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Abstract: In this work, an intellectual property (IP) licensing framework is proposed that is secure against IP theft 

(cloning and redistribution). This security is provided by utilizing built-in features of modern field 

programmable gate arrays (FPGAs), e.g. secure boot, state-of-the-art cryptography and trusted execution 

environments (TEE). The scheme is also the least restrictive in comparison to other publications in this area. 

Using this scheme, multiple IP core vendors (CVs) can configure their IPs remotely by connecting directly 

to an FPGA. Devices are booted securely using an authenticated and encrypted boot loader that initiates an 

authenticated and encrypted hypervisor, which in turn provides a TEE by partitioning the system resources 

into secure and non-secure sections. At this stage, a secure operating system (OS) is loaded that handles all 

the security critical functions such as communication with CVs, storage and analysis of bitstreams, 

enforcement of license constraints and configuration of IPs. Then, a second, non-secure OS is loaded, which 

provides an isolated execution environment with unrestricted access to non-secure resources. Hence, they 

are not limited to predefined APIs. Both OSes can interact via the hypervisor. The implementation of this 

framework is a work-in-progress and results presented within this paper are subject to change.

1 INTRODUCTION 

Production costs for integrated circuits (ICs) are the 

key cost factor for low-volume applications. 

Programmable devices like FPGAs can be a cost 

effective alternative in such cases. With recent 

advances in technology, these devices are offering 

enough resources to accommodate even large 

designs, making them suitable for a variety of 

industrial applications. 

FPGAs are programmed using a digital bitstream 

that can be easily distributed independent of the 

physical device, which makes FPGAs an ideal 

platform for circuit trading. For example, system 

developers (SD) can outsource the development of 

parts of a circuit to or license them from third 

parties, who might be more experienced in a specific 

area. This kind of approach can reduce development 

costs and give system developers an edge over their 

competitor in performance but also in time-to-

market. Such licensable circuit designs are called 

intellectual property (IP) and are sold by a core 

vendor (CV). In general, they can be delivered in 

different digital formats like register-transfer level 

(RTL) code, netlist or bitstream. However, RTL and 

netlist representations need to be integrated by 

system developers during development and thus 

must be in a readable format, offering no protection 

against extraction of the original design. Bitstream, 

on the other hand, are processed directly on an 

FPGA, without direct access by SDs. Therefore, 

they are comparatively more secure against reverse 

engineering (RE), as they can be distributed in a 

proprietary format that is only known to the FPGAs 

themselves. Since this resilience against reverse 

engineering is only based on obscurity through the 

proprietary format, extraction of information is still 

possible with enough effort. Furthermore, all of 

these formats are vulnerable to overuse and 

redistribution. 

In response to these problems, modern FPGAs 

offer several built-in security features, i.e. an 

internal decryption engine and a secure hardware 

key vault, so that bitstreams may be delivered in 

encrypted form and only be configured on an FPGA 

that stores the corresponding decryption key. 
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However, programming the key into a device also 

causes several problems. If SDs perform this task, 

they get access to any IP, exposing them to overuse 

or redistribution. Similarly, if a specific CV 

programs the key, it would mean that either only 

their IPs could be used (as only, they know the key) 

or that all involved CVs have to agree on one key, 

which in turn creates more security problems, i.e. a 

CV can access another CVs intellectual property. 

Additionally, it would introduce the logistical 

overhead of sending devices to the CV. 

To cover these problems, this work provides a 

detailed investigation of existing licensing and 

remote configuration approaches. Their security and 

feasibility issues are discussed and a method for a 

secure licensing infrastructure with remote 

configuration capability is derived. 

1.1 IP Licensing  

Typically, multiple entities are involved in the 

secure delivery of intellectual property.  Throughout 

this paper, the following naming conventions are 

used, which are common among related works in the 

area of IP licensing and remote configuration: 

FPGA Vendor (FV): Producers of FPGAs and 

system-on-chip (SoC) devices. These products are 

commercially available with necessary 

documentation and development tools and can be 

used as off-the-shelf products. 

Trusted Third Party (TTP): This role can be 

played by any entity, notably an FV or a Hardware 

Manufacturer (HM). Its responsibilities include 

preparing devices for a licensing scheme, 

programming keys, adjusting security settings or 

handling encryption of IPs.  

Core Vendor (CV): Producers of a specialized 

licensable circuit. 

System Developer (SD): System developers license 

IPs from CVs and integrate them into their own 

hardware design.  

The relation between them is shown in Figure 1 

along with the order of required tasks: 

1. A TTP buys devices from an FV and prepares 

them for IP licensing. 

2. Necessary details (device type, location, 

interfaces etc.) are shared with CVs so that they 

can develop IPs accordingly. 

3. Prepared FPGAs are delivered to SDs. 

4. SDs acquire licenses from CVs for required IPs. 

5. CVs provide SDs with the requested IPs via a 

TTP that manages the security aspects of the 

transaction. 

 

Figure 1: Flow of a licensing scheme. 

1.2 Remote Configuration 

Remote configuration, in the context of IP licensing, 

refers to the process of a CV remotely accessing the 

device of an SD and configuring their IPs into it. 

This direct access reduces the number of steps 

required in the process of acquiring an IP and makes 

the licensing scheme’s implementation easier. Since 

IPs are configured on the device without further 

processing, they must be in the bitstream format. 

However, in the absence of appropriate security 

features, overuse of the IP cannot be prohibited. 

Therefore, a suitable licensing framework needs to 

be present to provide CVs with measures against 

threats like cloning, reverse engineering, 

redistribution and tampering. Since both remote 

configuration and IP licensing, are dependent on 

each other, we will treat them holistically rather than 

individually. Consequently, a secure IP licensing 

methodology will be proposed and then a remote 

configuration capability will be added on top of it. 

2 RELATED WORK 

2.1 IP Licensing 

IP Licensing and remote configuration are both well-

researched areas. A commonly used approach by 

researchers is the involvement of a trusted third 

party (TTP). The primary reason for this 

involvement is that it solves the conflict of pre-

programming a key into the non-volatile memory 

(NVM) of a target device, as discussed before, with 

the least impact on security. 

The programmed key is then used by core 

vendors to generate encrypted IPs, which are useable 

only on the target device (Kean, 2002). However, 

the drawback of this approach is that a high degree 

of trust is put in the TTP as they have access to the 

key and therefore all IPs.  
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To avoid this, some researchers introduced an 

additional security layer in the form of a Core 

Installation Module (CIM) (Guneysu et al., 2007; 

Maes et al., 2002; Zhang and Chang, 2014; Zhang 

and Chang, 2015). These modules are developed by 

CVs for the decryption of their IPs. They contain 

another key, which is different from the pre-

programmed one and is only known to the CV. The 

CIM bitstream itself is then delivered to TTPs that 

encrypt it with the device root key and deliver it to 

SDs. CIMs typically contain a custom decryption 

logic. An example CIM is shown in Figure 2. 

Such modules increase security because even if 

the root key is leaked, adversaries have to reverse 

engineer a CIM for the extraction of IP specific 

keys, and only then single IPs can be decrypted. This 

process has to be repeated for every IP, which makes 

it an effort beyond financial gain in most cases. 

Furthermore, cloning of CIMs can be avoided by 

integrating device identifier checks into its logic.  

Kumar et al. (K et al., 2017) proposed to avoid 

the step of encrypting CIM (Maes et al., 2002). 

Their scheme does not require any kind of third 

party for programming internal keys or encrypting 

CIMs, hence their scheme can work without the 

involvement of a TTP. However, their work is based 

on the assumption that a key cannot be extracted 

from a plaintext bitstream and thereby completely 

relies on obscurity introduced by the proprietary file 

format. 

More secure schemes with a reduced TTP 

dependency are presented in (Guneysu et al., 2007) 

and (Zhang and Chang, 2015), where Diffie-

Hellman Key Exchange (DHKE) algorithms 

generate IP specific keys within the device itself 

during runtime. This way all IP specific keys are 

ephemeral, and thus TTPs and SDs cannot get access 

to them by reverse engineering, unlike in previous 

cases. 

 

Figure 2: Core Installation Module using device identifier 

(Zhang and Chang, 2014). 

 

2.1.1 Readback 

Despite of possible other limitations, all of 

previously published schemes suffer from readback 

attacks. SoC devices have a processing system (PS) 

as a controlling entity that has full access to the 

programming logic (PL). The PS can read any 

previously configured data using the processor 

configuration access port (PCAP) (Xilinx, 2017b), 

and can extract secret information or even IP cores. 

Non-SoC FPGAs suffers from this attack too, 

because a user logic can perform readback via the 

internal configuration access port (ICAP) and 

deliver the data to an external interface. Any control 

logic around ICAP for protection against readback 

can be overwritten using dynamic partial 

reconfiguration (DPR) and after that, an attack can 

be performed easily. Readback of an initially 

encrypted IP is done in (Adetomi et al., 2017), 

where it is relocated to another location after initial 

configuration. (Maes et al., 2002) and (Zhang and 

Chang, 2014) actually identified readback attacks as 

a possible threat and concluded that this feature 

should be disabled. However, it was not made clear 

that readback can be disabled only for external 

sources and hence internal logic or running software 

could still perform such an attack.  

2.2 Remote Configuration 

Remote configuration of IPs relies on the 

infrastructure of a secure licensing framework and is 

performed by establishing a connection between 

CVs and the target devices via a common network 

such as the Internet. One of the first published 

approaches in this field proposed delivering 

bitstreams in an encrypted form over an unsecure 

channel (Drimer and Kuhn, 2009). The key has to be 

pre-programmed by the CV, which causes logistical 

overhead. Besides, the scheme is also prone to 

tampering because no bitstream authentication is 

considered. Furthermore, all IPs are encrypted with 

the same key, which leads to exposure of all 

previously transmitted IPs in case of a successful 

attack. Finally, this scheme again suffers from the 

key pre-programming conflict described in section 1. 

Works that are more recent use asymmetric 

cryptography and per-session keys (Braeken et al., 

2011; Vliegen et al., 2015; Kashyap and Chaves, 

2014). In these schemes, a new key is generated for 

every session based on a DHKE algorithm. Once a 

bitstream transfer is completed, they are either 

configured on the device directly or encrypted using 

a random key and then stored on the NVM (Kashyap 
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and Chaves, 2014; Kashyap and Chaves, 2016). Even 

though the latter approach has advantages like faster 

reconfiguration time, it is prone to several key 

extraction attacks because all keys are stored within 

the programming logic itself. Except (Thanh et al., 

2012; Thanh et al., 2013), none of the proposed work 

considers SoC-based FPGAs and therefore require the 

implementation of all functions on the PL, which not 

only introduces serious overhead but also makes them 

prone to side-channel attacks (SCA) (Wollinger et al., 

2004). Available solutions, which make use of SoC 

FPGAs to perform the key agreement tasks in 

software (Thanh et al., 2012; Thanh et al., 2013), are 

limited to using IPs from a single core vendor and do 

not offer bitstream storage.  

Based on the literature review, it is clear that 

available remote configuration approaches do not 

work within the context of IP licensing. In some 

cases, access of SDs to their device is completely 

blocked (Braeken et al., 2011) or SDs can only use 

licensed IPs but no logic of their own on the PL 

(Vliegen et al., 2013; Thanh et al., 2012; Thanh et 

al., 2013). We conclude that remote configuration of 

an IP is not possible in a secure and feasible way 

with any of the exiting schemes, and a new solution 

is required which provides the required 

infrastructure. 

3 SECURE REMOTE 

CONFIGURATION SCHEME 

We propose a new scheme, which aims to overcome 

the described limitations such as readback and single 

core vendor restrictions, based on remote 

configuration for delivering IPs directly to target 

devices. Before discussing the execution flow of the 

scheme, basic functional blocks are explained in 

section 3.1. 

3.1 Basic Functionality and Security 

3.1.1 Bitstream Format 

IPs can be delivered in different formats as 

explained in section 1. Among these formats, RTL 

and netlist must be processed using vendor tools to 

generate data that can be configured on the device. 

Doing that on the fly, inside the device, would 

require enormous effort and cause time overhead in 

the magnitude of several hours. On the other hand, 

bitstream format is ready-to-use blocks that can be 

configured directly. Hence, we only consider IPs to 

be delivered in bitstream form. 

3.1.2 Layered Rights Management 

In SoC devices, typically the CPU acts as system 

master and has complete control over the system 

including PL (Xilinx, 2017a; Xilinx, 2017b; Intel, 

2018a). Therefore, both PS and PL need to operate in 

a secure state at all time to guarantee licensing 

integrity. This can be achieved by introducing layered 

rights management, where users are categorized as 

either privileged or non-privileged (Intel, 2016, p. 

159).  

Non-privileged users have restricted control over 

certain system components while privileged users 

have full access. In the FPGA market, ARM 

microprocessors are the de-facto standard when it 

comes to the CPU part in SoC devices. Through the 

ARM TrustZone feature, they support layered rights 

on hardware level, meaning that buses, memories and 

peripherals can be divided into secure and non-secure 

components. TrustZone is supported by most SoC-

based FPGAs (Intel, 2017b; Intel, 2018a; Gosain and 

Palanichamy, 2014). As discussed earlier, the 

configuration interfaces can be used for readback 

attacks. TrustZone can be used to counter this attack 

by restricting non-privileged users’ access to 

interfaces. To achieve this, a hypervisor can be used 

that hosts a secure and a non-secure operating system 

(OS). Both, hypervisor and secure OS are running in 

privileged mode and are not accessible from the 

outside (i.e. by a user). Meanwhile, the non-secure OS 

runs in a non-privileged mode with restricted 

capabilities. It can access secure resources via secure 

OS and non-secure resources directly. This trusted 

execution environment protects security-critical 

software, firmware and hardware components, while 

not restricting SDs to a set of predefined APIs (Sabt 

and Achemlal, 2015).  

 In a similar fashion, the PL can be divided into 

secure and non-secure sections, as depicted in Figure 

3. The secure section should include a controlling 

interface that restricts ICAP usage to authorized 

commands only. Unauthorized commands, such as 

modification and/or readback of secure sections 

and/or IPs, are blocked by this circuit. 

 

Figure 3: PL showing secure/non-secure locations. 
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3.1.3 Bitstream Analysis 

Applications running on the non-secure OS must 

have the capability to perform configuration of IPs 

and custom logic using software, so SDs can 

configure their own design. Therefore, an API with 

this capability will be provided to non-privileged 

users. However, for security against unauthorized 

configuration and readback, bitstream analysis is 

required. It can be achieved by analysing the 

bitstream’s frame addresses (FAs) which represent 

the target locations in the PL. The FAs are compared 

against a table stored in the secure OS that defines 

secure, non-secure, custom logic or IP locations. 

3.1.4 Secure Boot 

After shipment, devices are in possession of SDs and 

fully under their control. However, a malicious SD 

would benefit greatly from breaking device security, 

as this would allow them to clone IPs at will instead 

of paying licensing fees. Consequently, SDs must be 

treated as potential attackers and critical components 

must be secured against attacks based on physical 

access. For this purpose, the "secure boot" feature is 

used, which is typically supported by modern 

FPGAs (Intel, 2018c; Sanders, 2015). Secure boot 

means that the complete boot chain, from loading 

the FSBL to loading the secure OS, is encrypted and 

authenticated using asymmetric cryptography. The 

corresponding key and authentication certificate is 

pre-programmed in the device before distribution. At 

start-up, the device only decrypts an authenticated 

boot loader with the previously programmed key, 

which in turn contains the key for the next boot 

stage, e.g. the hypervisor, and so on. With setting up 

devices to perform secure boots only (Xilinx, 2017a, 

p. 288; Intel 2017a, p. 35), it can be guaranteed that 

no unauthorized software runs on the device outside 

the control of the hypervisor.  

3.1.5 Enabling Remote Configuration 

Remote configuration is the establishment of a 

network connection between a CV and a device, 

which is used to configure the bitstream directly on 

this device. The network connection must be secure, 

so that threats like man-in-the-middle attacks can be 

avoided. For this purpose, a protocol like Transport 

Layer Security (TLS) including key exchange and 

authentication can be used. Additionally, the 

bitstream itself can be encrypted, too, but then the 

required key needs to either be agreed upon or sent 

via a secure channel, which would create more 

problems. We are focusing on the delivery of 

unencrypted bitstreams using a secure channel. 

Since bitstream sizes are in the range of several 

megabytes for modern devices, they cannot be 

stored in on-chip memory, which typically has a 

capacity of a few hundred kilobytes. Storing them 

off-chip on the other hand makes them vulnerable to 

bus probing and cold boot attacks. As described in 

section 3.1.2, the ARM TrustZone feature can be 

used to counter this type of attack. In the secure OS, 

a software module needs to be implemented which 

encrypts the bitstream with a random key on the fly. 

This key can either be stored in another secure 

software module (Software key-vault), a hardware 

secure key storage component or the secure section 

of the PL. Before encrypting the IPs for storage, they 

are checked for unauthorized commands through 

bitstream analysis, as explained in section 3.1.3. 

Finally, IPs can be configured using PCAP. The 

entire flow is shown in Figure 4.  

3.1.6 Target Hardware 

The proposed scheme can be implemented on most 

available devices as long as they support dynamic 

partial reconfiguration (DPR), an internal decryption 

engine and a secure key vault. This includes most 

devices from Xilinx and Intel and therefore a major 

share of the SRAM-based FPGA market. Optimally, 

a processing system is present on the device that 

handles remote communication, bitstream 

configuration and layered rights management. Such 

SoC-FPGAs can be found on many modern devices 

from low-cost to absolute high-end. Nevertheless, 

this solution also works with non SoC-based FPGAs 

by configuring a PS soft core on the PL as it has 

been done in related publications (Vliegen et al., 

2015). However, there will be significant resource 

overhead. 

3.2 Execution Flow and 
Implementation 

The proposed scheme is implemented on a Xilinx 

Zynq UltraScale+ (EK-U1-ZCU102-G), which is a 

SoC-type device supporting all required features. 

The scheme execution on this device begins with 

booting it into a secure state. First, the Power 

Management Unit (PMU) boots, powers all required 

components and performs an integrity check on the 

subsequent Configuration Security Unit (CSU) 

firmware. Afterwards, control is passed to the CSU, 

which sets security levels authenticates and decrypts 

a First Stage Boot Loader (FSBL). It then hands 

over control to the PS while it continues to run in the 
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background where it provides cryptographic 

accelerators, key management and PCAP access. The 

PS then executes the decrypted FSBL, which 

initializes necessary components like buses and 

organizes security states of system resources based on 

ARM TrustZone. Finally, it authenticates and 

decrypts the next boot stage, which could either be a 

hypervisor or another boot loader stage. In favour of 

maintainability and portability, we chose the latter 

approach and load a Second Stage Boot Loader 

(SSBL), which is then used to initialize the 

hypervisor, while the FSBL only focuses on system 

security initialization. Xen is used as hypervisor, 

which is open source and available free of charge 

(xenproject.org, 2018). It builds on top of TrustZone 

and supports devices from both Xilinx and Intel. It 

acts as a control and communication monitor for a 

secure and a non-secure OS (User OS). Any OS can 

be chosen for either category, however, for the given 

implementation we chose "FreeRTOS" as secure OS 

since it is lightweight, supports the necessary 

communication features and devices from both Xilinx 

and Intel (freertos.com, 2018). In addition, Xilinx' 

Petalinux is used to create a non-secure user OS. It 

comes with many drivers, has official tool support 

and therefore allows a fast and reliable scheme 

evaluation. 

At this stage, the processing system is fully booted 

and the PL can be configured. To expand the secure 

state to the programmable logic, an initial (full) 

bitstream is loaded that includes secure logic, i.e. for 

ICAP control, and interconnects for SD and CV 

designs. Once the initial bitstream is configured, 

additional logic can be loaded. When initiating the 

configuration of an SD’s custom design using the 

corresponding APIs, its bitstream is first passed to the 

Bitstream Analysis module, which ensures it does 

not contain any unauthorized commands, e.g. writes 

to a secure section. Finally, the bitstream is 

configured to a corresponding slot by the 

Configuration Manager module.  

For requesting and configuring an IP from a CV, 

a similar API is defined in the secure OS. The full 

flow is shown in Figure 4. First, to download an IP, a 

secure remote communication channel to the CV's 

server is established using the Remote Access 

module. This request is only granted if a valid 

license was bought for the respective device. Device 

identification in this case is done by using the unique 

96-bit serial number that is available on the Xilinx 

Zynq UltraScale+. Once an IP is downloaded, it 

passes the same process of bitstream analysis and 

configuration as for a custom design. Configuration 

times in both cases will be significantly shorter than 

for the initial bitstream. 

4 SECURITY ANALYSIS 

Security of the proposed work is provided by a trust 

chain based on pre-programmed keys and 

certificates in the device. A TTP performs this pre-

programming; hence, our scheme also relies on a 

TTP. Since FPGA vendors produce the devices, it 

would be straightforward for them to take the role of 

the TTP and program keys before distributing the 

devices. In addition, they would also be responsible 

for publishing the matching software, i.e. boot 

loader, hypervisor and secure OS. Since trust is 

already placed by using their devices, no further 

trust dependencies would be introduced. 

 

Figure 4 Remote Configuration Scheme flow. 
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All cryptographic primitives used in the scheme, 

i.e. AES and RSA, are considered computationally 

secure. Furthermore, these algorithms are 

recommended for long-term security by 

government-funded organizations (German Federal 

Office for Information Security, 2018; US National 

Institute of Standards and Technology, 2001). 

Nevertheless, some successful side channel attacks 

like differential power analysis have been conducted 

on older devices before, e.g. Xilinx’ Virtex-II/4/5 

series (Moradi et al., 2011a; Moradi et al., 2011b) 

and on PS (Ramsay, 2017). However, even if an 

attack were successful in extracting the AES device 

key, it would not be sufficient to boot a tampered 

OS, as any boot software also needs to be 

authenticated, and the required private certificate 

never leaves the TTP. Thus, it cannot be extracted 

from the device. One possible attack vector would 

be to decrypt the boot loader using the retrieved 

AES key, then extract the key for decrypting the 

hypervisor from the plaintext boot loader, again use 

this to decrypt the hypervisor and finally extract the 

key for the secure OS. Once the secure OS is 

available in plaintext, the private certificate for 

establishing a secure communication channel with 

CVs can be extracted from it and used to spoof the 

device during communication. Several approaches to 

prevent this attack scenario are currently analysed 

and will be implemented in the future, for instance a 

run-time calculated identifier could be sent along 

with the certificate. This identifier could be a hash of 

specific sections of the secure on-chip memory. 

However, attacking the secure boot chain is highly 

complicated and further requires extracting the AES 

root key from a device’s hardware key vault in the 

first place, which is highly unlikely on modern 

devices. Furthermore, if successful, this attack 

would only affect a single device and the effort for 

applying it to other devices stays constant. 

Therefore, we consider it a minor threat only. When 

such a security breach is identified, CVs can add the 

device ID and certificate to a black list, which means 

all future requests for these devices will be declined. 

Since this scheme relies on a trusted execution 

environment, we also consider the security of the 

implementation at hand, i.e. ARM TrustZone. So 

far, very few successful attacks have been published. 

One of them is the Rowhammer attack, where secure 

areas of DDR memory are accessed by a non-secure 

system master (Carru, 2017). In this attack, 

neighbouring rows of memory cells are rapidly 

accessed, which causes bit flips in the secure 

memory cells. However, not only is the complexity 

of this attack very high, as it requires inside 

knowledge of the secure memory mapping, but it 

can also be countered by simply keeping secure 

memory rows consecutive or by using the on-chip 

memory for secret data instead of DDR. 

Another attack monitors cache access behaviour 

to extract secrets of an application (Zhang et al., 

2016). It is executed by filling the cache with data of 

a non-secure application and then triggering a secure 

application. Thus, the secure application's data will 

be cached during its execution, which will replace 

previously cached data. After this, the non-secure 

application data is read again. By measuring 

memory access times, an attacker can get 

information on data access patterns of the secure 

application. If the attacker furthermore has detailed 

knowledge of the secure application, he can predict 

certain secrets like keys from this information. 

Again, this kind of attack requires detailed system 

knowledge and is hence highly unlikely. A possible 

countermeasure would be to restrict cache to secure 

OS only, though this would significantly slow down 

the non-secure OS. Consequently, this measure 

should only be applied for very high security 

systems, which perform sensitive cryptographic 

tasks like AES encryption and where the used 

algorithm is publicly available. For common use-

cases, this attack scenario can be ignored.  

Overall, we believe that the security of the 

presented scheme is sufficient with minimal attack 

surface exposed and any known attack will only 

work in a specialised environment such as a 

laboratory. 

5 CONCLUSION 

In this paper, we proposed an IP licensing 

framework with the capability of remotely 

configuring devices. An intellectual property design, 

in a proprietary obfuscated format, is delivered from 

CVs to the device directly using a secure channel, 

while the device itself runs in a secure execution 

environment. In addition, an extensive security 

analysis of previous as well as the proposed scheme 

is presented, and it is shown that this scheme is 

secure, least restrictive for SDs in term of device 

resource usage and has no resource overhead. This is 

a work-in-progress, and feasibility and security will 

be further improved, as described throughout the 

paper. 

A flow based on this scheme will provide extra 

guarantees against IP theft; this could get more CVs 

invested, which we believe can increase growth in 

the IP licensing market.  
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