
Extraction of Musical Motifs from Handwritten Music Score Images
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Abstract: A musical motif represents a sequence of musical notes that can determine the identity of a composer or a
music style. Musical motifs extraction is of great interest to musicologists to make critical studies of music
scores. Musical motifs extraction can be solved by using a string mining algorithm when music data is repre-
sented as a sequence. When music data is initially produced in XML or MIDI format or can be converted into
those standards, it can be automatically represented as a sequence of notes. So, in this work, starting from
digitized images of music scores, our objective is twofold: first, we design a system able to generate musical
sequences from handwritten music scores. To address this issue, one of the segmentation-free R-CNN models
trained on musical data have been used to detect and recognize musical primitives that are next transcribed into
XML sequences. Then, the sequences are processed by a computational model of musical motifs extraction
algorithm called CSMA (Constrained String Mining Algorithm). The consistency and performances of the fra-
mework are then discussed according to the efficiency of the R-CNN ( Region-proposal Convolutional Neural
Network) based recognition system through the estimation of misclassified primitives relating to the detailed
account of detected motifs. The carried-out experiments of our complete pipeline show that it is consistent to
find more than 70% of motifs with less than 20% of average detection/classification R-CNN errors

1 INTRODUCTION

The study of musical scores using automated image
analysis and data mining tools offers new perspecti-
ves for musical analysis and critical edition of scores.
Our work is devoted to the study of musical scores
with the main objective to assist musicologists in their
understanding of the musical background (i.e. com-
poser and musical style characterization, plagiarism
detection, expert reading grid through motif disco-
very). To assist musicological researcher in his ever-
yday work (critical edition, musical influence study,
history of music...), we propose here the development
of a complete search engine for musical motifs de-
tection, defining the motifs as frequent successions of
identical notes including also some meaningful melo-
dic information.

This project is a part of a pluridisciplinary collabo-
ration supported by the Région Rhône Alpes (France)
between Computer Sciences laboratories (through
computer vision and text mining fields) and the mu-
sicologists staff of the MSH of Lyon in France (Par-
doen, 2012).

We present in the paper the overall scheme of a

Figure 1: Musical motifs extraction from music score ima-
ges pipeline.

musical motifs detection based, for its first part, on
a pixel-wise system dedicated to musical primitives
recognition and then on a string mining algorithm for
the exact motifs extraction.

Music data can be presented in a variety of for-
mats: audio, transcription and image. The CSMA al-
gorithm that has been proposed in (Benammar et al.,
2017) is dedicated to motifs extraction on the audio
data (MIDI) and XML encoding transcription (Musi-
cXML).

In this manuscript, we present the general frame-
work of the generation of a musical sequence starting
from a segmentation-free binary objects detection and
an efficient musical primitives classification. In this
work, we need to answer two main questions. First,
how can we generate a sequence of primitive objects
from R-CNN (Region-proposal Convolutional Neural
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Network) output model and extract meaningful motifs
from it. Secondly, what is the impact of R-CNN clas-
sification errors on the quality of the extracted motifs.

To address these questions, we propose a com-
plete pipeline allowing to make a transcription of the
R-CNN model output. This transcription is used to
build a sequence that is processed by CSMA to cap-
ture variant-sized motifs from it as illustrated in Fi-
gure 1. For the evaluation of errors impact, a set
of experiments are also proposed. They consist in
the initial evaluation of the transcription quality, by
comparing the generated sequence from the R-CNN
output with a reference sequence built from a correct
XML transcription. Then they are finally based on the
evaluation of the motifs delivered from the R-CNN
output compared to the reference ones extracted from
the ground-truth XML transcription.

This paper is structured as follows: In the section
2, we briefly remind the recent works related to mu-
sic primitives and symbols recognition required as the
first stage of our pipeline. Section 3 describes the dif-
ferent annotated datasets and ground truths that are
offered by the community for the experiments and
evaluations and also the data preparation that is re-
quired for our own needs and experiments. Then, in
Section 4, we present next stages of the pipeline dedi-
cated to sequences generation through the primitives
encoding. Next, in section 5, the motifs extraction
algorithm from sequences (CSMA) is presented. In
Section 6, the evaluation protocol is established and
different experiments of motifs extraction are presen-
ted, concluding by the nature of relations existing bet-
ween performances of the R-CNN primitives detector
and the efficiency of the CSMA approach to extract
meaningful motifs of music score images.

2 OVERVIEW OF MUSIC
PRIMITIVES DETECTION AND
CLASSIFICATION

This last decade, different approaches have been
proposed for handwritten music symbol recognition.
Some works are based on classical classification sche-
mes that consist in a first step of features extraction
and classification procedure as described in (Tardón
et al., 2009). In their work, the authors used K-NN,
the Mahalanobis distance, and the Fisher discriminant
as classification approach. As well as Hidden Markov
Models (HMMs) prove their efficiency for character
recognition models, some works, like in (Lee et al.,
2010) (Mitobe et al., 2004), tried to use those models
for printed music notation classification.

More recently, in (Rebelo et al., 2010), aut-
hors show that Neural Network models outperform
HMMs. It is in this way, that in the last few years, the
convolutionnal neural networks (CNN) outperforms
most of the state-of-the-art classification systems for
character recognition (Chen et al., 2015). The rese-
arch community working on handwritten music re-
cognition turned to those approaches. Indeed, the
neural architectures are able to make decision without
prior knowledge on the data (i.e. without features ex-
traction). However, they need to be designed through
very specific network schemes, dealing in particular
with the number of layers, the layers layout and the
hyper-parameters initialization (e.g. batch size, num-
ber of features per layer, etc.).

One of the first attempts was made by A. Re-
belo et al. in (Wen et al., 2015), using hierarchi-
cal classification based on two combined neural net-
works models and requiring a sliding window to cor-
rect the classification process. In the same class of
methods, Lee et Al., in (Lee et al., 2016), tried to
classify handwritten music symbol of HOMUS da-
taset, which have been proposed in (Calvo-Zaragoza
and Oncina, 2014), using different deep convolution
network architectures. They study the efficiency of
famous deep neural networks like CifarNet, AlexNet
and GoogleNet to recognize music symbols.

More recently, Calvo-Zaragoza et al. proposed
a pixel-wise binarization of musical documents with
convolution neural networks (Calvo-Zaragoza et al.,
2017b). They proposed a CNN based approach for
the segmentation of handwritten music scores into
staff lines, music symbols and text regions (Calvo-
Zaragoza et al., 2017a). This last work is the very
first attempt to make automatic detection of musical
primitives without using any heuristics for the steps
of primitives detection and recognition.

This trend continued in 2018 by Pacha in (Pacha
et al., 2018a). In their work, the authors used the deep
learning library TensorFlow and tested a set of object
detection models (called Region proposal CNN) on
musical data by considering almost all the music vo-
cabulary. The best performing detector is the Faster
Region-proposal Convolutional Neural Network (Fas-
ter R-CNN) using the Inception-Resnet V2 feature
extractor pre-trained on the COCO dataset(Szegedy
et al., 2017). Their model produces a mean average
precision of 80% on a set of hundred visual musical
primitives of the MUSCIMA++ dataset(Fornés et al.,
2012) (Hajič and Pecina, 2017). Other neural region-
proposal architectures like U-Net (Ronneberger et al.,
2015) have also shown very accurate results on simi-
lar data (Pacha et al., 2018b). Currently, their deep
approaches outperform all other of the state-of-art.
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So as to show the efficiency of a recognition sy-
stem, A. Fornes et. al. proposed in 2012 a first de-
dicated dataset called MUSCIMA. This dataset was
firstly dedicated to writer identification and staff lines
detection. This dataset contains 1,000 music sheets
written by 50 different musicians where each writer
transcribed the same 20 music pages, using the same
pen and the same kind of music paper (Fornés et al.,
2012). As a consequence, accurate approaches were
proposed in ICDAR 2013 competition for writer iden-
tification and staff lines detection (Louloudis et al.,
2013).

Several other approaches use private datasets ma-
king it impossible to establish proper comparisons.
The advantage of making an annotated dataset for
symbols recognition available to the researcher com-
munity is obvious. So as to make the primary MUS-
CIMA dataset (dedicated dataset for writer identifi-
cation and staff lines detection(Fornés et al., 2012))
also usable for music primitives recognition, Jan Ha-
jic jr. and Pavel Pecina, in (Hajič and Pecina, 2017),
proposed an annotation tool (Muscimaker) to build a
primitive level annotation of music symbols over the
140 MUSCIMA score images. This dataset is called
MUSCIMA++. In MUSCIMA++ dataset, each primi-
tive is described by its class, top and left position into
the original MUSCIMA image, its width/height and
a mask to reconstruct the image and outlinks (Fornés
et al., 2012)(Hajič and Pecina, 2017).

MUSCIMA++ dataset provides enough informa-
tion to setup an end-to-end trainable object detector
for music symbols in handwritten music scores.

3 FASTER REGION-PROPOSAL
CNN FOR PRIMITIVES
RECOGNITION

In this work, we propose to adapt the meta deep-
learning architecture Faster Region-proposal CNN
(Fast R-CNN) as mentioned in (Pacha et al., 2018b)
to detect and classify music primitives and to trans-
form them into textual sequences to properly extract
musical motifs. To show the efficiency of our overall
pipeline, we consider two datasets. Dataset1 is built
from MUSCIMA and MUSCIMA ++ and only con-
sider correctly segmented and identified visual primi-
tives. Dataset2 is built from the outputs of Pacha’s
primitives detection model applied on MUSCIMA da-
taset (Pacha et al., 2018a) which provide the current
best performing detection and recognition scores over
hundred classes of primitives. A primitive is defined
as a part of a musical composed symbols. There are

around 100 types of primitives in a music score (also
including handwritten textual annotation).

In both cases of datasets, we only consider one-
voice music scores with a single instrument (corre-
sponding to a total of 9 pages and 11 primitives) to
enable the representation of the score into a single
(one dimensional) music sequence. This selection
avoids confusing the chords and the arrangement of
voices when building the musical sequences. In addi-
tion, the use a basic algorithm of detection (based on
vertical projections) of staff lines pushed us to leave
out some score images (those with a significant slant)
even if this can be avoided by a deskewing operation.

For both datasets, staff lines images from MUS-
CIMA dataset are used to detect and encode the staff
lines for each score image. The MUSCIMA ++ data-
set annotations are used to encode the primitives that
compose the first dataset dataset1 and the Faster R-
CNN output, based on Inception ResNet v2 (for fea-
tures extraction) is used as annotation tools to encode
the primitives of the second dataset dataset2.

Table 1 and Figure 3 resume the performances
in mAP (mean Average Precision) of primitives de-
tection and recognition obtained by the Faster R-CNN
with the same configuration as mentioned in (Pa-
cha et al., 2018b). The architecture has been applied
on a selection of significant musical primitives of the
MUSCIMA dataset, carefully chosen to fully address
the melodic information of the scores. These primiti-
ves are chosen among the variety of the initial hund-
red ones: notehead-full, notehead-empty, flat, natu-
ral, sharp, measure bars, additional lines (ledger li-
nes) and clefs. In this scenario, we have disregarded
primitives with minor importance such as uncommon
numerals and letters and other objects appearing less
than 50 times in the dataset. We note that most primi-
tives are well detected and recognized with an average
accuracy greater than 87%, except for the ledger li-
nes primitives (additional bars in the noteheads beside
staff lines), that are very sensitive to handwritten exe-
cution (only 61 % of correct recognition) as shown in
Table 1. In Figure 2, we show two output samples
of the Fast R-CNN, the first one illustrates a situation
where the network fails to detect some targeted pri-
mitives and the second one shows an example where
it is totally successful. There are many reasons of the
difficulties of the Fast R-CNN to fully recognize pri-
mitives: most often it is due to a clumsiness of their
graphical execution. In Figure 3, we show statistics
about the average accuracy of the R-CNN considering
eleven classes of primitives relative to our selection of
pages in MUSCIMA dataset. Here, we show that each
score image has its own complexity (overall layout
and primitive position, achieved primitive execution,
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Figure 2: Faster R-CNN outputs.

Figure 3: Faster R-CNN outputs accuracy per page.

Table 1: Faster R-CNN accuracy statistics in mean Average
Precision on Test set considering 11 classes of primitives.

Primitive Min avg std deviation max
notehead-full 0.426 0.888 0.188 1

notehead-empty 0,263 0,871 0,235 1
stem 0,624 0,889 0,142 0,994
flat 0,4 0,893 0,204 1

sharp 0,4 0,942 0,151 1
natural 0,25 0,88 0,217 1
f-clef 1 1 0 1
g-clef 1 1 0 1
c-clef 1 1 0 1

ledger line 0,203 0,613 0,23 0,883
thin barline 0,714 0,920 0,105 1

quality of the writing...) that impacts the accuracy of
the R-CNN output. The later experimental study pre-
sented in section 6 will show the impact achieved by
recognition errors on the transcription quality and the
detection of motifs.

4 PRIMITIVE ENCODING AND
SEQUENCE GENERATION

In the MUSCIMA dataset, a score image relative to an
author is presented in three forms: binary with staff
lines, grey level with staff lines, and binaries without
staff lines.

Although there is a large diversity of staff line de-
tection approaches even for distorted images (Visani
et al., 2013), we have opted for the horizontal pro-
jection algorithm that is effective enough on our se-
lection of MUSCIMA images. It should be noted that

we can easily employ skew corrector algorithm to ad-
just lines inclination. This step allows to detect very
accurately the five lines forming the stave. Accor-
dingly, the primitives are encoded with their position
(in the lines or in-between), such as the first line on
the top is encoded 0, the first staff line is encoded
2 and the space in-between is encoded 1 and so on.
Figure 4 illustrates the counting mechanism of lines
(space numbers are not drawn for readability).

Each primitive image is defined by its class and
its bounding box whether it concerns MUSCIMA++
primitives dataset or the faster R-CNN outputs. As
explained before, we only consider a significant sub-
set of primitives that we judge efficient to cover most
of the melodic information present in a score. This
primitive-level encoding allows to build sequences
from music scores such that the notes are firstly or-
dered by associated vertical stave position, and then
they are ordered left to right following the reading di-
rection at the stave level, see Figure 4.

The first step consists in associating stems to sta-
ves by considering the maximal shared space ranges
between stem and stave, otherwise by affecting the
stem to the nearest stave, as illustrated in Figure 5.
Then, noteheads and accidentals are associated to sta-
ves of the nearest stem (cf. links represented by ar-
rows in Figure 5. Then, we store the line number (or
the space) which is the closest to the center of the pri-
mitive. Based on this analysis, the sequence of primi-
tives is ordered along the x-axis to ensure the tempo-
rality, except for the chord notes that are played at the
same time, and ordered from the highest to the lowest
according to y-axis.

In Figure 5, the primitives are encoded following
the regular expression:

?(Alteration) (NoteType) (Position)
Such that ? for 0 or 1 occurrence, Alteration can

be (F: Flat, N: Natural, ]: sharp), NoteType can be
(NF: Notehead-full, NE: Notehead-Empty) and Posi-
tion refers to the associated staff line index.

The position of the notes, respectively above or
under the stave, depends on the apparent number of
ledger lines (primitives) in the stem of the note, acting
as extra-lines for the stave. For example, in Figure 5,
the empty notehead on the second stave is above 4
ledger lines, and following the same encoding as used
for staff lines, this position corresponds to -9.

In order to complete the melodic information we
consider the projection of accidentals with respect to
the staff lines. First, clefs must be identified and staff
lines encoding must be adjusted: for example, for a
C-Clef located on line index 2, the line index should
be updated with an offset of +12, converting a line
index value of 0 to 12. For more explanation on the
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Figure 4: Staff lines numbering for the primitives encoding.

Figure 5: Zoom in on the notehead primitives encoding.

meaning of clefs and their use we invite the reader to
see music theory lessons or simply visit the Wikipe-
dia web page https://en.wikipedia.org/wiki/Clef. This
justify the values of the sequence in Figure 4.

After that, depending on the type of clef, we count
the number of accidentals next to the clef to determine
the key signature of a note and we associate minor
/ major accidentals to it according to their positions.
Inside measures, each accidental is associated to the
notes that directly follow it. Following barline cancels
the effect of an accidental.

Accordingly, the sequences are generated from the
primitives position (the octave number and its type) in
the score image and from the concomitant presence
of accidentals when they exist. It is then straightfor-
ward to associate each primitive-level encoding to a
MIDI encoding and also a XML encoding (transcrip-
tion) by using simple matching rules between repre-
sentations. For example, #NF0 (a black on the first
line of range with accidental on #) corresponds to
the note 78 of the MIDI encoding. The sequence of
primitives can easily be expressed by the same vo-
cabulary as a MIDI sequence. It becomes then ob-
vious to establish the transcription accuracy (on the
dataset of the study) by using the MUSCIMA++ an-
notated primitives (dataset1) as ground-truth and the
tested one (dataset2), corresponding to the R-CNN
output primitives. This second dataset will reveal
the impact of an error of recognition on the consis-
tency of the transcription. For the transcription eva-
luation, each music score is represented by two MIDI
sequences:the ground-truth MUSCIMA++ sequence
and the R-CNN based one. The evaluation of the
R-CNN derived transcriptions lies on its comparison
with the ground-truth MUSCIMA++ sequences. Re-

sults are presented in Section 6.2. In the next secti-
ons, we show and evaluate the motifs extraction from
a transcribed sequence of varying sizes.

5 MOTIFS EXTRACTION

CSMA(Constrained String Mining Algorithm) has
been designed for discovering all frequent motifs in
a string (Benammar et al., 2017). CSMA performs
motifs search according to constraints related to fre-
quency, gaps between motifs, minimal and maximal
length of motifs.

A motif mi is defined by three elements mi =
(X , f req(X),Pi = [(pi1, leni1), ..., (pin, lenin)]) such
that X corresponds to the motif value (ordered list of
items), f req(X) corresponds to its frequency and Pi
its positions and lengths. In the set of positions, cal-
led Pi, the jth position of the ith motif is denoted pi j
and its length at this position is denoted leni j.

The pseudo-code of CSMA is given in Algo-
rithm 1. This algorithm takes in input a sequence
S, a minimum frequency threshold minFreq, a maxi-
mum allowed gap length inside motifs maxGap, a mi-
nimum motif length minLength and a maximum motif
length maxLength.

The first step of CSMA (Line 4, Algorithm 1) con-
sists in computing the set F1 containing the frequent
motifs of length one using COMPUTE function. The
items, from the sequence S, with frequency greater
than or equals to minFreq are added to F1. In order to
get the set FK containing the motifs of length equals
to (K = 2), a joining operation JOIN is considered
(line 7) between each element mi of FK−1 and each
item m j belonging to F1. The joining operation is
O(|Pi|× |Pj|). So, in order to prune the search space,
we compute the position on which the motif mi is con-
sidered as frequent (line 8). This position, called f p
for frequent position, corresponds to the sum of the
index of mi ∈ FK−1 at the minFreqth position and the
length of mi for the same position. Then, candidate
motifs are generated using the GEN CAND function.
The interest reader is referred to the original article
for a detailed description of this function (Benammar
et al., 2017). Once the selection of candidate motifs
is done, the joining operation is performed for the se-
lected motif mi with each element m j ∈ C . The motif
joining (concatenation) is defined as follows:
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Algorithm 1: Constrained String Mining Algorithm
(CSMA).

Input : Sequence S, minFreq,maxGap,
minLength and maxLength

Output: F : The set of frequent motifs respecting
constraints

1 begin
2 K = 1;
3 F1 = /0;
4 COMPUTE(S, minFreq, F1);
5 while FK 6= /0 do
6 K = K +1;
7 for mi = (X , f req(X),Pi) ∈ FK−1 do
8 f p = piminFreq + leniminFreq;
9 C = GEN CAND( f p,F1);

10 for m j = (Y, f req(Y ),Pj) ∈ C do
11 ml = JOIN(mi,m j, maxGap,

maxLength);
12 if f req(Z)≥ minFreq then
13 FK = FK ∪{ml};
14 end
15 end
16 end
17 end
18 F =

⋃
k≤K Fk

19 FILT ER(F ,minLength);
20 return F ;
21 end

Let be two motifs m1 ∈ FK−1 and m2 ∈ F1 defined
as m1 = (X , f req(X), P1 = [

⋃
i≤ f req(X) (p1i, len1i)])

and m2 = (Y, f req(Y ),P2 = [
⋃

j≤ f req(Y ) (p2 j, len2 j)]),
m1 join m2 gives m3 ∈ FK defined as m3 =
(Z, f req(Z),P3) such that Z is the concatenation of
(X ,Y ) and P3 is a set of positions p3k and lengths
len3k. A position p3k ∈ P3 equals to p1i if and only
if ∃ j ≤ f req(Y ) such that the three conditions are ve-
rified:

0≤ p2 j− (p1i + len1i)≤ maxGap (1)
i = argminl≤ f req(X)(p2 j− (p1l + len1l)) (2)
p2 j + len2 j− p1i ≤ maxLength (3)

The positions p1i from m1 and p2 j from m2 veri-
fying the three conditions allow to define the position
p3k corresponding to p1i for m3, and the length len3k
is equal to p2 j + len2 j− p1i. The frequency of m3 is
equal to the number of positions in P3. It can be no-
ticed that the frequency of each new motif is lower or
equal to its sub-motifs. This means that the joining
operation verifies the anti-monotony property which
allows to prune the search space. Once F2 is obtai-
ned, the other sets FK of length K > 2, are computed
and the while loop stops when no new motif is gene-
rated. In the next step, (line 19 in Algorithm1), all fre-
quent motifs of order k ≤ K are put in F . Then, mo-
tifs that do not respect the minLength constraint are
removed from F . The FILTER function scans each

motif m∈ F and if it finds a position for which leni is
lower than minLength it removes it from the set P. In
the end, the value f req(X) is updated and if it is lower
than minFreq the motif is removed from F . As Algo-
rithm 1 makes a breath first search to build motifs, it
needs an exponential running time which is estima-
ted to O((max(|P|)× |F1)|maxLength); with max(|P|)
the maximal size of positions sets.

6 EVALUATION

The goal of this section is to show and discuss the
impact of errors of primitives recognition on the
transcription accuracy and then on the efficiency of
the motifs detection pipeline. On both cases, the eva-
luations are based on the two datasets containing the
musical primitives (introduced in section 3):dataset1
for the ground-truth annotated primitives of MUS-
CIMA++ dataset and dataset2 for the R-CNN out-
put primitives. For both datasets the transcriptions of
musical scores are produced according to the method
presented section 4.

6.1 Evaluation of the Transcription

The evaluation of the transcription consists in the es-
timation of the Levenshtein distance between the two
sequences and the correct MIDI sequence (deduced
from the ground-truth XML and denoted as XML-
GT). The distance consists in the removal, the inser-
tion, or the substitution of a character in the string
(Navarro, 2001). In this definition of edit distance,
errors of insertion, suppression and substitution have
the same weight. The final distance is then normali-
zed with respect to the size of the reference sequence
(XML-GT).

Figure 6 shows the statistics of the computed Le-
venshtein distance between each sequence from data-
set1 (MUSCIMA ++ dataset) and dataset2 (R-CNN
output) with its corresponding MIDI reference se-
quence (XML-GT). We can notice that Lenvenshtein
distances are mostly greater in the case of R-CNN se-
quences. This observation is expected due to the de-
tection and/or classification errors. However, in the
case of sequences derived from MUSCIMA++ data-
set, even if Lenvenshtein distances are smaller, they
are not null. This can arise from a lack or an incom-
pleteness of an efficient manual ground-truth annota-
tion in the MUSCIMA++ dataset.

Lastly, we can note that R-CNN errors in the de-
tection of noteheads, ledger lines, and accidentals (es-
pecially for page 9) belonging to key signatures (set
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Figure 6: Normalized Edit Distance stats between XML-
GT sequences and those provided by the R-CNN out-
put (orange) and the MUSCIMA++ ground-truth primitives
(grey).

Figure 7: Box-and-whisker plots for the motifs alignment.
Estimate made between XML-GT & R-CNN sequences
(orange & grey bars) and XML-GT & MUSCIMA++ se-
quences (yellow & blue bars).

of sharp or flat symbols placed together on the staff)
spread mistakes over the sequence.

6.2 Evaluation of the Motifs Extraction

As the sequences share the same vocabulary, the eva-
luation of motifs extraction is based on the estimation
of the number of common motifs between sequen-
ces (i.e. one from dataset1 or dataset2 and the se-
cond from the ground-truth MIDI transcription, still
denoted as XML-GT in figure 7). It should be no-
ted that this work is based on MUSCIMA++ dataset
which have been proposed for handwriting processing
tasks, reflecting a data diversity on the writing sty-
les and music symbols. Thus, only short motifs will
be found through the music scores (with an average
length of 4 notes). The efficiency of CSMA algorithm
on real music data has been demonstrated in (Benam-
mar et al., 2017).

In Figure 7, we show statistics on common mo-
tifs between each dataset and the associated MIDI

transcription (XML-GT). The ’%identified XML mo-
tifs’ refers to the percentage of common motifs ac-
cording to the total number of MIDI motifs (used as
reference in the calculation). By analogy, ’% identi-
fied image motifs’ refers to the percentage of common
motifs divided by the total number of primitives mo-
tifs (used as reference in the calculation).

We observe that CSMA is able to find an average
of 70% of common motifs between the primitive se-
quence and the reference sequence in the case of da-
taset1. We note that, at the best CSMA is able to find
100% of motifs in the case of page 15. Nevertheless,
some sequences share only 25% of motifs. Theses se-
quences are made from images containing lot of an-
notation oblivion. This refers to annotated pages with
maximal edit distance values and motifs membership
probability of wrongly encoded primitives (cf. Fi-
gure 6).

In the case of dataset2 (R-CNN output), CSMA
is able to find in average 50% of common motifs. At
worst case CSMA is not able to find motifs when the
distance between R-CNN based sequence and the re-
ference MIDI sequence is maximal (c.f. Figure 6).
However, when the edit distance is minimal (minimal
errors occurrences), CSMA is able to identify about
76% of common MIDI motifs with about 27% of re-
maining primitive motifs. This point out that motif
extraction process is highly sensitive to errors but,
with certain level of mistakes, can find most of mu-
sical motifs.

In future works, we will study how CSMA can
be more accurate by allowing gaps into motifs. The
theorical part of the gap introduction can be found in
(Benammar et al., 2017).

7 CONCLUSION

In this work, we detail the pipeline of a complete
motif extraction system dedicated to handwritten mu-
sic scores images, starting from the very low level
steps of primitives recognition to the exaction of mo-
tifs from the generation of musical transcriptions. For
the detection and the recognition of musical primiti-
ves, we focus on one of the most accurate pre-trained
R-CNN on the MUSCIMA++ dataset. For each score,
the identified primitives are encoded into a sequence
uses as input of our string mining algorithm (CSMA)
to retrieve musical motifs.

This end-to-end process is evaluated on MUS-
CIMA dataset and shows the real impact of misclas-
sification on the mined motifs. We also show that it is
not obvious to retrieve accurate motifs (common mo-
tifs between the correct XML sequence and the primi-
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tives sequence) when primitives sequence is proned to
errors. In most cases, with less than 20% of average
detection/classification R-CNN errors, the mining al-
gorithm is able to find more than 70% of motifs. This
can be considered as efficient from a musicologist vie-
wpoint to target the major motifs but we believe that
these performances can still be improved.

In our future work, we will try to use the gap con-
straint of CSMA in order to see how we can reduce
the impact of errors on the extracted motifs.
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V., and Oliver, A. (2009). Optical music recogni-
tion for scores written in white mensural notation.
EURASIP Journal on Image and Video Processing,
2009(1):843401.

Visani, M., Kieu, V. C., Fornés, A., and Journet, N. (2013).
Icdar 2013 music scores competition: Staff removal.
In Intern. Conf. on Document Analysis and Recogni-
tion, pages 1407–1411. IEEE.

Wen, C., Rebelo, A., Zhang, J., and Cardoso, J. (2015). A
new optical music recognition system based on com-
bined neural network. Pattern Recognition Letters,
58:1–7.

Extraction of Musical Motifs from Handwritten Music Score Images

435


