
Applying Deep Learning Models to Action Recognition of Swimming 
Mice with the Scarcity of Training Data 

Ngoc Giang Nguyen1, Mera Kartika Delimayanti1,2, Bedy Purnama1,3, Kunti Robiatul Mahmudah1, 
Mamoru Kubo4, Makiko Kakikawa4, Yoichi Yamada4 and Kenji Satou4 

1Department of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa, Japan 
2Department of Computer and Informatics Engineering, Politeknik Negeri Jakarta, Jakarta, Indonesia 

3Telkom School of Computing, TELKOM University, Bandung, Indonesia 
4Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan 

Keywords: Swimming Mouse Behaviour Recognition, Deep Learning, Transfer Learning, Data Scarcity. 

Abstract: Deep learning models have shown their ability to model complicated problems in more efficient ways than 
other machine learning techniques in many application fields. For human action recognition tasks, the 
current state-of-the-art models are deep learning models. But they are not well-studied in applying for 
animal behaviour recognition due to the lack of data required for training these models. Therefore, in this 
research, we proposed a method to apply deep learning models to recognize the behaviours of a swimming 
mouse in two mouse forced swim tests with a limited amount of training data. We used deep learning 
models which are used in human action recognition tasks and fine-tuned them on the largest publicly 
available mouse behaviour dataset to give the models the knowledge about mouse behaviour recognition 
tasks. Then we fine-tuned the models one more time using the small amount of data that we have annotated 
for our swimming mouse behaviour recognition tasks. The good performance of these models in the new 
tasks proved the efficiency of our approach. 

1 INTRODUCTION 

We have been using many animals from mice, fish 
to primates to study biology, psychology or develop 
new types of medicines. In these researches, to 
answer questions such as how animals behave in 
specific environments or how their behaviours 
change after using a new drug, we have to watch and 
annotate many hours of their recorded videos. These 
tasks are time-consuming and costly but essential for 
the researches. Another problem is that human 
assessments are not always consistent, so the 
experiments become harder to reproduce. Therefore, 
we need automated animal behaviour recognition 
systems to delegate these frustrating works to 
computers which are less erroneous and more 
consistent in their assessments. 

The works presented in (Jhuang et al., 2010) and 
(Jiang et al., 2017) both proposed automated mouse 
behaviour recognition systems based on the same 
approach. First, relying on expert knowledge, they 
created feature extractors to extract important 

information from input data, such as the relative 
position of the mouse and some specific points in the 
scene (water faucet or food gate). Then they used the 
extracted features and a classifier to predict the 
behaviours of mice. One drawback of this approach 
is that the feature extractors are only designed for 
specific experiments. For this reason, we can not 
apply these systems for our experiments unless we 
exactly mimic the setups of their experiments or 
redesign the feature extractors and retrain the 
classifiers from scratch. We can avoid this drawback 
by using deep learning models to create our systems. 
Deep learning models are classifiers with built-in 
feature extractors. Thus, these models can learn to 
extract important features from input data without 
any requirement of expert knowledge. The current 
state-of-the-art models in human action recognition 
tasks are deep learning models. However, to achieve 
those high performances, these deep learning models 
have to learn the actions from thousands of minutes 
of annotated videos. Unfortunately, we do not 
usually have such extensive annotated datasets 
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available to train these models for our specific 
experiments. 

In order to palliate the issue related to training 
data scarcity, we proposed a method that does not 
require a large amount of training data to apply deep 
learning models to mouse behaviour recognition 
tasks. In our method, we utilize deep learning 
models pre-trained from human action recognition 
tasks. First, we retrain these models using the largest 
of the current publicly available mouse behaviour 
datasets (Jhuang et al., 2010). We use this step to 
give the models the knowledge about mouse 
behaviour recognition tasks. Then, we use data of 
our specific tasks to fine-tune these models. Because 
the retrained models after the first step have learned 
knowledge about mouse behaviours, we do not need 
a large amount of data to train them for our specific 
tasks in the second step. 

In the next section, we describe the deep learning 
models and the mouse behaviour dataset we used in 
the first step of our proposed method. In Section 3, 
we present the swimming mouse behaviour 
recognition tasks we used to evaluate our method 
and the results of our experiments. Finally, in 
Section 4, we state our conclusions.  

2 METHOD 

As described in the previous section, our proposed 
method has two steps. In the first step, we fine-tune 
deep learning models which were used for human 
action recognition tasks by using the largest publicly 
available mouse behaviour dataset. Then in the 
second step, we train these models again using the 
data we prepared for our swimming mouse 
behaviour recognition tasks. In this section, we give 
the information about the deep learning models and 
the mouse behaviour dataset we used in the first step 
of our method. 

2.1 The Two-Stream I3d Model 

Carreira and Zisserman introduced the Two-Stream 
Inflated 3D ConvNets (Two-Stream I3D model) 
(Carreira and Zisserman, 2018), one of the current 
state-of-the-art deep learning models for human 
action recognition tasks. As reported, the Two-
Stream I3D models achieve 98% of accuracy on 
UCF-101 human action recognition dataset 
(Soomro, Zamir and Shah, 2012) and 80.9% of 
accuracy on HMDB-51 human action recognition 
dataset (Kuehne et al., 2011). These models are 
derived from the Inception-V1 model which uses the 

Inception module architecture (Szegedy et al., 2015). 
Layers of the Inception modules combine filters of 
different sizes and pooling kernels to utilize all their 
good effects in feature extraction. 

To create an I3D model, all 2D filters and 
pooling kernels of an Inception-V1 model are 
inflated to 3D by endowing them with an additional 
temporal dimension, i.e. n × n filters become n × n × 
n filters, and the weights of the 3D filters are 
bootstrapped by repeating the weights of the 
respective 2D filters n times along the new temporal 
dimension. This bootstrap method let the I3D 
models benefit from the learned parameters of the 
pre-trained 2D models. 

In this research, we used the same I3D models’ 
architectures as described in the paper of Carreira 
and Zisserman (Carreira and Zisserman, 2018). The 
models were pre-trained on ImageNet data 
(Russakovsky et al., 2015) for the first step of our 
method. Also reported in the research of Carreira 
and Zisserman, using optical flow data computed 
from RGB data to train a complementary model for 
the model trained on RGB data can help to improve 
the prediction accuracy. Therefore, in this research, 
we also utilized optical flow data, and we 
experimented on various fusion ratios of RGB data 
trained models and optical flow trained models to 
find the best fusion ratio for the swimming mouse 
behaviour recognition tasks. To compute optical 
flow data from the RGB data we used the TV-L1 
algorithm (Zach, Pock and Bischof, 2007).   

2.2 The Mouse Behaviour Dataset 

In the work of Jhuang H. et al. (Jhuang et al., 2010), 
they created a dataset to train their mouse behaviour 
recognition system. They have recorded and 
annotated more than 9000 video clips (~10 hours of 
video) of single housed mice in a home cage. There 
are 8 types of behaviour annotated in this dataset: 
“drink”, “eat”, “groom”, “hang”, “micro-
movement”, “rear”, “rest” and “walk”. 

From the recorded video clips, they selected 
4,200 clips (~2.5 hours of video) that have the most 
unambiguous examples of each behaviour to create a 
subset called “clipped database”. In this research, we 
used this subset for the first step of our method. 

3 EXPERIMENTS & RESULTS 

The mouse forced swim tests are rodent behavioural 
tests used to study about antidepressant drugs, 
antidepressant efficacy of new compounds, and 
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experimental manipulations aimed at preventing 
depressive-like states as described in the research of 
Can A. et al. (Can et al., 2012). In a forced swim 
test, a mouse is placed in a transparent cylinder 
which is filled with water for a certain period of 
time. Naturally, when being placed in such a 
dangerous environment, the mouse will become 
panic and try to escape. But if the mouse has taken 
some antidepressant drugs before, it will be less 
panic than a mouse which hasn’t taken any drug. 
Therefore, by measuring the duration of each 
behaviour of the mouse, such as mobile behaviour 
and immobile behaviour, we can estimate the effect 
of the drug in the mouse. 

 

Figure 1: Example scenes of the side view data and the top 
view data. 

To evaluate the efficiency of our method, we 
annotated two videos from mouse forced swim tests, 
each video has a length of about 5 minutes. The first 
video was recorded from a side view. For this side 
view video we annotated three behaviours: “swim”, 
“struggle” and “float”. The difference between 
“struggle” behaviour and “swim” behaviour is that 
when a mouse is struggling, it just slightly moves 
one of its feet. When a mouse is floating, it is 
immobile. The second video was recorded from a 
top view, and for this video, we annotated two 
behaviours: “mobile” and “immobile”. We showed 
an example scene of each video in Figure 1. 

 

Figure 2: Prediction accuracy in the side view data. 

 

Figure 3: Prediction accuracy in the top view data. 
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Figure 4: Confusion matrix of prediction in the side view 
data. 

 

Figure 5: Confusion matrix of prediction in the top view 
data. 
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In the first step of our experiments, we used 
weights from I3D models’ checkpoints that were 
pre-trained on ImageNet data to initialize parameters 
of the model. We retrained them using the “clipped 
database” dataset. For each sample data, we used 16 
successive frames as an input to the I3D model 
(current frame, its 8 previous frames and its 7 next 
frames). To train the models, we used a momentum 
optimizer with a momentum value equals to 0.9 and 
a learning rate starts from 1e-3 and decays to 5e-5 
after several thousands of iterations. We used the 
dropout technique in fully connected layers with a 
keep-probability of 36% to reduce the effect of 
overfitting when we train the models. 

After the first step, we have two I3D models, one 
was trained on RGB data from “clipped database” 
and the other was trained on optical-flow data from 
“clipped database”. In the second step, we fine-tuned 
the two models using RGB data and optical-flow 
data from the swimming mouse behaviour data that 
we have annotated. To fine-tune the models, we also 
used a momentum optimizer with a momentum 
value of 0.9 and a learning rate starts from 1e-3 and 
decays to 5e-3. We also used the dropout technique 
with a keep-probability of 36%. 

To test the effect of different fusion ratios of 
RGB data trained models and optical flow data 
trained models, we used two parameters flow_weight 
and rgb_weight, i.e. flow_weight = 0.3 then 
rgb_weight = 0.7 and it means the fusion ratio is 
30% of optical flow data trained models and 70% of 
RGB data trained models. In our experiments we 
examined flow_weight values from 0 to 1 with a 
step of 0.1 and respectively with rgb_weight values 
equal to 1 - flow_weight values to find out the best 
fusion ratio. 

To calculate the prediction accuracies of the 
models, we separated the data into 10 folds and 
conducted 10-fold cross-validation. The prediction 
accuracies of our method for each fusion ratio in the 
side view data and the top view data are shown in 
Figure 2 and Figure 3. 

The confusion matrices of the models in the side 
view data for different fusion ratios are shown in 
Figure 4. For the top view data, the confusion 
matrices are shown in Figure 5.  

For the side view data, the models perform well 
on predicting “swim” and “float” behaviours but 
have some difficulty in predicting “struggle” 
behaviours. For the top view data, the models have 
some problems in distinguishing “mobile” and 
“immobile” behaviours because in some “immobile” 
samples the water surface is still shaking as a result 
of the previous “mobile” behaviour. So we may need  
 

more data to help the models understand these cases. 
In the side view swimming mouse behaviour 

recognition task, our method achieved the best 
performance at the fusion ratio of 40% of optical 
flow data trained models and 60% of RGB data 
trained models with the prediction accuracy of 
92.14%. In the top view swimming mouse behaviour 
recognition task, the best performance of our method 
is 85.38% of prediction accuracy with the fusion 
ratio of 70% of optical flow data trained models and 
30% of RGB data trained models. 

4 CONCLUSIONS 

In this research, we have proposed a method to 
apply deep learning models to mouse behaviour 
recognition tasks to achieve high prediction 
accuracies without the requirement of a large 
amount of training data. The results of the 
experiments proved the efficiency of our approach. 

With this approach, we will attempt to create a 
framework to apply deep learning models to general 
mouse behaviour recognition tasks and also for other 
specific mouse related experiments. 

In further researches, we will develop our 
method to apply deep learning models to other 
animal behaviour recognition tasks. 
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