it is up to the programmers themselves to
keep track of it.

The only reliable way to solve this is try to remove
the human element by having a systematic means
of checking the units of calculations to ensure that

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

442

they are handled correctly. This type of automatic
check is potentially something that could be under-
taken at compile time in a strongly typed language,
but unfortunately very few languages have support for
units of measurement and only one of those is in the
top twenty most popular programming languages, ac-
cording to the TIOBE index (TIOBE, 2018). In all
other languages, it is up to the software developers to
create these checks themselves.

One example of how this can be achieved is to
make sure the compiler knows what quantities are
being used by encapsulating this into a class hierar-
chy, with each unit having its own class. The scenario
above would then look like this instead:

Tonne mass = 10;
Acceleration acceleration = 10; // in m.sˆ-2
Force force = mass * acceleration; // 100000N

Compared to the previous example, here the com-
piler now knows exactly what it is dealing with and
thus the information that the mass is in tonnes is kept
intact and the correct force can be calculated in the
end. This type of solution not only means that differ-
ences in magnitude and simple conversions are taken
care of but also that any erroneous units being used in
an equation can be caught at compile time. However,
making a class hierarchy similar to the one illustrated
above could potentially involve hundreds of units and
thousands of conversions.

A more abstract approach is to bind the value
along with the unit in what is known as the Quantity
pattern (Fowler, 1997).

class Quantity {
private float value;
private Unit unit;

....
}

We can include arithmetic operations to the
Quantity class that ensures addition and subtraction
only succeed when their units are equivalent, or multi-
plication and subtraction generate a new unit that rep-
resents the derived value correctly. Moreover we can
include other useful behaviour such as printing and
parsing to this class.

Units can be defined in the most generic form us-
ing an algebraic definition that includes two types,
base quantities and derived quantities. The base
quantities are the basic building blocks, and the de-
rived quantities are built from these. The base quanti-
ties and derived quantities together form a way of de-
scribing any part of the physical world (Sonin, 2001).
For example length (metre) is a base quantity, and
so is time (second). If these two base quantities
are combined they express velocity (metre/second or

metre× second−1) which is a derived quantity. The
International System of Units (SI) defines seven base
quantities (length, mass, time, electric current, ther-
modynamic temperature, amount of substance, and
luminous intensity) as well as a corresponding unit
for each quantity (The National Institute of Standards
and Technology, 2015).

These physical quantities are also organised in a
system of dimensions, each quantity representing a
physical dimension with a corresponding symbol (L
for length, M for mass, T for time etc.).

type base = L | M | T ...

Any derived quantity can be defined by a combination
of one or several base quantities raised to a certain
power. These are called dimensional exponents (Bu-
reau International des Poids et Mesures, 2014).

type derived = Base of base
| Times of (derived * derived)
| Exp of (derived * int)

Dimensional exponents are not a type of unit or
quantity in themselves but rather another way to de-
scribe an already existing quantity in an abstract way.
Using the same example of velocity as before, it can
be expressed as:

Times (L, Exp (T,-1))

In concrete syntax this is instead expressed as L×T−1,
where L represents length and T−1 represents the
length being divided by a certain time. Represent-
ing units in this manner is not always optimal as a
normal form exists which makes storage and, more
importantly, comparison a lot easier. Any system of
units can be derived from the base units as a prod-
uct of powers of those base units: basee1×basee2 ×
. . .baseen , where the exponents e1, . . . ,en are ratio-
nal numbers. Thus an SI unit can be represented as
a 7-tuple 〈e1, . . . ,e7〉 where ei denotes the i-th base
unit; or in our case e1 denotes length, e2 mass, e3 time
and so on. Thus 3 Newtons would be represented as
〈1,1,−2,0,0,0,0〉, or 3 kg.m.sˆ-2. Dimensionless
units are represented by a tuple whose 7 components
are all 0. Interestingly any unit from any other system
can be expressed in terms of SI units. Conversions can
be undertaken using mostly multiplication factors, but
in some case offsets are required too.

This suggests implementing units through the fol-
lowing class outline:

class Unit {
private int [7] dimension
private float [7] conversionFactor
private int [7] offset
private String name
...
boolean isCompatibleWith (Unit u)

Quantity Checking through Unit of Measurement Libraries, Current Status and Future Directions

443

boolean equals (Unit u)
Unit multiplyUnits (Unit u)
Unit divideUnits (Unit u)

}

The dimension array contains the 7-tuple of base
unit exponentials. The attributes conversionFactor
and offset enable conversions from this unit system
to the SI units, while name is so that users can define
their own unit system.

The class Unit also defines operations to compare
and combine units. The method isCompatibleWith
checks whether two units are compatible for being
combined, such as miles and centimetres. While
equals returns true if the units are exactly the same,
which is used when adding or subtracting quan-
tities. When two quantities are multiplied then
multiplyUnits adds the two dimension arrays.
Correspondingly, divideUnits subtracts each of the
elements of the dimension array.

The idea behind a software design pattern is a gen-
eral, reusable solution to a commonly occurring prob-
lem. Due to the lack of an agreed interface to the
Quantity pattern, non-compatible domain specific in-
stantiations have proliferated as we shall demonstrate
in the next section.

3 ANALYSIS

A study of Unit of Measurement libraries (Bennich-
Björkman and McKeever, 2018) has shown that there
is a lot of reinvention and little collaboration. By
analysing popular open-source repositories, the au-
thors discovered close to 300 active libraries for the
top twenty programming languages. A further reduc-
tion based on features, reputation and development
status brought this number down to 82 as shown in
Figure 1.

We have looked in more detail at a number of
these prominent libraries to elucidate how they op-
erate, their feature set and potential for interoperabil-
ity. All of the libraries we analysed implemented the
Quantity pattern, albeit in a number of different ways.
How each library in each specific language imple-
mented the pattern is detailed below.

3.1 Java

Two of the most prominent libraries written
in Java are CaliperSharp and the JSR 385
project (github.com/point85/CaliperSharp,
github.com/unitsofmeasurement/unit-api).

CaliperSharp implements the Quantity pattern
through the use of the class Quantity in which the

Amount is used to model the magnitude of the quan-
tity and UnitOfMeasure is used to specify the unit
for the quantity. In CaliperSharp, UnitOfMeasure is
defined as an enumeration which contains all unit def-
initions that the library supports.

On the other hand JSR 385 implements the
Quantity pattern through the generic interface
Quantity<T> which each defined (specific) quantity
then implements. For example:

Acceleration extends Quantity<Acceleration>

The quantity interface itself contains a definition
of a unit through the use of another interface, Unit.
This Unit interface also utilises the concept of physi-
cal dimensions to define the unit.

3.2 C++

The leading library for C++ is BoostUnits
(github.com/boostorg/units). It is in effect the
de facto standard and is actively developed, has very
good documentation, supports many units as well as
numerous different constants. BoostUnits is also part
of a big development team (Boost.org). However
Boost exploits the C++ template meta-programming
library so it is more than just a library as it supports a
staged computation model similar to MixGen (Allen
et al., 2004).

None of the other prominent programming lan-
guages have this flexible compilation strategy so it
is an anomaly and even though it implements di-
mensional analysis in a general and extensible man-
ner, treating it as a generic compile-time meta-
programming problem, this style of software devel-
opment is radically different than a single stage com-
pilation.

The key advantage of this staged approach is
that with appropriate compiler optimisation, no run-
time execution cost is introduced, encouraging the
use of this library to provide dimension checking in
performance-critical code. Nonetheless, the core fea-
ture set is not too distinct from other libraries.

3.3 Python

The Astropy library (github.com/astropy/astropy)
has the single most commits out of all those presented
in (Bennich-Björkman and McKeever, 2018), which
implies that it is also one of the most well-developed.
Like the previously presented libraries, Astropy has
the Quantity pattern at its root and, as it has so many
commits and contributors, it is feature rich. Much of
the functionality is built on top of its well engineered
core.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

444

Figure 1: Leading unit libraries per language (Bennich-Björkman and McKeever, 2018).

Another popular Python library is Pint.
(github.com/hgrecco/pint). It implements the
Quantity pattern explicitly as the central unit in the
library is the Quantity class with a magnitude and
a unit of measurement and this is how all units are
defined. For example:

>>> import pint
>>> ureg = pint.UnitRegistry()
>>> 3 * ureg.meter + 4 * ureg.cm
<Quantity(3.04, ’meter’)>

3.4 C#

Looking at the number of commits, con-
tributors, comprehensiveness of the doc-
umentation as well as adoption, UnitsNet
(github.com/angularsen/UnitsNet) is one of
the best libraries overall, not only for C#.

Although UnitsNet also implements the same pat-
tern through the IQuantity interface, this is achieved
in a slightly different manner to other libraries shown
here. The type of the quantity and the value for the
seven base dimensions are the only attributes that are
defined in the interface. The magnitude (or value) of
the quantity is added later as an operation for a spe-
cific unit that is calculated. The type for each quantity
is defined as QuantityType which is an enumeration
containing all the quantities that the library supports.
This is similar to how it is handled in the CaliperSharp
Java library mentioned earlier.

In UnitsNet each specific unit is defined as its own
class and utilises operator overloading to convert be-
tween units. The library also employs automatic code
generation to produce all the different conversions be-
tween different units.

Another capable library written in C# is Gu.Units
(github.com/GuOrg/Gu.Units). Similar to UnitsNet
it implements the Quantity pattern through the
IQuantity interface which defines a value (SiValue)
and a unit (SiUnit).

The unit of a quantity is defined through the in-
terface IUnit which contains information about the
symbol for the unit, the base unit and ways to con-
vert the value of unit to its base value (kilometre to
metre for example) or from the base value. Another
similarity to UnitsNet is that Gu.Units also uses code
generation which leverages these interfaces to make
concrete quantities.

3.5 Javascript

A popular library for JavaScript is JS Quantities
(github.com/gentooboontoo/js-quantities). With
over 300 commits, it is one of libraries with
the most commits for the JavaScript language.
The library is also based upon another popu-
lar physical quantity library called Ruby Units
(github.com/olbrich/ruby-units) which is also
quite mature.

Similar to Pint, JS Quantities implements the
Quantity pattern through a general class called Qty,
which represents a generic quantity. A user can then
create whatever quantity they want through this class.
qty = Qty(’1m’);
qty = Qty(’1 N*m’);
qty = Qty(’1 m/s’);
qty = Qty(’1 mˆ2/sˆ2’);
qty = Qty(’1 mˆ2 kgˆ2 Jˆ2/sˆ2 A’);
qty = Qty(’1 attoparsec/microfortnight’);

In the example above, the use of dimensions and
dimensional exponents in JS Quantities is also show-

Quantity Checking through Unit of Measurement Libraries, Current Status and Future Directions

445

cased through the use of the Qty class. Similar to
other libraries, all the available quantities are defined
in an enumeration.

4 EVALUATION AND FUTURE
WORK

In this section we postulate as to why we have arrived
at this state of affairs when the underlying comput-
ing science is well understood and Fowler (Fowler,
1997) provided an effective object model for units
of measurement some years ago. The Quantity pat-
tern has been shown to be applicable to mathematical
calculations, medical observations and financial con-
versions. A more detailed and specialised version of
this pattern is provided by the Physical Quantity pat-
tern (Krisper et al., 2017) that looks in more depth
at the requirements of the physical and mathematical
sciences, presenting interfaces to enforce the use of
explicit quantity types. The key aspect is that the re-
search challenges are not technical in nature, more
work is required to create robust interfaces from the
Quantity pattern that engage the respective communi-
ties and gather traction. Even if these well engineered
interfaces existed, we suggest two other reasons that
hamper uptake.

The first reason was put forward by
Damevski (Damevski, 2009) and is that scien-
tific programmers should not be burdened by units
at each statement in their programs, but that units
should be present in software component interfaces.
This makes sense when you consider that research
groups in, say, physics and chemistry departments
have evolved their own conventions, methodologies
and ontologies. Problems can arise when they try
to collaborate over energy conversions, for instance.
While the physicist works in terms of electron volts
per formula unit, the chemist thinks in terms of
kilojoules per mole. In such cases not only are the
units different but so are the magnitudes. In this
mode, each research group should be free to develop
their codes without unit annotations but when they
come to combining their codes with others, the
conversions need to be explicitly introduced.

The Logic of Collective Action (Olson, 2009) de-
velops a theory of political science and economics of
concentrated benefits versus diffuse costs. Its central
argument is that concentrated minor interests will be
overrepresented and diffuse majority interests due to
a free-rider problem that is stronger when a group be-
comes larger. This is perhaps an explanation as to
why some of the libraries have continued to exist and
prosper when there are equally good ones for that par-

ticular language. Once developed and a user base has
accrued, due to the open-source nature of the endeav-
our, it becomes necessary to keep supporting the li-
brary as vital code has become dependent on its exis-
tence.

There are two central avenues of further work in
this area. We will interview scientific, medical and
financial developers to elucidate their requirements.
Some users might be content with very lightweight
support, as envisaged by Damevski (Damevski,
2009). This would allow diverse teams to collaborate
even if their domain specific environments or choice
of unit systems were to some extent incompatible.
However other users might require a more robust en-
vironment in which all variables are given an explicit
unit or are dimensionless, and a checker will ensure
operational unit correctness. In-between we might al-
low static or dynamic unit conversions, the ability to
define new domain specific unit systems and a degree
of flexibility that unit variables allow. Whether all of
these features need to be supported, and to what ex-
tent, is an open question that we hope to address in
the near future so that the Quantity pattern can be en-
riched with an effective API for modelling and imple-
menting units of measurement.

A second avenue that is urgently required is an un-
derstanding of the true cost of unit of measurement er-
rors. The big disasters grab the headlines but it is the
more mundane day to day outlay of defective code,
leading to incorrect results that could be more costly
yet is not reported. We mentioned earlier some infor-
mal figures describing the extent of the problem but
a more accurate understanding is needed. An open
source repository of defective unit error code would
allow researchers to explore techniques to detect, as-
sist and possibly recover from some form of unit er-
rors.

5 CONCLUSION

Our initial study of unit libraries (Bennich-Björkman
and McKeever, 2018) highlighted an abundance of
similar contributions without a clear standard emerg-
ing. Unit libraries allow developers to faithfully rep-
resent quantities in their code and provide assurances
over correctness. These features are desirable from
both model and software engineering perspectives
as they reduce errors and encourage maintainability.
However they are not a requirement for creating exe-
cutable code.

In order to escape from this impasse we need
to know how people actually work with units. Are
unit libraries sufficient? How can we ensure that

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

446

they are used unless mandated by the organisation.
Modern development workflows might favour sepa-
rate unit inferencing tools or unit checking to be un-
dertaken through testing instead. The needs of mod-
ern commercial systems, deployed on a vast number
of distinct devices, developed with a plethora of lan-
guages, evolving daily through continuous integration
is rather different to those of an academic research
group.

Numerous stakeholders, from developers upwards
to project managers in both small and large organisa-
tions need to be interviewed. Rather than focusing on
unit library or tool support, the purpose of our current
ongoing research is to delve into these broader top-
ics using questionnaires to understand the underlying
issues and causes.

REFERENCES
Allen, E., Chase, D., Luchangco, V., Maessen, J.-W., and

Steele, Jr., G. L. (2004). Object-oriented units of mea-
surement. In Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, OOP-
SLA ’04, pages 384–403, New York, NY, USA. ACM.

Bennich-Björkman, O. and McKeever, S. (2018). The next
700 unit of measurement checkers. In Proc. SLE,
pages 121–132. ACM.

Bureau International des Poids et Mesures (2014). SI
Brochure: The International System of Units
(SI), 8th Edition, Dimensions of Quantities.
Online https://www.bipm.org/en/publications/si-
brochure/chapter1.html. Last Accessed July 2nd,
2018.

Cooper, J. and McKeever, S. (2008). A model-driven
approach to automatic conversion of physical units.
Softw. Pract. Exper., 38(4):337–359.

Damevski, K. (2009). Expressing measurement units in
interfaces for scientific component software. In Pro-
ceedings of the 2009 Workshop on Component-Based
High Performance Computing, CBHPC ’09, pages
13:1–13:8, New York, NY, USA. ACM.

Dreiheller, A., Mohr, B., and Moerschbacher, M. (1986).
Programming pascal with physical units. SIGPLAN
Not., 21(12):114–123.

Fowler, M. (1997). Analysis Patterns: Reusable Objects
Models. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Garny, A., Nickerson, D., Cooper, J., dos Santos, R. W.,
Miller, A., McKeever, S., Nielsen, P., and Hunter, P.
(2008). Cellml and associated tools and techniques.
Philosophical Transactions of the Royal Society, A:
Mathematical, Physical and Engineering Sciences,
366.

Gehani, N. (1977). Units of measure as a data attribute.
Computer Languages, 2(3):93 – 111.

Hilfinger, P. N. (1988). An ada package for dimen-
sional analysis. ACM Trans. Program. Lang. Syst.,
10(2):189–203.

Jiang, L. and Su, Z. (2006). Osprey: A practical type sys-
tem for validating dimensional unit correctness of c
programs. In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages
262–271, New York, NY, USA. ACM.

Joint Committee for Guides in Metrology (JCGM) (2012).
International Vocabulary of Metrology, Basic and
General Concepts and Associated Terms (VIM). On-
line https://www.bipm.org/en/about-us/. Last Ac-
cessed November 20th, 2018.

Krisper, M., Iber, J., Rauter, T., and Kreiner, C. (2017).
Physical quantity: Towards a pattern language for
quantities and units in physical calculations. In Pro-
ceedings of the 22Nd European Conference on Pattern
Languages of Programs, EuroPLoP ’17, pages 9:1–
9:20, New York, NY, USA. ACM.

Mayerhofer, T., Wimmer, M., and Vallecillo, A. (2016).
Adding uncertainty and units to quantity types in
software models. In Proceedings of the 2016 ACM
SIGPLAN International Conference on Software Lan-
guage Engineering, SLE 2016, pages 118–131, New
York, NY, USA. ACM.

Modelica (2018). Modelica and the Modelica Association.
Online https://www.modelica.org. Last Accessed on
November 12th, 2018.

Olson, M. (2009). The Logic of Collective Action: Pub-
lic Goods and the Theory of Groups, Second printing
with new preface and appendix, volume 124. Harvard
University Press.

Ore, J.-P., Detweiler, C., and Elbaum, S. (2017).
Lightweight detection of physical unit inconsisten-
cies without program annotations. In Proceedings
of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2017, pages
341–351, New York, NY, USA. ACM.

Ribeiro, F. G. C., Rettberg, A., Pereira, C. E., and Soares,
M. S. (2016). An analysis of the value specification
language applied to the requirements engineering pro-
cess of cyber-physical systems. IFAC-PapersOnLine,
49(30):42 – 47. 4th IFAC Symposium on Telematics
Applications TA 2016.

Sonin, A. A. (2001). The physical basis of dimensional
analysis. Technical report, Massachusetts Institute of
Technology.

Stephenson, A., LaPiana, L., Mulville, D., Peter Rut-
ledge, F. B., Folta, D., Dukeman, G., Sackheim,
R., and Norvig, P. (1999). Mars Climate Orbiter
Mishap Investigation Board Phase 1 Report. On-
line https://llis.nasa.gov. Last Accessed on November
20th, 2018.

The National Institute of Standards and Technology (2015).
International System of Units (SI): Base and Derived.
Online https://physics.nist.gov/cuu/Units/units.html.
Last Accessed July 2nd, 2018.

TIOBE (2018). Tiobe (The Importance of Being Earnest)
company index for November, 2018. Online
https://www.tiobe.com/tiobe-index/. Last Accessed
on November 20th, 2018.

Wand, M. and O’Keefe, P. (1991). Automatic dimensional
inference. In Computational Logic - Essays in Honor
of Alan Robinson, pages 479–483.

Quantity Checking through Unit of Measurement Libraries, Current Status and Future Directions

447

