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Abstract: The present work proposes the creation of a system that implements sensory substitution of vision through a

wearable item with vibration motors positioned on the back of the user. In addition to the developed hardware,

the proposal consists in the construction of a system that uses deep learning techniques to detect and classify

objects in controlled environments. The hardware comprise of a simple HD camera, a pair of Arduinos, 9

cylindrical DC motors and a Raspberry Pi (responsible for the image processing and to translate the signal

to the Arduinos). In the first trial of image classification and localization, the ResNet-50 model pre-trained

with the ImageNet database was tried. Then we implemented a Single Shot Detector with a MobileNetV2

to perform real-time detection on the Raspberry Pi, sending the detected object class and location as defined

patterns to the motors.

1 INTRODUCTION

The World Health Organization estimates 285 million
impaired people in the world, being 246 million with
low vision and 39 million completely blind (World
Health Organization, 2012). These people can incre-
ase their environment perception by using technolo-
gies that converts visual information to different sen-
sors like hear or touch.

The brain plasticity (Bach-y-Rita and Kercel,
2003) has shown the capability of the brain to adapt
to different patterns, no matter its source. With some
limitation, the human brain can replace a lost sensor
by using information from other existing sensors in
the body. Some researchers discuss about this phe-
nomena and the sensory substitution (Novich, 2015;
Bach-y-Rita and Kercel, 2003; Visell, 2009) and they
cite the capability of the brain to change his organi-
zational structure to recognize different patterns. A
common example of this structural change is the easi-
ness of visually impaired people with the braille wri-
ting system.

Novich (2015) has presented a method to allow
deeply deaf users to recognize words from a limited
vocabulary, using encoded audio information captu-
red with a cell phone and sending it to the a wearable
vest that activates a series of vibration motors distri-
buted along the user’s back.

The present work shows a prototype that uses
some portable hardware in conjunction with a simple
camera and some vibration motors to send encoded

visual information to the users. The information co-
mes from an object detection model and is encoded
using a fixed dictionary. The goal of this device is not
to completely substitute the vision or other assistance
tools (like the white cane). Since the device is wea-
rable, the user can use the vest and the cane in con-
junction adding more information about the environ-
ment. A limitation of the white cane is the detection
of objects that are at the top of the user’s field of view,
like a tree branch that can be detected by a camera.

Additionally to the developed hardware, the sy-
stem has an image processing module to perform in-
ference of deep learning models to detect and classify
objects in the scene. In our first trial to encode visual
information to the vest we performed some tests with
classification models that uses Global Average Pool-
ing layers, like the ResNet-50 model (He et al., 2015).
The idea behind trying a classification model was to
have a lighter model in a portable device like a Rasp-
berry Pi, but the limitations on encoding the informa-
tion made us to use an object detection model. The
chosen model for this task was the Single Shot Detec-
tor (Liu et al., 2015) with a MobileNet V2 (Sandler
et al., 2018) and the performance of this model on the
Raspberry Pi exceeded our expectations.

The paper is organized as follows: in section 2 we
present the related work; in section 3, we describe the
architecture of our prototype, including the hardware
and software; finally in section 4, results and future
work are discussed.
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2 RELATED WORK

In the field of sensory substitution just a few use
image capture and tactile stimulus (Cancar et al.,
2013; Dakopoulos and Bourbakis, 2008; Pereira,
2006; Johnson and Higgins, 2006; Bach-y-Rita et al.,
1969). The existing trials to encode image to touch
consists in simple methods, like downscale the image
to the size of a matrix of actuators or downscale the
edge image. In some other works that has a focus
on navigation (Cancar et al., 2013; Dakopoulos and
Bourbakis, 2008; Cardin et al., 2007; Johnson and
Higgins, 2006; Meers and Ward, 2005) the signal is
a basic function that tells the user the distance from
objects in the scene and they normally use depth sen-
sors. In this cases each motor is activated according
to a point of depth giving the user a spatial perception
of the environment to avoid obstacles. Considering
the brain capability of adapt, these methods are very
modest ones.

Some other projects also uses image capture but to
generate a different type of output, like audio (Saina-
rayanan et al., 2007; Hub et al., 2004; González-Mora
et al., 1999; Meijer, 1992) or touch using gloves (Lin
et al., 2012; Meers and Ward, 2005) sending signals
to the the fingertips. All these works that uses diffe-
rent sensors to encode image are evidence that doesn’t
matter the origin of the signal, the brain learns how to
deal with the information.

As the goal of this work is to evaluate the brain
capability to classify detected objects using touch, be-
low we describe the most relevant projects to our re-
search.

2.1 Tactile Vision Substitution System

(TVSS)

Developed by Bach-y-Rita et al. (1969), this work is
an early example in the field of tactile sensory sub-
stitution. Mounted in a dentist chair, it has a 20x20
vibration motor matrix that project the image captu-
red by an analogical TV camera. No preprocessing is
performed on the image.

The TVSS experiments was performed with 6
users, a totally blind person since 4 years old and ot-
her 5 person totally blind since birth. The first ex-
periments included identification of vertical lines, ho-
rizontal lines, diagonal lines and curves. After 20h-
40h of training, the users started to recognize the line
orientation with 100% of accuracy. A next experi-
ment comprised recognition of combined lines and
objects from 25 classes, like telephone, chair and cup.
The authors didn’t published the detailed accuracy for
object recognition but explained that the users were

Figure 1: Tactile Vision Substitution System (Bach-y-Rita
et al., 1969).

capable of recognize perspective variation and dis-
tance variation in function of the size of the object.

2.2 PhD Thesis of Mauro Pereira Conti

This research was presented by Pereira (2006) from
São Paulo University and resulted in a prototype that
performs vision substitution using a camera and an
electro-tactile matrix positioned in the user’s abdo-
men. The image is captured using a simple camera
and a customized hardware was developed to activate
the electrodes. The input image is processed using a
PC for edge detection, the edges image is downsca-
led to the size of the matrix and send to the electrodes
matrix.

Figure 2: System developed by Pereira (2006). Top: Con-
trolled board that activates the electrodes. Middle: Main
board with controller boards connected. Bottom: Electro-
des matrix worn by the user.

The author cites the limitations of real-time pro-
cessing and the limitation regarding to the hardware
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size. In the Figure 2 is possible to see big control-
ler boards that makes the system unfeasible to use in
everyday activities. The use electrodes also requires
the use of a conductive gel to improve conductivity.

In the first experiment, users were subjected to re-
cognize lines. The group of users with people blind
since birth scored 88% of right answers and the group
with normal vision people scored 70%. In the se-
cond experiment the users were presented with com-
plex geometric symbols, like letter L, square, triangle
and circle. The group of users with people blind since
birth scored 80% of right answers and the group with
normal vision people scored only 44%. The last ex-
periment was intended to show different objects to the
users and all the users scored less than 30% correct.

2.3 BrainPort

The BrainPort V100 Vision Aid (Stronks et al., 2016)
is a commercially available device that captures the
image using a simple HD camera and outputs the sig-
nal of the downscaled image into a 20x20 electro-
tactile tongue display. According to the product spe-
cification, after some training the user is capable of
identify light variation, detect simple objects, recog-
nize small words and detect movements. This system
is an evolution of the TDU (Tongue Display Unit),
developed by Bach-y-Rita et al. (1998). The price of
this system is around US$10,000.00 and is available
at USA, Europe and Hong Kong.

The system comprises a portable processing unit
(Figure 3) that receives images from a camera moun-
ted in a pair of glasses and allows the user to adjust
zoom and contrast. The system converts the image to
grayscale and reduces it size to 20x20, mapping each
pixel to a point in the electrodes matrix. The brighter
values are responsible to activate the electrodes in a
higher voltage and the darker values will generate lo-
wer voltage. The Figure 4 shows the captured image
and the output image.

Different kinds of tests were made to evaluate the
BrainPort system, including object identification, text
recognition, light variation, contrast and mobility. We
highlight here the results obtained for object identi-
fication and text recognition. The experiments were
made with 18 visually impaired people and the goal
was to identify if the can identify objects in 4 classes:
ball, banana, text marker and cup. After 15–20 hours
of general device training, the subjects had an average
correct rate of 75% in the object recognition task. For
the word recognition task, 10 words were used having
3-5 letters and the subjects had an average correct rate
of 15%. The author relates the poor results to the low
resolution images.

Figure 3: (a) The BrainPort V100 system. (b) BrainPort in
use by a user. (Stronks et al., 2016).

Figure 4: Example of image captured using the BrainPort
system and the 20x20 output image. (Stronks et al., 2016).

In addition to the research experiments, clinical
trials were conducted to allow commercial use appro-
val. The same tasks were applied to 75 totally blind
individuals. After 10 hours of training, the average
correct rate for object identification was 91% and for
word recognition was 58%.

2.4 VEST

Our prototype is very similar to the VEST (Figure
5). Although it’s a system developed for hearing-
impaired and not visually impaired, the work of No-
vich (2015) stands out by using a more elaborate met-
hod to encode the audio information in a vest with 26
vibro-tactile actuators and explains that the informa-
tion encoded in these actuators must be the result of
a function that the brain is capable of decoding wit-
hout generating confusion about the input signal. The
results obtained with the VEST proved the brain’s abi-
lity to understand complex patterns.

To encode the information from sound to touch
the author uses the k-means clustering method trai-
ned with english sentences. The number of centroids
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Figure 5: VEST System Novich (2015).

is equal to the number of vibration motors in the vest
and the algorithm is applied in certain intervals of
the input audio data, resulting in 26 frequency bands
mapped to the motors.

After 12 days of training with a 48 words dicti-
onary and after achieving a correct rate of 75% in
the training set, the subjects were submitted to a test
set with different words. The performance ranged ap-
proximately 35% to 65%, considered a very good re-
sult since the individuals haven’t never seen the test
set patterns before.

3 PROTOTYPE

Considering the tasks of identify objects in a unknown
environment without any assistance and based on the
theory of the brain’s plasticity, our work proposes a
system similar to the one developed by Novich (2015)
but focused on visually impaired people. The system
proposes vision substitution using a vest with vibra-
tion motors positioned in the back. One of the reasons
for choosing to work with a vest was due to the possi-
bility of the user performing day-to-day tasks without
obstruction of any other sense.

Tapu et al. (2014) describes some requirements
needed for an electronic travel aid. These require-
ments can be applied to our solution and they are pre-
sented in the Table 1.

3.1 Hardware

In the development of the first prototype, we tried to
meet the maximum possible of requirements quoted
by Tapu et al. (2014). The system created is weara-
ble, portable, reliable, inexpensive, user friendly and
does not use cables. The robustness will not be evalu-
ated at first, because the tests will be done in control-
led environments. Since it is a prototype, unexpected
situations can occur even in these environments and
user safety will be prioritized.

The first prototype consists of a vest with 10 cylin-
drical vibration motors positioned in the back, a pair
of Arduinos model Uno R3, a Raspberry Pi 3 model
B+ and a simple HD camera.

Table 1: Requirements needed for an electronic travel aid.
(Tapu et al., 2014).

Requirement Description

Real-time The system should promptly
send messages to the user as
soon as they’re processed.

Wearable It should be worn by the
user. The ears and hands
should be free.

Portable It should be lightweight and
easy to mount, which can
be carried over long dis-
tances, small and ergonomi-
cally shaped.

Reliable Must have a good cor-
rect rate and recall evalua-
tion. However, it must also
have correction functions for
unexpected situations.

Low cost It should be commercially
accessible to users.

Friendly Simple to use, easy to learn,
no long and expensive wor-
kouts.

Robust The device must resist to dif-
ficult environments and mi-
suse.

No cables TThere shouldn’t be wires
that limit the user’s mobility.

The Raspberry Pi board was chosen because it is
a low-cost processing unit and portable enough to be
carried by the user. This card has a ARM Cortex-
A53 64-bit processor with 4 cores of 1.2 GHz, 1 Gb
of RAM and is capable of running different opera-
ting systems. The Raspbian distribution of the Linux
operating system was specifically developed for this
hardware. The Raspbian system is a lightweight and
capable of running the TensorFlow software, which
was used for the inference process of the deep lear-
ning models.

The choice of the Arduino boards was mainly due
to the ease of prototyping and the number of PWM
ports available to activate the motors. The Raspberry
Pi card has only 4 PWM ports, which is little for the
proposed design. Therefore, the task of activate the
motors was centered on the Arduino boards and the
inference of the models on the Raspberry Pi.

The cylindrical motors were used due to the fast
response between fully active and fully static, also it’s
easy to control the frequency using a standard voltage
of 3V to 5V in the model used. Each motor can be
activated or deactivated to obtain the desired number
of actuators in operation according to the experiment.
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In addition, it is also possible to change the positions
of the motors, since they are fixed with velcro strips,
which makes it possible to carry out tests with diffe-
rent configurations, as can be observed in Figure 6.

Figure 6: Front facing image of the prototype showing the
internal part. In this image, the motors are configured as a
3x3 array.

The motors were mounted in the internal back of a
cycling vest. The vest is made of a an elastic material,
so that they stay close to the body and give the user
the sensation of vibrations and differentiation when
the motor is on or off . For powering the motors an
auxiliary battery was necessary, since the current sup-
plied by the Arduino was not enough. The Figure 7
shows how the vest is when it is worn. The Arduino
boards, the battery and the Raspberry Pi are placed in
the back pockets. The camera is attached to a regular
eyewear and connected to the Raspberry Pi.

The camera is connected to the Raspberry Pi
through USB. The captured image is processed using
Tensorflow to perform inference of a deep learning
model. The output of the model is post-processed and
sent to the Arduinos. The signal sent indicates which
motors should be activated. Each Arduino board has
only 5 PWM ports in the Uno R3 model, so we nee-
ded two boards connected through the I2C protocol.
The figure 8 presents a diagram of the prototype that
was developed.

3.2 Software

3.2.1 Classification and Localization using

ResNet-50

In our first attempt to encode image to touch we tried
the ResNet-50 (He et al., 2015) model pre-trained
with ImageNet. Our initial idea was to use a light-
weight classification model that can also output the
spatial location of the object. The ResNet-50 model
uses global average pooling layers allowing us to es-
timate the position of the classified object using the
process described by Zhou et al. (2015). Each activa-
tion map of the layer before the global average pool-
ing works as a pattern detector in the image and the

(a) Front

(b) Back (c) Camera detail

Figure 7: Our vest prototype. The boards and batteries are
stored inside the back pockets of the vest.

Figure 8: System architecture.

weights that connect the last two layers of the model
represent the contribution of each of these patterns. In
order to obtain the activation map that contains the lo-
cation of the classified object, we sum the outputs in
the activation layer weighted with the contributions in
the last layer.

For testing purposes we selected two objects and
defined a fixed signal that activates each object. The
first object was a guitar, that activates the vibration
motors horizontally from left to right. The second ob-
ject was a laptop, that activates from right to left. We
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got a pre-trained model with the ImageNet dataset.
The output of the global average pooling layer in

the ResNet-50 model has a 7x7 shape. As we have a
limit of 10 motors in our prototype we needed to re-
duce the size of the global average pooling to 3x3 to
send the information regarding the location of the ob-
ject. A new route was created after the existing global
average pooling layer with one more global average
pooling layer, downsizing the activation map to 3x3.
The vibration motors in the vest were configured as
the same, allowing us to map the signal directly to it.

3.2.2 Object Detection with SSD

Even estimating the location of the object through
global average pooling layers, the use of a classifi-
cation model has limitations for the proposed appli-
cation. There is no information regarding the num-
ber of detected objects and it’s always predicting the
class with the greatest probability. This is critical in a
system that sends the signal to vibration motors, be-
cause the signals are sent to the motors all the time
causing confusion to the user. To work around this
problem, we started using an object detection model.
The chosen model was the Single Shot Detector (Liu
et al., 2015) with MobileNetV2 (Sandler et al., 2018)
as backend that has a good balance between perfor-
mance and accuracy, 22 mAP in the Microsoft COCO
dataset (Lin et al., 2014) and average 1 FPS running
inference on the Raspberry Pi.

The Microsoft COCO database has 90 classes.
However, in order to attend this experiment we used
objects of only 4 classes (cup, remote control, scissors
and bottle) and the layout of the motors was modified
in relation to the previous experiment, from 3x3 rows
and columns to 4x2. The activation of the vibration
motors is done per row, where each pair of motors in
each row is activated when detecting an object among
these 4 classes.

Since the setup of the motors was modified, we
also changed the output signal indicating the position
of the object. To map the location with respect to the
input image, it was divided into 8 quadrants according
to the configuration of the vest, in 4 rows and 2 co-
lumns. Since the model already provides the position
and size of the bounding box, we calculated the area
of it in each quadrant obtaining the intensity value for
each motor, as can be seen in Figure 9.

Figure 9: Detected object (cup) and the values of activation
for the vibration motors for class and position. Left: Input
image with the 4x2 grid and the detected object. Center:

Values send to the vibration motors to indicate the cup class.
This value is hardcoded from a defined dictionary. Right:

Values send to the vibration motors to indicate the position
of the object.

4 DISCUSSION AND FUTURE

WORK

In the first attempt we used a classification model in
which it was possible to perform a simple classifica-
tion in the image and take advantage of the global
average pooling layers to locate the object. However,
this model has a limitation for the proposed use case,
mainly by constantly activating the vibration motors
that can confuse the user. In order to solve this pro-
blem, we decided to use the SSD object detection mo-
del.

From the tests performed in our laboratory using
the vest with the SSD object detection model, it was
possible to send signals to the vest that represents the
objects and the position of this objects in sequence.
By using the vest with a real-time detection, it was
possible to clearly perceive the difference between
signals sent that represents different objects. The sig-
nal regarding the location of the object seemed a little
more confusing at first, but after a few minutes of trai-
ning the signal started to make more sense. This phase
was intended to check the system operation, including
the communication between all the parts and valida-
tion of the signal send to the vest, that will enable the
next steps of our research. No evaluation were made
with visually impaired individuals yet.

Novich (2015) explains that the encoded signal
must be a function for the brain to be able to learn to
decode the input. Considering this, adjustments can
be made in the object detection model to create out-
puts that are functions of the learned features in the
hidden layers of these models. That is, a possible op-
tion for a next version is to use the features learned by
the network to generate a pattern that is similar when
the input images are similar. To achieve this goal we
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will perform experiments with clustering algorithms
(such as k-means), dimensionality reduction layers to
match the number of vibration motors, among other
techniques that will be investigated.

After having consistent results using the vest in
the laboratory, we plan to perform experiments with
visually impaired users.
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