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Abstract: Domain experts from both the software and business process modelling domains concur on the importance
of having concurring and co-supportive business and software development processes. This is especially
important for organisations that develop software for regulated domains where the software development pro-
cesses need to abide by the requirements of the domain-specific quality assurance standards. In practice, even
when following quite mature development processes to develop high assurance systems, software development
is a complex activity that typically involves frequent deviations and requires considerable context-sensitive
flexibility. We took a business process modelling notation called PML that was specifically designed to be
lightweight and allow flexibility, and developed formal semantics for it. PML supports a range of context-
sensitive interpretations, from an open-to-interpretation guide for intended behaviour, to requiring a precise
order in which tasks must occur. We are using Unifying Theories of Programming (UTP) to model this range
of semantic interpretations and the paper presents a high-level view of our formal semantics for PML. We
provide examples that illustrate the need for flexibility and how formal semantics can be used to analyse the
equivalence of, or refinement between, strict, flexible, and weak semantics. The formal semantics are intended
as the basis for tool support for process analysis and have applications in organisations that operate in regulated
domains, covering such areas as the certification process for medical device software.

1 INTRODUCTION

Software development is a complex activity that re-
quires frequent adaptation from the developers to
cope with external and internal forces such as chang-
ing requirements, evolving design knowledge, and
failures.

Software development in regulated domains such
as medical devices presents additional complexity due
to the restrictions on the software process imposed
by regulations: depending on the potential impact of
device failure, regulations stipulate that certain pro-
cesses must be followed to manage risks and improve
safety.

Organizations must meticulously document how
their processes comply with these regulations and this
heightens the need of synchronicity/synergy between
their business and software development processes.
Indeed, domain experts from both the software sci-
ence and business modelling domains concur on the
pivotal role of these two processes’ mutual support
(Aguilar-Saven, 2004).

In this context, it becomes important to be able

to document an organization’s development process
in sufficient detail to satisfy regulatory constraints,
while still allowing developers as much flexibility as
possible within those constraints.

Modelling both business processes and the (reg-
ulated) software development processes in the same
notation can provide a much-needed lingua franca
which enables a common understanding of the con-
straints, dependencies and synergies of an organisa-
tion’s business and software development processes.

This, for example, could facilitate using the same
modelling notation both to satisfy regulators and to
inform developers as to what tasks are required by
regulations; this ensures that changes to the process
are reflected in both presentations.

To satisfy these requirements, we took a business
process modelling notation called “PML” that was
specifically designed to be lightweight and allow flex-
ibility. We then developed formal semantics for three
levels of interpretation for PML:

1. Strict - the specified control flow and pre- and
post-conditions dictate the exact order and con-
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ditions for enactment of the process.

2. Flexible - the specified control flow must be en-
acted as written, except that sequential steps can
be re-ordered as long as pre- and post-conditions
are met, and concurrent activities need not all
complete before subsequent activities can start.

3. Weak - the specified control flow can be ignored:
steps can be performed in any order as long as
their pre-conditions are met. Steps can also be
skipped if their post-conditions are met.

This defines a hierarchy of flexibility from none
to maximum. The implication is that a (business or
software) process specification could be written that
has a strict interpretation that satisfies regulatory con-
straints. If the weak interpretation can be shown to be
equivalent, through comparison of the two interpreta-
tions’ semantics, then the regulators’ need for compli-
ance, and developers’ need for flexibility, are satisfied
with a single process and process description.

The remainder of this paper is organized as fol-
lows. In the next section, we introduce PML and
provide an example that will serve to illustrate the
need for flexibility and, later, how formal semantics
can be used to analyze equivalence of strict, flexible,
and weak interpretations. Following that we describe
the formal semantics and how they are derived using
UTP. Finally, we discuss related work, then conclude
with implications and future directions.

2 PML AND PROCESS
FLEXIBILITY

The Process Modelling Language (PML) (Atkinson
et al., 2007) is a shared-state concurrent imperative
language that has been designed to model organiza-
tional/business processes. PML models a process as
a collection of atomic tasks, each of which requires
resources to start, and provides resources when it
completes. PML uses four constructs to model pro-
cess flow: sequence, iteration, selection and
branch:

1. Sequence: Models a series of tasks to be per-
formed in the specified order:

1 sequence {
action A {}

3 action B {}
}

2. Iteration: Models a series of tasks to be per-
formed repeatedly, where the body is implicitly
interpreted as a sequence:

iteration {
2 action A {}

action B {}
4 }

3. Selection: Models a set of tasks from which only
one can be chosen to be performed:

selection {
2 action choice_A { }

action choice_B { }
4 }

4. Branch: Models a set of concurrent tasks, all of
which have to be performed:

branch {
2 action path_A { }

action path_B { }
4 }

The iteration and branch constructs in PML
are underspecified by design and behave somewhat
unusually. For instance, the iteration construct
has no explicit termination condition. PML acknowl-
edges the flexible nature of processes and leaves the
decision to the agent responsible for enacting the
process to decide when the loop should terminate.

This means that a given iteration construct can
be interpreted in at least two different ways:
• The agents (people) enacting the business pro-

cess use their judgement to determine when the
actions in the body of the iteration have been
repeated enough.

• The availability of resources in the system serves
as loop control. An action in a PML model
can have required resources, that must be avail-
able before the action and begin, and provided
resources, that become available when the ac-
tion completes. The iteration stops when the
required resources of the action following the it-
eration are available, and the required resources
of the first action in the body of the iteration are
not available.
Similarly flexible is the behaviour of the branch

construct. The decision on when to proceed beyond
the branch join point is left unspecified, and thus is
left to the judgement of the agent enacting the pro-
cess model.

In essence, depending on the interpretation, the
trace (enactment history) of a specific process model
can consist of: 1. an iteration of the non-deterministic
choice of actions whose resources are available; 2. a
sequence of actions that is governed solely by when
the required resources become available; or 3. a pre-
cise pre-defined sequence of actions which deadlock
if the required resources are not available.
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Figure 1: PML specification of Collect Signatures process.
Note that the body of a process is implicitly interpreted as
a sequence.

2.1 Initial Semantic Considerations

The flexibility of different semantic interpretations of
process terms allows PML to model a process at dif-
ferent levels of granularity and at each of those levels
to cater for context-sensitive interpretations.

To illustrate the attractiveness of the idea, let us
consider a CollectSignatures workflow that is re-
quired in a document change approval process. An
organization must put such a process in place in order
to comply with US FDA regulation Title 21 Subchap-
ter H Part 820 “Medical Devices Quality Management
Regulation,” (Food and Drug Administration, United
States Department of Health and Human Services,
2018b) which states in sub-part 820.20:

Each manufacturer shall designate an indi-
vidual(s) to review for adequacy and approve
prior to issuance all documents established to
meet the requirements of this part. The ap-
proval, including the date and signature of the
individual(s) approving the document, shall be
documented.
In our example, suppose the document must be

Figure 2: Strict interpretation of Collect Signatures process.

Figure 3: Flexible interpretation of Collect Signatures pro-
cess.

approved by the Project Manager, Department Head,
Division Director, and Vice President of Engineering.
This would be documented on a document change
approval form that collects signatures from these in-
dividuals. A PML specification for this process is
shown in Fig. 1.

A strict interpretation of this workflow requires
that the signatures be obtained in order: Project Man-
ager (PM) first, then Department Head, then Division
Director, and finally Vice President of Engineering
(see Fig. 2).

A flexible interpretation, on the other hand, recog-
nizes that the document must have all the signatures
before it can be distributed, but the order is not really
important. As such, signatures could be obtained in
any order, when the individuals are available. This
flexible interpretation is depicted by the specification
in Fig. 3. In this interpretation, the process iterates
over signature collection, obtaining signatures one at
a time, when the person is available (the diamonds
indicate selection: “choose one of the following”).

A final interpretation would be that each person
could sign a copy of the signature page, and so the
signatures could be collected in parallel. Once all
signatures are obtained, the document can be sub-
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Figure 4: Weak interpretation of Collect Signatures process.

mitted. This is shown in Fig. 4 (the circles indi-
cate a concurrent branch among all paths). Note that
in this interpretation, the requires predicate for the
distribute document action enforces barrier syn-
chronization: the distribute document action can-
not be performed until all of the signatures have been
collected, which means all paths of the branch con-
struct must complete.

Why not just use a specification that matches the
weak (Fig. 4) interpretation? In some cases, this
might be the best approach. However, there are
some considerations that make the initial specification
(Fig. 2) more appropriate. This specification captures
the intent of the process: that the signatures act as a
series of gateways to ensure that the Principle Investi-
gator accepts responsibility for the document, and that
the document meets with departmental, institute, and
executive approval. A hierarchical approval sequence
ensures that executives are not bothered with docu-
ments that don’t meet departmental standards. At the
same time, there are sometimes good reasons for cir-
cumventing this hierarchical sequence: for example,
one or more individuals might be unavailable at the
time their signature would be needed in the sequence,
but could convey their intent to sign upon return; wait-
ing for the strict sequence might result in missing the
submission deadline. Also, our experience indicates
that people tend to describe processes as sequential
even when the sequence is not strictly needed; con-
sequently, a sequential specification is initially easier
to validate. Later, the specification might be evolved
into a concurrent model as part of a process improve-
ment exercise.

Our motivation for analysing context-sensitive
flexibility comes from its relevance in modelling pro-
cesses in regulated domains. The typical quality
assurance standards that regulate safety critical do-
mains, such as the ones that regulate medical de-
vices or avionics software, have both requirements
that need to be followed strictly, and parts which al-
low and in many occasions call for a context-sensitive

flexibility of interpretation.
For illustration purposes, let us consider the Qual-

ity System (QS) Regulation – Medical Device Good
Manufacturing Practices (Food and Drug Administra-
tion, United States Department of Health and Human
Services, 2018a) from the U.S. Food and Drug Ad-
ministration (FDA). Due to the fact that the QS regu-
lation applies to a broad number of devices and pro-
cesses, it follows a flexible approach which prescribes
the essential elements to be incorporated in a manu-
facturer’s quality process without prescribing specifi-
cally how to enact these elements. Furthermore, it is
left to the manufacturer to determine which specific
quality assurance procedures to implement according
to their specific process or device.

This flexibility of enactment gives rise to a number
of interesting questions such as:

1. A control flow perspective of process analysis:
which enactment paths satisfy the regulatory re-
quirements and which are rogue paths which
could compromise compliance to the regulatory
standards?

2. A data flow perspective of process analysis: can
we highlight instances of resource black holes
(where a resource is consumed by an action
that produces no resources) and resource mira-
cles (where resources appear to materialize out
of nowhere, from actions that consume no re-
sources)?

3 PML FORMAL SEMANTICS

We have defined not one, but three, distinct but re-
lated formal semantics for PML. This was done using
a semantic framework known as the Unifying Theo-
ries of Programming (UTP) (Hoare and He, 1998) for
two main reasons: first, the UTP framework makes
it easy to formally relate the three semantic models.
Also, it facilitates linking these semantic models to
other application or domain specific resource seman-
tics models.

3.1 UTP

UTP uses predicate calculus to define before-after re-
lationships over appropriate collections of free obser-
vation variables. The before-variables are undashed,
while after-variables have dashes. Some observations
correspond to the values of program variables (v,v′),
while others deal with important observations one
might make of a running program, such as start (ok)
and termination (ok′). The set of observation variables
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associated with a theory or predicate is known as its
alphabet. For example, the meaning of an assignment
statement might be given as follows:

x := e =̂ ok =⇒ ok′∧ x′ = e∧ν
′ = ν

Once started, the assignment terminates, with final x
set equal to the e in the before-state, while the other
variables (ν), remain unchanged. UTP supports spec-
ification languages as well as programming ones, and
a general notion of refinement as universally-closed
reverse implication:

Sv P =̂ [P =⇒ S]
Typically the predicates used in a UTP theory form
a complete lattice under the refinement ordering, with
the most liberal specification (Chaos) as its bottom el-
ement, and the infeasible program that satisfies any
specification (Miracle) as its top. Iteration is then
viewed as the usual least fixed point on this lattice.

3.2 Semantics by Three

A PML description can be viewed as a named collec-
tion of basic actions, defined in terms or the resources
they need in order to start, and the new resources
they produce once they have completed. These are
all explicitly connected together using the control-
flow constructs: sequence, selection, iteration,
branch. However, this is also an implied flow-of-
control ordering induced by the required and provides
clauses of each basic action. Simply put, an action
that requires resource r can’t run until at least one
other action runs that itself provides r. It is this ten-
sion between the explicit and implied control-flow
that provides the basis for our three semantics for a
PML description:
• Weak: control flow is completely ignored, and

execution simply iterates the non-deterministic
choice of actions whose resources are available
(also known as the “dataflow interpretation”).

• Flexible: the behaviour is guided by the control
flow, but actions can run out of sequence if their
required resources become available before the
control flow has determined that they should start.
In effect this allows re-ordering of sequences or
execution of more than one selection, if resources
allow.

• Strict: the behaviour follows strictly according to
the control-flow structure, becoming deadlocked
if control requests the execution of actions whose
required resources are not available.
We can demonstrate that these three semantics

form a refinement-chain, in the sense that any pro-
cess enactment that satisfies the strict semantics also
satisfies the flexible and weak semantics:

Weakv Flexiblev Strict
Our collection of semantic models for any given PML
description does not prescribe how such a description
should be enacted. The choice of how to run a process
depends entirely on the context in which it is being
used.

3.3 Concurrency, Global State

Regardless of which of the three semantics we con-
sider, a key common feature is that we are dealing
with what is in effect a concurrent programming lan-
guage with global shared state. Formal semantics
for such languages are well established, in connected
denotational and operational forms e.g. (Brookes,
1996), and more recently in UTP (Woodcock and
Hughes, 2002). What all of these have in com-
mon, along with our three versions (Butterfield et al.,
2016)(Butterfield, 2017), is that basically all such
programs semantically reduce to a top-level iteration
over a non-deterministic choice of all the currently
enabled atomic state-change actions. In the case of
PML, we consider the basic actions as atomic, being
enabled if their required resources are present, and
if applicable control-flow also permits the action to
proceed. For the strict semantics, all the control-flow
constructs are applicable, whereas for the weak view,
none of them have any sway. In the flexible seman-
tics, control flow constraints can be overridden by ‘lo-
cal’ knowledge of actions not strictly scheduled, but
actually able to start in terms of resource provision.
By ‘local’ we usually mean actions contained in the
sequence construct containing the actions in ques-
tion.

3.4 Three Semantics Overview

The weak semantics is easiest: the alphabet consists
of rs and rs′ where rs is the set of resources present
before an action or process runs, while rs′ denotes the
resources present once it has completed. A basic ac-
tion first checks rs to see if its required resources are
available. If they are not present, it will not run, oth-
erwise it is available to be able to run. At any point in
time, one of the basic actions that are so available is
chosen to actually run, and it updates the resource set
accordingly. So the meaning of
action A {

requires { r1 }
provides { r2 }

}

is the predicate

r1 ∈ rs∧ rs′ = rs∪{r2}
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Figure 5: The three semantics for PML.

This predicate describes what must be true regard-
ing rs and rs′ in the event that this action actually
ran. Its required resource r1 must have been in the re-
source set before (r1 ∈ rs), and its provided resource
will have been added into the resource set afterwards
(rs′ = rs∪{r1}).

For the weak semantics, we simply collect up all
the basic actions, discarding any information about
the enclosing constructs, and then create a non-
deterministic choice (logical-or) over all of them.
This is enclosed in a loop that repeats until there is no
change in the resources available. The weak seman-
tics was first described in (Butterfield et al., 2016),
along with a preliminary version of the strict seman-
tics that wasn’t fully compositional.

For the strict semantics, we keep the loop with
choice structure used above for the weak semantics,
but also add in extra alphabet variables in order to cap-
ture control-flow behaviour. This involves the gener-
ation of labels that identify when flow-of-control is
about to enter or exit any statement (basic action or
control-flow construct). We introduce a designated
label-set (ls) that holds all the labels associated with
the entry points of currently enabled statements. With
every statement we associate an entry label (in) and an
exit label (out). Typically the out label of one state-
ment will correspond to the in label of the next state-
ment to run. A basic action is now enabled when both
its required resources are present, and its entry label
is also in the label set (ls). When it has completed
running, it will have updated rs as described above,
but also ls, by removing its in label and adding its out
label.

in ∈ ls∧ r1 ∈ rs
∧ rs′ = rs∪{r2}∧ ls′ = ls\{in}∪{out}

Careful use of a label generation mechanism and la-
bel substitutions allows us to give each statement a
semantics independent of its context, but in such a
way that it is easy for a more complex construct to
use it and set it up in context. For example, the se-
quential composition of two instances of the above

action would be achieved by generating a new label
(mid, say), and substituting it in for the out label of
the first instance, and the in label of the second. Then
the two resulting predicates would be connected with
logical-or. In effect, the variables in and out are used
to manage contextual information in a compositional
manner. Full details of the fully compositional strict
semantics can be found in (Butterfield, 2017).

The flexible semantics requires a few more
context-aware alphabet variables to propagate action
enabling information to surrounding flow of control
constructs, and is still under development.

3.4.1 Example

We can now consider how our three semantics deal
with the Collect Signatures example (Figs. 1 to 4).
Our semantics describes all the possible execution
orders that can arise, given some starting state.
With the strict semantics, applied to this example,
we get only one sequence: PM ; dept head ; dir
; VP ; distr doc (here we shorten action name
obtain XX sig to XX), which is precisely that of
Fig. 2. With the weak semantics, the first four actions
can occur in any order, while the fifth must wait until
all the previous four are done. This gives 24 differ-
ent interleavings of the four parallel actions in Fig. 4.
In this case, because each arm of the selection in the
flexible semantics has only one action (Fig. 3), we get
the same 24 interleavings as for the weak case.

3.5 Current State

The current state of development of these semantic
models is as follows — the extremal ones, weak and
strict, are complete, while the flexible semantics has
thrown up a number of interesting choices—there is a
spectrum of possibilities here, depending on how ‘lo-
cal’ the flexibility is. The current plan is to formalise
the degree of flexibility that corresponds to the PML
analysis and simulation tool described in (Atkinson
et al., 2007).

MODELSWARD 2019 - 7th International Conference on Model-Driven Engineering and Software Development

470



4 RELATED WORK

Osterweil’s 1987 paper (Osterweil, 1987) highlighted
the importance of efficient software processes to de-
liver qualitative software and argued the idea of de-
veloping and using model processing languages that
are similar to programming languages. Just a few
years later, in 1993, a survey (Armenise et al., 1993)
found that by then, there were quite a number of pro-
cess modelling notations (the survey identifies Adele,
ALF, APPL/A, DesignNet, Entity, EPOS, FunSoft,
HFSP, Marvel, Merlin, MVP-L, Oikos and SPADE)
that exhibited syntax similar to program languages.

To date, many different treatments of process flex-
ibility have been proposed in the literature and recent
extensive reviews of the field can be found in (Rosa
et al., 2017) and (Cognini et al., 2018). Yet, many
issues that come with flexibility remain to be solved,
and of particular interest to us is the need for further
research in the verification (ensuring correctness) of
flexible business processes (Cognini et al., 2018).

To contextualize our approach we will refer to the
taxonomy proposed by (Reichert and Weber, 2012)
that identifies four types of process flexibility needs
: (1) Variability – defined as the ability of providing
different variants of the same process; (2) Adaptation
– defined as the ability to (temporarily) deviate the
execution path of a process; (3) Looseness – defined
as the ability to execute a process when the decisions
affecting the control flow are under-specified (and the
execution path can be different in different runs); and,
(4) Evolution – defined as a permanent modification
of the process.

In this taxonomy our approach maps both into
Variability and Looseness.

Additionally, of particular interest for us is the
treatment of process flexibility seen from the lens
of ‘equal enough’ processes by van der Aalst et al
(van der Aalst et al., 2006), where a Petri nets ap-
proach is used to distinguish between negligibly dif-
ferent and completely different processes.

In our approach, we support the reasoning about
flexible deployment by using the Unifying Theo-
rems of Programming (UTP) (Hoare and He, 1998)
framework for developing a range (which goes from
“weak” to “strong”) of formal semantics for PML.

5 CONCLUSIONS

In this paper, we discuss our insights into mod-
elling context-sensitive (business and software) pro-
cess flexibility. We developed formal semantics for
a lightweight and flexibility-friendly process model-

ing language called PML. Our semantics cover three
levels of interpretation for PML: strict, flexible and
weak interpretations. We are using Unifying Theories
of Programming (UTP) to model this range of seman-
tic interpretations and the paper presents a high-level
view of our formal approach. The added benefit of us-
ing the UTP framework is that we have semantically
interoperable levels of interpretation for a process de-
fined in PML. This can help to determine those sit-
uations where the interpretation level does not mat-
ter. Surprisingly this also gives us useful information
about the nature of the process being modelled, and
often guidance as to when flexibility is feasible or not.
The formal semantics have applications in regulated
domains, covering such areas as the certification pro-
cess for medical device software. In particular, we can
exploit the unification aspect of UTP to add in formal
models of resources themselves to extend the scope
of our analyses.
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