
Towards Privacy-aware Software Reuse

Iris Reinhartz-Berger1, Anna Zamansky1 and Agnes Koschmider2
1Department of Information Systems, University of Haifa, Haifa, Israel

2Institute AIFB, Karlsruhe Institute of Technology, Karlsruhe, Germany

Keywords: Reuse, Privacy, Variability Analysis, Compliance.

Abstract: As software becomes more complex, reusing and integrating artifacts from existing projects that may be taken
from open or organization-proprietary repositories is becoming an increasingly important practice. This
practice requires an in-depth understanding of the projects to be reused and particularly their common and
variable features and their non-functional requirements. Different approaches have been suggested to analyze
similarity and variability of different kinds of artifacts (mainly, requirements and code), e.g., clone detection
and feature mining. These approaches, however, mainly address functional aspects of the software artifacts,
while mostly neglecting aspects dictated by non-functional requirements. The recent progress with the
General Data Protection Regulation (GDPR) highlights the importance of handling privacy concerns in
software development. However, existing approaches do not directly refer to privacy challenges in software
reuse. In this paper we propose integrating these two lines of research and introduce a privacy-aware software
reuse approach. Particularly, we suggest to extend VarMeR – Variability Mechanisms Recommender – which
analyzes software similarity based on exhibited behaviors and recommends on polymorphism-inspired reuse
mechanisms, with privacy awareness considerations. These considerations are reflected in “privacy levels” of
the reused artifacts.

1 INTRODUCTION

Software reuse has the potential to increase
productivity, reduce costs and time-to-market and
improve software quality (Lim, 1994). Applying this
practice requires an in-depth understanding of the
projects to be reused and particularly their common
and variable features – functions and qualities.
Different approaches have been suggested to analyze
similarity and variability of different kinds of
artifacts. Clone detection approaches, for example,
propose textual, lexical, metric, tree/graph, and other
comparisons, for detecting segments (primarily of
code) that are similar according to some definition of
similarity (Rattan et al. 2013). Feature mining
includes detection – extraction of relevant
information from the input artifacts and analysis – use
of the information to infer, design and organize
partitions that cluster the functional features of the
input artifacts (Assunção et al., 2017). The artifacts
are mainly requirements and code.

In previous work a high-level approach was
suggested for analyzing reuse opportunities based on
behaviors rather than specific implementations

(Zamansky and Reinhartz-Berger, 2017). The
approach, named VarMeR – Variability Mechanisms
Recommender – has been developed for analyzing
and visualizing similarity relationships across
software products, which potentially may form
product lines (Reinhartz-Berger and Zamansky,
2018). It is based on an ontological framework of
software behavior (Reinhartz-Berger et al., 2015) and
introduces three polymorphism-inspired mechanisms
(parametric, subtyping, and overloading). The
analysis outcomes are visualized as graphs whose
nodes are the products (or parts of them) and the
edges represent the potential appropriateness of
applying the different polymorphism-inspired
mechanisms.

The aforementioned approaches, including
VarMeR, mainly address functionality, while mostly
neglecting aspects dictated by non-functional
requirements. Particularly, privacy concerns are not
explicitly considered when recommending on reuse
opportunities. The General Data Protection
Regulation (GDPR), in application since May 25th
2018, imposes organizations to consider privacy
throughout the complete development process. Due to

448
Reinhartz-Berger, I., Zamansky, A. and Koschmider, A.
Towards Privacy-aware Software Reuse.
DOI: 10.5220/0007566204480453
In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2019), pages 448-453
ISBN: 978-989-758-358-2
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

the increasing attention that privacy compliance has
been receiving, through GDPR, this position paper
suggests making software reuse explicitly aware of
privacy compliance. More concretely, we suggest to
extend VarMeR with analyses that are based on
privacy considerations that reflect the “privacy
levels” of the components recommended for reuse.

The rest of this paper is organized as follows.
Section 2 reviews the relevant literature on privacy
metadata (patterns and metamodels), while Section 3
briefly reviews VarMeR. Section 4 elaborates on the
main contribution – a suggestion for privacy-aware
software reuse. Finally, Section 5 summarizes and
refers to the future work.

2 PRIVACY - PATTERNS AND
METAMODELS

Privacy-by-design (Cavoukian, 2011) refers to the
simple idea of embedding privacy within the design
of a new technological system, rather than trying to fix
problems afterwards, when often it is too late. To
support privacy-by-design, Hoepman (2014)
introduced eight privacy design patterns: minimize,
hide, separate, aggregate, inform, control, enforce, and
demonstrate. These patterns provide an
implementation of the legal notion of data protection,
bridging the gap between data protection requirements
set out in law, and system development practice
(Danezis et al., 2015). For instance, the most basic
privacy design strategy is data minimization, which
states that the amount of personal information that is
processed should be minimal (Gürses et al., 2011). The
realization of each privacy design pattern, however,
requires using different privacy techniques, which
challenges the fulfilment of the legal notion of data
protection. For instance, privacy impact assessment
approaches support realizing the minimize design
pattern. Anonymization techniques are recommended
to realize the aggregate design pattern, which states
that personal information should be processed at the
highest level of aggregation and with the least
possible detail in which it remains useful. These eight
privacy design patterns are compliant with the GDPR
and can be considered as requirements for the design
of privacy-by-design systems.

Privacy Level Agreements (PLAs) aim to
standardize the way cloud providers describe their
data protection practices. They are considered as a
way to implement GDPR. D’Errico and Pearson
(2015) suggest an ontology-based model for
representing the information disclosed in PLAs in

order to support different automatic analyses, such as
service offering discovery and comparison.
Diamantopoulou et al. (2017) presented a GDPR-
based metamodel for PLAs to support privacy
management, based on analysis of privacy threats,
vulnerabilities and trust relationships in information
systems, whilst complying with laws and regulations.

While most of the literature consider privacy on a
technological level, some works refer to the
organizational level. For instance, Feltus et al. (2017)
introduced a privacy metamodel and discuss and
demonstrate how the metamodel may support
management of the privacy in enterprises involved in
interconnected societies, by integrating the privacy
metamodel with the systemic business ecosystem.
Further related work on the organizational level can
be found in Tom et al. (2018) where a GDPR model
is introduced aiming to provide a simple, visual
overview to aid process implementers in
understanding the associations between different
entities in the GDPR. The model is positioned as part
of a larger approach for developing organizational
privacy policies and extracting compliance rules.

All these approaches generally refer to “privacy
awareness” while developing software. We suggest
specifically percolating privacy concerns when
making reuse decisions. Although such an approach
can be applied on different reuse methods, we decided
to apply it first to VarMeR, which goes beyond clone
detection and feature mining, and actually
recommends on reuse opportunities through three
polymorphism-inspired reuse mechanisms.

3 VarMeR

VarMer (Reinhartz-Berger et al., 2015; Zamansky
and Reinhartz-Berger, 2017; Reinhartz-Berger and
Zamansky, 2018) follows a three step process,
depicted in Figure 1. In the first step, the exhibited
behaviors are extracted from the input artifacts (e.g.,
object-oriented code), each of which may belong to a
different software product (P1...Pn). A behavior is
represented via two descriptors: shallow – which
refers to the interface of the behavior, including its
name, the parameters passed, and the returned type,
and deep – which refers to the transformation done by
the behavior to the state variables, manifested by the
attributes used and the attribute modified.

In the second step, the extracted behaviors are
compared using a similarity measure (e.g., based on
semantic nets or statistical techniques (Mihalcea et
al., 2006)). This way a similarity mapping between
the behavior constituents (namely, parameters and

Towards Privacy-aware Software Reuse

449

returned type for the shallow descriptor and attribute
used and attribute modified for the deep descriptor) is
applied. Three cases are of interest:

1. USE – the similarity mapping is bijection (each
constituent of behavior 1 has exactly one
counterpart in behavior 2 and vice versa).

2. REF (abbreviation for refinement) – at least one
constituent in behavior 1 has more than one
counterpart in behavior 2.

3. EXT (abbreviation for extension) – at least one
constituent in behavior 1 has no counterpart in
behavior 2.

Based on the comparison results, the following
polymorphism-inspired mechanisms can be
recommended in the third step (see Table 1):

1. Parametric polymorphism for similar behaviors
in terms of both shallow and deep descriptors.

2. Subtyping (inclusion) polymorphism for similar
behaviors in terms of shallow descriptors and
refined or extended behaviors in terms of deep
descriptors.

3. Overloading for similar behaviors in terms of
shallow descriptors and different behaviors in
terms of deep descriptors.

Figure 1: VarMeR process.

Table 1: Characteristics of Polymorphism-Inspired
Mechanisms.

Shallow Deep Polymorphism-Inspired
mechanism

USE USE Parametric

USE REF Subtyping

USE EXT

USE REF+EXT

USE None Overloading

The outcomes of VarMeR are visualized as
graphs whose nodes are the products (or parts of
them) and the edges represent the potential
appropriateness of applying the different
polymorphism-inspired mechanisms. Each product is
visualized in a unique color. An example of VarMeR
outcomes is shown in Figure 2. The components of
two products (depicted in red and green) are
compared.

Figure 2: A snapshot of VarMeR comparing two products.

One important application of the VarMeR
approach, described in (Reinhartz-Berger and
Zamansky, 2018), is for supporting decisions
concerning turning a set of potentially similar
products into a product line, or in other words
measuring product-line ability of a set of products
(Berger et al., 2014). The idea is to consider various
subgraphs of VarMeR as potential core assets,
namely, reusable artifacts that can be used by
different products in the line. This is done analyzing
different characteristics: the number of products in
the potential core assets (i.e., the number of colors in
the sub-graph), and the number of parametric,
overloading and subtyping relations.

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

450

After setting the minimal number of products in a
core asset to m, we define the m-color behavioral
similarity degree of a sub-graph G’=(V’, E’) that is
composed of at least m colors as a triplet (PS, SS,
OS), where:

PS =
ଶಸᇲ(ିଵ) is the parametric similarity degree,

SS =
ଶௌಸᇱ(ିଵ) is the sub-typing similarity degree,

OS =
ଶைಸᇱ(ିଵ) is the overloading similarity degree,

PG’, SG’, OG’ are the numbers of parametric,
subtyping and overloading edges in G’, respectively,

k=|V’| is the number of nodes in the sub-graph.

The 3-color behavioral similarity degree of the
sub-graph G1 in Figure 3 is (1, 0, 0), indicating on a
3-colored “maximally parametric” asset. For G2 the
behavioral similarity degree is lower, (0.33, 0, 0.67),
indicating on a “less parametric” and “more
overloading” 2-colored asset.

Figure 3: Example of product-line ability metrics.

4 PRIVACY AWARENESS

The main idea behind our suggested approach is
preferring reuse of components that are more
complaint with privacy regulations. To this end, we
suggest refining the process described in Figure 1 as
shown in Figure 4.

Figure 4: Privacy-aware VarMeR process.

We first introduce the notion of privacy levels into
the context of software reuse. Privacy level of a
software component (class, operation, project, etc.) is
metadata concerning the privacy compliance of this
component. The documentation of privacy levels may
be done manually, semi-automatically, or
automatically (if appropriate tools are developed),
and may follow any privacy compliance foundation
(such as the design patterns and metamodels reviewed
in Section 2).

We can then extend the VarMeR approach to
address the information on privacy levels in the
following way (see step 1.2 in Figure 4). Each node
in VarMeR will exhibit privacy metadata – a vector
of elements of the form p:x, where p is some privacy
compliance principle, pattern, meta-element, or
requirement, and x is its value for the certain node. x
may be Boolean indicating whether the principle
holds or not. Alternatively, it may be of some other
well-ordered (and so comparable) type, indicating the
degree of compliance. In the context of the eight
privacy design patterns (Hoepman, 2014), the vector
can look as follows: <minimize: true, hide: true,
separate: false, aggregate: false, inform: true, control:
true, enforce: true, demonstrate: true> (see Figure 5).

The challenge now is combining the information
on privacy levels with existing analysis of VarMeR
on behavioral similarity, leading to useful metrics that
can guide reuse decisions (product-line ability in our
case). Intuitively, we would like to be able to identify
those subgraphs which represent similar enough
elements, but also have high enough privacy levels.
When focusing on behavioral considerations of
similarity, an intuitive ordering is imposed on the
similarity degrees: the more parametric the subgraph

Towards Privacy-aware Software Reuse

451

is, the more similarity it contains. However, with
privacy levels involved, the ordering is not so trivial.
This requires more sophisticated methods for
weighing the different alternatives and choosing the
most appropriate ones.

Figure 5: VarMeR equipped with privacy metadata.

One particularly relevant approach here is multi-
criteria decision making (MCDM) (Velasquez and
Hester, 2013), which allows to explicitly weigh and
evaluate multiple non-comparable criteria in decision
making. A typical outcome of MCDM is a decision
matrix shown in Figure 6. The matrix is constructed
after given m different alternatives that should be
judged against n chosen criteria. The cell xij in the
matrix holds the evaluation given to alternative i with
respect to criterion j, and is usually computed
according to a weight assigned to each criterion.

Figure 6: The structure of a multi-criteria decision matrix.

In the context of our problem, the above approach
can be applied as follows (see step 2 in Figure 4). The
alternatives A1,…,Am are the different sub-graphs
which can potentially form core assets in a product
line. The criteria they are judged against can be
related to behavioral parameters (e.g., PS, OS, SS as
defined above), as well as criteria reflecting privacy
levels. Just to give a simple concrete example,
consider Figure 7 which adds privacy levels on top of
Figure 3. Assume p1, p2, p3 are three privacy design

patterns, e.g., minimize, aggregate, and hide,
respectively. + indicates following the pattern and –
indicates violating it.

Figure 7: Example of privacy levels.

Suppose that the privacy level of the sub-graph is
computed by applying a logical AND operation on all
of its nodes. Then the decision matrix in Table 2 is
obtained.

Table 2: Example of a multi-criteria decision matrix.

 PS SS OS P1 P2 P3

G1 1 0 0 0 0 0

G2 0 0.33 0.67 1 1 1

We can see that while on the behavioral level G1
is rated higher than G2, taking privacy considerations
into account changes the picture. This simple
example demonstrates how reuse decisions may be
affected by privacy considerations and justify the
need for the privacy-aware software reuse suggested
and demonstrated in this paper.

5 SUMMARY AND FUTURE
WORK

The research fields of software reuse and of privacy
have so far been going in orthogonal directions. In
this position paper we have proposed a concrete
framework for combining the two fields of research.
This combination is of increasing importance due to
the continuous GDPR efforts, which bring about
dramatic changes in the way software will be
developed in organizations, while at the same time,
software reuse practices are increasing both from
organization-proprietary repositories, and from open
source repositories, where the tracking of privacy
meta-data is even more challenging.

 Minimize
 Hide
 Separate:
 Aggregate:
 Inform
 Control
 Enforce
 Demonstrate

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

452

The idea behind the proposed framework is to
integrate reuse decisions made on the basis of
VarMeR’s behavioral analysis of software artifacts
with privacy considerations. More concretely, we
demonstrated how taking privacy considerations
explicitly into account can affect product-line ability
decisions. This raises several interesting challenges
for future research. First of all, we proposed the
notion of privacy level meta-data – what it should
include, and how it should be represented is a
challenging question, in light of the fact that more and
more privacy design patterns for software developers
are emerging. We intentionally left the notion of
privacy levels in this paper very abstract to open the
door for discussions on the nature of this metadata.

Secondly, we envision the extension of VarMeR
approach to the setting of software search and
integration decisions, where again privacy
considerations can be an important factor. To this
end, a query language is needed to support querying
a repository of software components and
recommending on the most suitable ones in terms of
behavioral similarity and privacy considerations.

To summarize, our goal here was to bring to
attention the fact that privacy considerations matter
for reuse decisions, and reuse decisions affect privacy
compliance. This circle deserves further discussion,
which will hopefully be started by this position paper.

REFERENCES

Assunção, W. K., Lopez-Herrejon, R. E., Linsbauer, L.,
Vergilio, S. R., & Egyed, A. (2017). Reengineering
legacy applications into software product lines: a
systematic mapping. Empirical Software Engineering,
22(6), 2972-3016.

Berger, C., Rendel, H. and Rumpe, B. (2014). Measuring
the Ability to Form a Product Line from Existing
Products. Proceedings of the Fourth International
Workshop on Variability Modelling of Software-
intensive Systems (VaMoS).

Cavoukian, A. (2011). Privacy by design in law, policy and
practice. A white paper for regulators, decision-makers
and policy-makers.

Danezis, G., Domingo-Ferrer, J., Hansen, M., Hoepman, J-
M., Le Métayer, D., Tirtea, R., Schiffner, S. (2015).
Privacy and Data Protection by Design - from policy to
engineering. CoRR, abs/1501.03726, arXiv.org/

D’Errico, M., & Pearson, S. (2015, March). Towards a
formalised representation for the technical enforcement
of privacy level agreements. In 2015 IEEE
International Conference on Cloud Engineering (IC2E)
(pp. 422-427). IEEE.

Diamantopoulou, V., Angelopoulos, K., Pavlidis, M., &
Mouratidis, H. (2017). A Metamodel for GDPR-based

Privacy Level Agreements. In ER Forum/Demos (pp.
285-291).

Feltus, C., Grandry, E., Kupper, T., & Colin, J. N. (2017).
Model-driven Approach for Privacy Management in
Business Ecosystem. In MODELSWARD (pp. 392-
400).

Gürses, S., Troncoso, C. & Diaz, C. (2011). Engineering
privacy by design. In Conference on Computers,
Privacy & Data Protection (CPDP 2011).

Hoepman, J. H. (2014, June). Privacy design strategies. In
IFIP International Information Security Conference
(pp. 446-459). Springer, Berlin, Heidelberg.

Lim, W. C. (1994). Effects of reuse on quality, productivity,
and economics. IEEE software, (5), 23-30.

Mihalcea, R., Corley, C., and Strapparava, C. (2006).
Corpus-based and knowledge-based measures of text
semantic similarity. American Association for Artificial
Intelligence (AAAI’06), pp. 775-780.

Rattan, D., Bhatia, R., and Singh, M. (2013). Software
clone detection: A systematic review. Information and
Software Technology, 55(7), 1165-1199.

Reinhartz-Berger, I., Zamansky, A., & Kemelman, M.
(2015). Analyzing variability of cloned artifacts: formal
framework and its application to requirements. In
International Conference on Enterprise, Business-
Process and Information Systems Modeling (pp. 311-
325). Springer, Cham.

Reinhartz-Berger, I., & Zamansky, A. (2018). A Behavior-
Based Framework for Assessing Product Line-Ability.
In International Conference on Advanced Information
Systems Engineering (pp. 571-586). Springer, Cham.

Tom, J., Sing, E., & Matulevičius, R. (2018, September).
Conceptual Representation of the GDPR: Model and
Application Directions. In International Conference on
Business Informatics Research (pp. 18-28). Springer,
Cham.

Velasquez, M., & Hester, P. T. (2013). An analysis of multi-
criteria decision making methods. International
Journal of Operations Research, 10(2), 56-66.

Zamansky, A., & Reinhartz-Berger, I. (2017). Visualizing
Code Variabilities for Supporting Reuse Decisions. In
Symposium on Conceptual Modelling Education (pp.
25-34).

Towards Privacy-aware Software Reuse

453

