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Abstract: In this work, we use a ceiling-mounted omni-directional camera to detect people in a room. This can be used
as a sensor to measure the occupancy of meeting rooms and count the amount of flex-desk working spaces
available. If these devices can be integrated in an embedded low-power sensor, it would form an ideal extension
of automated room reservation systems in office environments. The main challenge we target here is ensuring
the privacy of the people filmed. The approach we propose is going to extremely low image resolutions, such
that it is impossible to recognise people or read potentially confidential documents. Therefore, we retrained a
single-shot low-resolution person detection network with automatically generated ground truth. In this paper,
we prove the functionality of this approach and explore how low we can go in resolution, to determine the
optimal trade-off between recognition accuracy and privacy preservation. Because of the low resolution, the
result is a lightweight network that can potentially be deployed on embedded hardware. Such embedded
implementation enables the development of a decentralised smart camera which only outputs the required
meta-data (i.e. the number of persons in the meeting room).

1 INTRODUCTION

Recent progress in deep learning has provided rese-
archers with many exciting possibilities that pave the
way towards numerous new applications and challen-
ges. Apart from the academic world, the industry
has also noticed this evolution and shows interest in
adopting these techniques as soon as possible in their
real-life cases. The field of computer vision is a fast-
changing landscape, constantly improving in speed
and/or accuracy on publicly available datasets. Ho-
wever, industrial companies frequently construct their
own datasets which are often not – or incorrectly –
annotated and unavailable for public use. This paper
aims to tackle a very specific real-life scheduling pro-
blem: automatically detecting the occupancy of meet-
ing rooms or flex-desks1 in office buildings, using
only RGB cameras that are mounted on the ceiling.
Indeed, in practice it is often the case that the occu-
pancy of the available meeting rooms is sub-optimal
(i.e. a large meeting room is occupied with only few
participants). On a large scale, this has a significant
economic impact (e.g. the construction of additional
office buildings could be avoided if the occupancy is

1A space where you do not have a fixed desk but use the
available desks, commonly with a reservation list.

improved). Such problems are mainly due to employ-
ees having a reoccurring reservation on a flex-desk
while working from home or empty booked meeting
rooms when the meeting got cancelled. Through the
occupancy detection of each meeting room (and flex-
desk) companies aim to optimise their office space
capacity. Not only for binary cases, used and not
used, but also to optimise the capacities of the meet-
ing rooms by counting the amount of people during a
meeting, opposed to the meeting room capacity.

However, placing cameras in working environ-
ments or public places inherently involves privacy is-
sues. Such issues are strictly regulated by the govern-
mental bodies which in most countries allow such re-
cordings when they are not transmitted to a centrali-
sed system or saved in long term memory. It is ho-
wever allowed to derive, save and transfer generated
meta-data based on images containing people. Apart
from these regulations, the employees present will
have a feeling of unease when a camera is watching
their movements, even when the company claims only
meta-data is being transmitted. To cope with the afo-
rementioned problem, we propose to reduce the reso-
lution of the input images (or even the physical num-
ber of pixels on the camera sensor itself) such that per-
sons become inherently unrecognisable. Evidently,
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Figure 1: The overall system of the automated annotation process and the retraining of the YOLOv2 models.

there is a lower limit in resolution down-sampling: at
a specific point the computer vision algorithms fail to
efficiently detect persons. As such, we need to de-
termine the optimal resolution at which persons are
unrecognisable (to human observers) yet are still au-
tomatically detectable.

One of the main goals of this paper is to evaluate
how low we can go in resolution until the deep lear-
ning algorithms fail to detect people. We thus aim to
investigate the trade-off between input image resolu-
tion (i.e. privacy), detection accuracy and detection
speed. By lowering the amount of input data the de-
tection challenge for the neural network is increased,
but a gain in speedup is achieved since the amount
of required calculations decreases dramatically. In-
deed, deep learning architectures often require signi-
ficant computational power to perform inference. A
lower computational complexity allows for an embed-
ded implementation on the camera itself (i.e. a decen-
tralised approach) where the original image data never
leaves the embedded device. Such scenario would be
ideal as this inherently preserves privacy.

In this paper – as a proof-of-concept – we start
from a standard camera with high resolution and ma-
nually downscale the images in order to compare
performances in-between different resolutions. Du-
ring deployment however, the system will first le-
arn in high-resolution and can be replaced by a low-
resolution for inference only. For example placing
the hardware lens out of focus, resembles a blur filter
and is considered a hardware adjustment. An additi-
onal challenge arises from the fact that as few came-
ras as possible should be required to cover the meet-
ing rooms. Therefore, we use omni-directional ca-
meras recording the 360◦ space around the camera.

For this, we rectify the image, as discussed further
on. Finally, the acquisition of enough annotated trai-
ning data to (re)train deep neural networks remains
time-consuming and thus expensive. In this paper we
propose an approach in which we automatically ge-
nerate annotations to retrain our low-resolution net-
works, based on the high resolution images. Figure 1
shown an overview of this approach. To summarise,
the main contributions of this paper are:

• Finding an optimal trade-off between: lowest re-
solution, accuracy, processing time, perseverance
of privacy

• An automatic pipeline where we run two detectors
on unwarped images to output annotations

• Public Omni-directional dataset containing se-
veral meeting room scenarios

The remainder of this paper is structured as follows.
We first talk about the related work in section 2 fol-
lowed by discussing what we recorded and used as
dataset in section 3. In section 4 we detail the top row
in fig. 1: the automatic generation of automatic an-
notations on our dataset, where we use a combination
of strong person detectors on the high-resolution ima-
ges to find reliably the persons in the room. The lat-
ter step yields annotated images, which we downscale
in resolution to use as training examples for our low-
resolution person detector, illustrated in the bottom
row of fig. 1 and explained in further detail in section
6. showing our results on how low we can go using
the annotated data. Section 7 will conclude this re-
search and show some possible future work based on
our current results.
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2 RELATED WORK

Employing cameras in public or work environments
inherently presents privacy issues. People tend to feel
uneasy given the knowledge that they are constantly
being filmed. Furthermore often sensitive documents
are processed in the work environment. Several pos-
sible solutions exist which aim to temper these pro-
blems. First, a closed system could be constructed in
which the sensitive image data never leaves the de-
vice. However, even if this is the case most people
remain reluctant to the use of these devices. A second
solution could be the use of an image sensor with an
extremely low resolution such that privacy is auto-
matically retained. Such solution could be mimicked
using a high resolution camera of which the images
are e.g. blurred or down-sampled. A user study pre-
sented in (Butler et al., 2015) shows that the use of
different image filters indeed increases the sense of
privacy. Even a simple blur image filter of only 5px
already decreased the privacy issues (depending on
the object which was visible). In this work we do-
wnsample the image which gives similar results as a
blur filter (concerning privacy). We aim to evaluate
several resolutions and expect the sense of privacy to
increase with every downsampling step.

In section 3 we discuss how we recorded a new
dataset which will be made publicly available meet-
ing all of our criteria. A large disadvantage when re-
cording a new dataset is found in the manual labour
to annotate all image frames. Instead of resorting to
time-consuming manual annotations we propose the
use of knowledge distillation to automatically gene-
rate the required annotations. We thus aim at trans-
ferring knowledge from a teacher network to a stu-
dent network. In fig. 1 the top row will represent the
teacher architecture, while the bottom row is the stu-
dent network that will use the generated annotations
by the teacher as training data. Techniques presented
in (Hinton et al., 2015; Ba and Caruana, 2014; Lee
et al., 2018) indeed show the potential of these ap-
proaches and illustrate that it is possible to use a pre-
trained complex network to train a simple network.
Our input data consists of omni-directional images
and thus no pretrained person detector models are cur-
rently available. Therefore we cannot use knowledge
distillation in its current form. Instead of using a com-
plex network to re-purpose the weights of a new mo-
del, we aim to employ person detectors on the unwar-
ped high-resolution omni-directional images. These
detections are then used as training examples for the
low-resolution networks. Several excellent state-of-
the-art object detector exist. For example, SSD (Liu
et al., 2016), RetinaNet (He et al., 2016), R-FCN (Dai

et al., 2016) all perform well with high accuracy and
are capable of running real-time on modern desktop
GPUs. In this paper we opted for the Darknet frame-
work (Redmon and Farhadi, 2017) (more specifically,
the YOLOv2 architecture). This framework outper-
forms the aforementioned methodologies in terms of
speed, by a factor 3 or more with a negligible loss in
accuracy. However, our initial experiments revealed
that in specific cases the person detection fails, mainly
at regions with heavy lens distortion. Therefore we
used a single-frame bottom-up pose estimator (Cao
et al., 2017; Wei et al., 2016) to further increase the
accuracy and efficiently fused both methodologies as
discussed further. While the person detector focuses
on the overall person, the pose estimator first detects
separate body parts which are then combined into a
complete pose.

In a next step the combined person detector ap-
proach mentioned above is used to automatically ge-
nerate annotations on the high resolution input ima-
ges. These annotations are then used to train the
low-resolution networks. Similar work is proposed in
(Chen et al., 2017) where the authors uses high reso-
lution frames combined with extreme low resolution
frames to train a single model. The showed that the
combination of both feature spaces produce an action
recognition model with few parameters. Different
work by (Ryoo et al., 2017) also focuses on extreme
low resolution images for action recognition, but uses
video as an additional dimension. Both works show
that even at extreme low resolutions (12× 16) action
recognition based on down-scaled frames is possible.
Our work significantly diverges from previous works.
We aim to develop a frame-by-frame system to detect
people and count people (instead of preforming action
recognition) with an emphasis on finding an optimum
trade-off between a privacy preserving low resolution
and high accuracy.

3 DATASET

As discussed above, to maximally cover the meet-
ing rooms with a minimum number of cameras we
employ omni-directional cameras mounted at the cei-
ling. To the best of our knowledge no such publicly
available dataset exists which meet these criteria, we
thus recorded our own dataset. Note that high quality
images are not a requirement (since we downscale the
images for future processing). We therefore recorded
our videos at 15 Frames per second (FPS) with a reso-
lution of 876×876. Our dataset consists of five differ-
ent scenes (meeting rooms), as illustrated in figure
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Figure 2: The left two images show the scenario used for as train set A (meeting rooms) and as test set A. The third and fourth
image show two additional scenarios (flex-desks) added to train set A, to form train set B the train set B. The fifth image show
an unseen scenario (meeting room) to test the generic character of the models.

Table 1: Details on the recorded datasets, amount of images
and people per set.

Images Amount of people
Training set A 8 527 0-8
Training set B 13 509 0-3

Test set A 10 100 0-6
Test set C 2 048 0-3

2, and is made publicly available2. The two leftmost
images show scenario A, which are divided in a sepa-
rate training and a test set. The training and test set
consist of different meetings in the same room with a
varying number of unique people. As such, the scena-
rio will be identical to the model during training and
inference, but the scene is different. The third and
fourth image in figure 2 are part of the training data-
set used to train model B, which is more diverse and
includes a flex-desk. Table 1 gives a more detailed
overview of the different data set parts.

To further evaluate the generalisability of our mo-
dels we recorded test-set C consisting of a completely
new scenario which was not used for training of either
model. In the next section we continue by suggesting
an approach that automatically generates annotations
from this dataset. For this we first unwarp the images
before using a combination of state-of-the-art person
detectors.

4 AUTOMATIC ANNOTATIONS

As mentioned in section 3 we recorded our own da-
taset In this section we now propose an approach that
is able to automatically generate annotations based on
the high-resolution input image. This is done in a two-
step process: we first unwarp/rectify the images and
then perform person detection on them. If the qua-
lity of the frame detections is insufficient, the total

2URL hidden due to anonymous review

frame is dropped. One quality measure we preform is
looking at the amount of detections within a tempo-
ral window remaining after the confidence threshold,
if the current frame has a sudden drop in detections,
the frame will not be used. This will have little to no
impact, since sufficient training data is available.

4.1 Unwarping and Rectifying

We first start by unwarping the 876×876 image using
the log-polar mapping method (Wong et al., 2011).
Since to the radius of the omni-directional image the
unwarped image has height of 438px. As step size
for the circular unwarp we chose 0.5◦, resulting in a
width of 720px.

Due to the distortion of the omni-directional ca-
mera the image will be compressed along the y-axis
near the outer boundary, while being stretched near
the centre as illustrated in figure 3a. In order to rectify
this distortion we used a striped calibration board. Ba-
sed on these points and the desired rectified points we
calculated the parameters for the following rectifica-
tion equation:

y′(y) =−0.001387y2 +1.247y−2.007 (1)

This is illustrated in figure 3b. Due to the rectifica-
tion a small bottom portion of the image is lost, since
this is the area with the highest distortion. Note that
this is not an issue: due to our camera viewpoint the
image centre coincides with the middle of the meeting
tables, in which persons never need to be detected.

4.2 Combined Detectors

We combined both Darknet (YOLOv2 (Redmon and
Farhadi, 2017)) and OpenPose (Cao et al., 2017; Wei
et al., 2016) to detect all the people in the unwarped
high-resolution images in order to generate reliable
training annotations for our low-resolution detector to
be trained.
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(a) Unrectified image (b) Rectified image

Figure 3: Before and after rectifying the y-axis of the images.

Figure 4: The omni-directional input image (left), the unwarped version with YOLOv2 detections (top centre), pose estimation
detections (bottom centre) and the combined detections as automatic annotations on the low resolution image (right).

As can be seen in fig. 4, these two techniques
are quite complementary to reliably detect all people
in the image. We form a bounding box around the
OpenPose keypoints with a margin of 25% around
each person. In order to avoid false positives, we only
accept people with more than 5 OpenPose keypoints.
When too many detections were lost after the confi-
dence threshold we decide not to use the frame, abi-
ding the strict policy.

Next we combine both bounding boxes using
non-maximum suppression (NMS) (Neubeck and
Van Gool, 2006), only leaving one detection per per-
son. Figure 4 illustrates the input omni-directional
image and rectified unwarped image containing the
YOLOv2 detection and the pose estimator output. We
can see that in this frame the pose estimator failed to
detect the person, while YOLOv2 still found the per-
son, showing that the combination has its benefits. To
the right we see the produced automatic annotations
after downscaling the image to a low resolution ver-
sion (96×96).

4.3 Validation of the Automatic
Annotations

In order to validate our automatic annotation appro-
ach we manually annotated a set of 100 random ima-
ges from the complete recorded dataset. Visual ana-
lysis of the automated annotations show that there
was a lot of margin due to taking the bounding box
around the points that were warped back to the omni-
directional frame. The manual annotations were done
properly around the persons and will have no margin.
Figure 5 shows the result of the comparison of manual
and automatic annotations as the precision and re-
call for different values of the Intersection over Union
(IoU) threshold. We observe a drop occurring around
an IoU of 0.4, which indeed can be explained by the
different sizes of the bounding boxes. We therefore,
for the remainder of this paper, use this IoU since we
are more interested in an estimated location and not
in a perfectly fitted detection.

Table 2 shows that an IoU of 0.4 misses 36 de-
tections and introduces 13 false detections, while the
IoU of 0.5 – often used in object detection literature
– has almost 3 times as much false negatives and 5
times the amount of false positives. The majority of
these issues are only due to too large detections op-

VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications

634



Table 2: Results of the automatic analysis for IoU {0.4;
0.5}.

IoU 0.4 0.5
TP 299 244
FP 13 68
FN 36 91
P 0.958 0.782
R 0.893 0.728

posed to smaller manual annotations. Nevertheless,
taken notice of their slightly less accurate positioning
of bounding boxes, we conclude that our automatic
annotations are reliably enough to use as training ma-
terial for our low-resolution person detector network,
thereby eliminating the tedious manual annotation la-
bour work.

Figure 5: The precision and recall for each IoU.

5 TRAINING A
LOW-RESOLUTION PERSON
DETECTOR

To allow the resulting system to run on embedded
System-on-Chip (SoC) systems, we focus on low pro-
cessing time from early on. We therefore chose to
perform all current experiments on YOLOv2 and kept
using this network to evaluate the influence of lowe-
ring the network input resolutions. Training a whole
new network from scratch is clearly impossible given
the limited amount of data. We chose using the pre-
trained weights of YOLOv2 trained on the coco (Lin
et al., 2014) dataset, that we can repurpose by using
transfer learning (Mesnil et al., 2011). Because the

coco trained model is, amongst many others, trained
on a class person, we assume the network has know-
ledge about the visual appearance of a person, which
we can inherit by fine-tuning (transfer learning) the
weights towards detecting people on low-resolution
omni-directional data as well.

Traditionally, the YOLOv2 network has an input
resolution between 608×608 and 320×320, yet this
is not low enough for our application. The lowest
we can go in resolution with the native YOLOv2 net-
work is 96×96. Indeed, the network has 5 max pool-
ing layers with size 2 and stride 2, with 3 additional
convolutions, this limits the smallest input resolution
to 3× 25 = 96. To investigate how low we can go,
we therefore trained between the range of 608. . .96
(448px, 160px and 96px), on which we trained two
models for each input resolution (using different trai-
ning data sets, to allow to investigate data set bias).

As in the original YOLOv2 implementation, du-
ring training we slightly vary the input resolution of
the network around the desired input resolution such
that the model becomes more scale-invariant.

For each resolution we trained two models. Mo-
del A only contains meeting room scenes, on which
the camera is placed at the centre of the table. Me-
anwhile, model B is trained on the same data, with
addition training data (flex-desks) on which we hope
to see a more generic model, since lots of additional
clutter (e.g. objects on the desks) is present. In section
6 we will discuss the results, the speed and the degree
of perceived privacy of each model.

6 RESULTS: How low can we go?

As explained above, for each resolution we trained
two models, a first on a basic dataset A and a second
on a more diverse training dataset B (as illustrated in
fig. 2). To validate these models we first used test set
A (two leftmost frames in fig. 2), containing footage
that is recorded in the same scenes as in the training
set. A second evaluation was on test set C (rightmost
frame in fig. 2), which was recorded in a totally new
room, unseen during training. We included the latter
in order to test the system’s generalisability towards
new scenes.

Figure 6 shows the precision-recall curves of these
validations. We observe conclude that each model
trained on training set A and validated on test set A
(containing different images, but acquired in the same
room as training set A) achieves high mAPs.

However, when we validate on test set C, con-
taining an unseen scene, we notice that only the
448×448 model in fig. 6a performs adequately.
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Table 3: Inference speed, FLOPS and equivalent blur kernel
size of the models on a single NVIDIA V100 GPU.

Resolution FPS FLOPS Blur kernel size
448px 52 34.15 Bn 2px
160px 108 4.36 Bn 5px
96px 186 1.57 Bn 9px

Remarkably, we also observe that training on a
more diverse dataset (B) does not necessarily yield a
more generalisable detector for unseen situations.

Figures 6b and 6c illustrate that for lower input
resolution the models either over-fitted on the data, or
were unable to generalise to different scenarios.

Apart from accuracy we aim to determine the opti-
mal trade-off between privacy and speed as well. Ta-
ble 3 shows the inference time on a V100 NVIDIA
GPU, together with the amount of floating point ope-
rations (FLOPS) that are needed for a single frame.
We see that the computational complexity of the
160px model is 8x less and that of the 96px model
even 22x less than the original network. This already
seem reasonable when targeting an embedded system
(or SoC), moreover if we lower the required FPS to
one frame per minute. Indeed, for a room occupancy
sensor, one measurement per minute is enough.

The rightmost column in table 3 shows for each
resolution the equivalent blur kernel size. Note that
we made input and output videos of each model avai-
lable online, together with the results of the automatic
annotations3.

7 CONCLUSIONS

The goal of this paper was the development of a fra-
mework which is able to detect people in a room
using ceiling-mounted omni-directional cameras, al-
lowing for occupancy optimisation in a room manage-
ment system. However, placing cameras in workpla-
ces like meeting rooms or flex-desks is heavily regu-
lated and most people tend to feel unease when con-
stantly being filmed. Therefore in this work we re-
searched how we can use state-of-the-art detectors to
detect people while ensuring their privacy.

We recorded a new publicly available dataset, con-
taining 5 different meeting room scenes. Because of
degrading the image resolution (or using an image
sensor with a very low resolution) has a positive in-
fluence on the sense of privacy, in this work we opted
to develop a framework which is able to efficiently
detect persons in extremely low resolution input ima-
ges. The use of such low resolution images inherently

3https://tinyurl.com/VISAPP2019-HLCYG

(a) Net resolution 448

(b) Net resolution 160

(c) Net resolution 96

Figure 6: PR curve of models A and B on test sets A and C
with IoU 0.4.
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ensures privacy of the individuals being recorded. We
evaluated different downscaled resolutions to deter-
mine the optimal trade-off between resolution and de-
tection accuracy.

To avoid the need for time-consuming and ex-
pensive manual annotations we proposed an appro-
ach that is able to automatically generate new trai-
ning data for the low resolution networks, based on
the high resolution input images. The validity of this
approach was proven when comparing with true ma-
nual annotations.

Extensive accuracy experiments were performed.
On test sets based on known scenes, the models sho-
wed an acceptable performance for all resolutions.
When tested on a similar scene with unseen data an
evident declining performance with lower resolution
is witnessed. However, because of the proposed auto-
matic annotation pipeline it remains easily possible
to add additional training data for each scene. In-
deed, a sensor that is newly installed in a certain room
can easily acquire during the first hours some high-
resolution footage, with which a room-specific low-
resolution detector can quickly be (transfer) learned.

Based upon our results we conclude that, despite
the extremely low input resolution of our lowest-
resolution model (96×96px), our YOLOv2-based de-
tection pipeline is still able to efficiently detect per-
sons, even though they are not recognisable by human
beings. Our framework thus is able to serve as an ef-
ficient occupancy detection system.

Furthermore, the low input resolution allows for a
lightweight network which thus is easily implementa-
ble on embedded systems while still maintaining high
processing speeds.

Although the current approach is suitable to be
used by the industry as is, we believe that we have
not yet reached the extreme lower limit and deem it
possible to decrease even further in resolution.
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